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Abstract—A new efficient approach to estimate parameters that

controlled the source dimensions from magnetic anomaly profile

data in light of PSO algorithm (particle swarm optimization) has

been presented. The PSO algorithm has been connected in inter-

preting the magnetic anomaly profiles data onto a new formula for

isolated sources embedded in the subsurface. The model parame-

ters deciphered here are the depth of the body, the amplitude

coefficient, the angle of effective magnetization, the shape factor

and the horizontal coordinates of the source. The model parameters

evaluated by the present technique, generally the depth of the

covered structures were observed to be in astounding concurrence

with the real parameters. The root mean square (RMS) error is

considered as a criterion in estimating the misfit between the

observed and computed anomalies. Inversion of noise-free syn-

thetic data, noisy synthetic data which contains different levels of

random noise (5, 10, 15 and 20%) as well as multiple structures and

in additional two real-field data from USA and Egypt exhibits the

viability of the approach. Thus, the final results of the different

parameters are matched with those given in the published literature

and from geologic results.

Key words: Magnetic anomaly, PSO algorithm, the depth,

RMS.

1. Introduction

Magnetic anomaly interpretation is significantly

important in exploring regions with targets under the

surface (Nabighian et al. 2005; Abdelrahman et al.

2009; Ekinci et al. 2014). In addition, it can be

applied in hydrocarbon exploration (Abubakar et al.

2015; Ivakhnenkoa et al. 2015), in ores and mineral

exploration (Farquharson and Craven 2009; Abedi

et al. 2013; Abdelrahman et al. 2016), in engineering

applications (Dong et al. 2007), in geothermal

activity (Bektas et al. 2007; Nyabeze and Gwavava

2016), in archaeological site investigations (Gün-

doğdu et al. 2017), in weapon inspection (Davis et al.

2010; Yin et al. 2017), and in hydrological investi-

gations (Al-Garni 2011; Araffa et al. 2015). In

general, most of magnetic interpretation methods are

carried out assuming the subsurface structures are

simple geometrical shapes (for example spheres,

horizontal cylinders, thin sheets, faults) buried at

different depth generated by different minerals, ore

bodies and oil deposit (Abo-Ezz and Essa 2016).

Generally, inversion of magnetic data includes

estimating the model parameters (depth, amplitude

coefficient and the dip angle) of buried geologic

structures. Numerous methods have been used to

interpret magnetic data such as Werner deconvolu-

tion (Ku and Sharp 1983), Euler deconvolution

(Thompson 1982) and parametric curves approach

(Abdelrahman et al. 2012). In addition, layered-

model inversion (Pilkington 2006), gradient methods

(Abdelrahman et al. 2003; Essa and Elhussein,

2017a), fair function minimization procedure (Tlas

and Asfahani 2011), DEXP (Fedi 2007), linear least

squares approach (Abdelrahman et al. 2007; Abo-Ezz

and Essa 2016), and simplex algorithm (Tlas and

Asfahani 2015) approaches. However, these conven-

tional inversion approaches are that some of them

generate large number of invalid solutions because of

noise sensitivity, misconception between causative

bodies and window sizes. In addition, some of them

require initial model parameters that depending on

geologic information, utilizing few data points on

profile, claim understanding of shape factor and

require more time.

These are the disadvantages of above-mentioned

conventional inversion methods. For the past two
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decades, global optimization methods have been used

in many areas as an alternative to these geophysical

inversion methods such as genetic algorithm

(Boschetti et al. 1997; Kaftan 2017), particle swarm

optimization (van den Bergh and Engelbrecht 2004;

Essa and Elhussein 2017b), differential evolution

(Ekinci et al. 2016; Balkaya et al. 2017), simulated

annealing (Biswas 2015), ant colony optimization

(Colorni et al. 1991; Srivastava et al. 2014) and

hybrid genetic-price algorithm (Bresco et al. 2005; Di

Maio et al. 2016).

Particle swarm optimization algorithms (PSO) are

effective optimization methods for solving difficult

problems reliably and accurately. The PSOmethod is a

stochastic developmental computation technique and

was first produced by Kennedy and Eberhart (1995). It

is primary on the simulation of the plain conduct of

birds, fishes and insects in nourishment seeking. In this

algorithm, the birds represent the particles or models.

Each particle has a location vector which represent the

parameters esteem and a speed vector. For example, for

a five-dimensional optimization problem, each particle

or individual will have a location in five-dimensional

spaces which represent a solution (Eberhart and Shi,

2001). The implementations of the particle swarm

optimization technique on geophysical data inversion

and modeling were carried out (Toushmalani 2013;

Peksen et al. 2014; Singh and Biswas 2016; Essa and

Elhussein 2017b). Likewise, it is connected to many

issues, like machine learning (Juang 2004), model

construction (Cedeno and Agrafiotis 2003), biomedi-

cal images (Wachowiak et al. 2004), inverse scattering

(Donelli et al. 2006), electromagnetic optimizations

(Robinson and Rahamat-Samii 2004) and hydrological

problems (Chau 2008).

In this study, we applied the PSO algorithm to the

inversion of magnetic anomalies over simple causative

sources. The model parameters estimated are the depth

(z), the location of the origin (xo), shape factor (Sf),

index angle (h) and the amplitude coefficient (K). The

use of this study was demonstrated by different syn-

thetic models without and with different levels of

random noise (5, 10, 15, and 20%), multi-models and

two real examples. The model parameters estimated

values compared with the results of the conventional

inversion methods used in previous studies and drilling

information. The results obtained from this comparison

reveal that our algorithm is more stable and resolvable.

2. Methodology

2.1. Two-Dimensional Magnetic Forward Problem

The general new formula of two-dimensional

magnetic anomaly (T) profile for simple-geometric

bodies was summed up by Abdelrahman and Essa

(2015) after careful investigation of magnetic anom-

aly expressions of the spheres (Rao et al. 1977; Rao

and Subrahmanyam 1988), the horizontal cylinders

(Rao et al. 1986) and the thin sheets (Gay 1963)

which is described as follows:

Tðxi; zÞ ¼ K
Az2 þ B xi � xoð Þ þ C xi � xoð Þ2

xi � xoð Þ2þz2
h iSf

; i

¼ 0; 1; 2; 3; . . .; N

ð1Þ

where K is the amplitude coefficient, z is the depth of

the buried body, A, B, and C are defined as follows:

A ¼

3 sin2 h � 1

2 sin h

� cos h

cos h

cos h
z

8>>>>>>>>>><
>>>>>>>>>>:

; B ¼

�3z sin h

�3z cos h

�3z sin h

2z sin h

� sin h

8>>>>>>>>><
>>>>>>>>>:

; C ¼

3 cos2 h � 1

� sin h

2 cos h

� cos h

0

8>>>>>>>>><
>>>>>>>>>:

;

for a sphere (total field)

for a sphere (vertical field)

for a sphere (horizontal field)
for a horizontal cylinder, FHD of thin sheet,

and SHD of geological contact ðall fields)
for a thin sheet and FHD of geological contact (all fields):
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h is the angle of effective magnetization which is

clearly demonstrated by Rao et al. (1973) and Rao

and Subrahmanyam (1988) in case of spheres. In

addition, for the case of thin sheets and horizontal

cylinders is defined by Gay (1965), xo is the coordi-

nate of the center of the source body, FHD is the first

horizontal derivative, SHD is the second horizontal

derivative of the magnetic anomaly, respectively, N

is the number of data points, and Sf is the shape factor

(for sphere Sf = 2.5, for horizontal cylinder Sf = 2,

and for thin sheet Sf = 1 (Abdelrahman and Essa

2005).

2.2. Magnetic Inverse Problem

The inversion method in geophysics is an opti-

mization process that finds themodel parameters of the

buried geologic structures which nicely explains the

observed data. The inverse problem solution requires

the supposition of an initial model (Lines and Treitel

1984; Zhdanov 2002; Tarantola 2005; Mehanee et al.

2011). A promising initial model could be made by

introducing a priori information from geology, drilling

or other geophysical techniques (Zhdanov 2002;

Mehanee 2014; Mehanee and Essa 2015). The initial

model is increasingly polished at every iteration step

until a best fit is reached between the estimated and

measured data. In every step, the model parameters are

changed to get a better fitting between the measured

and estimated data. The iteration process is continued

until the best model parameters (better data misfit) are

executed at the minimum value of the objective

function (Eq. 2) & zero.

According to the two-dimensional magnetic for-

mula (Eq. 1), the unknown model parameters are the

depth (z), the location of the origin (xo), shape factor

(Sf), index angle (h) and the amplitude coefficient (K).

The particle swarm optimization (PSO) algorithm

has been used to solve the inverse problem because it

is mathematically robust and numerically stable due

to the rapidity of merging fewer operators, and easy

to execute because of simplicity of its procedures

(Pallero et al. 2018).

To find the best value of the model parameters in

a manner that minimizes the differences between the

observed field data and the estimated model, we use

the following simple objective function:

Q ¼
2
PN

i¼1 Tm
i � Tc

i

�� ��
PN

i¼1 Tm
i � Tc

ij jþ
PN

i¼1 Tm
i þ Tc

ij j
; ð2Þ

where N is the number of data points, Tm
i is the

measured magnetic anomaly at the point xi, Tc
i is the

estimated magnetic anomaly at the point xi.

2.3. The Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) method is

a global optimization algorithm proposed by Ken-

nedy and Eberhart (1995). It is relied on the

simulation of the apparent behavior individuals

(called particles) in nature, for example, bird flocking

and fish tutoring. In a PSO algorithm, every particle

is a competitor solution identical to a point in

M-dimensional space. The calculation is randomly

introduced and the particles (initial solutions) are set

randomly in the inquiry space of the objective

function (He and Guo 2013). The PSO algorithm

effectively prompts to a global optimum. The funda-

mental concept of the PSO algorithm is that the

potential solutions are quickened towards the best

solutions. The simplified flow diagram is shown in

Fig. 1.

The PSO algorithm starts with initializing each

particle of the swarm by relegating an arbitrary speed

and position in the issue seek space. The birds

representing the particles or models, every particle

has a location vector which represents the parameter

value and a velocity vector. PSO characterizes a swarm

of particles (models) in a M-dimensional space. Each

particle keeps up memory of its past best position and

velocity. At every iteration step, a velocity adjustment

of the particle is resolved jointly by the previous best

positionwhich is called the Tbest model occupied by the

particle and the best position of the swarm. The new

velocity is then used to compute a new position of the

particle which is called the Jbest model (Sen and Stoffa

2013). The update is described in the following

equations (Sweilam et al. 2007):

Vkþ1
i ¼ c3Vk

i þ c1randðÞ Tbest � Pkþ1
i

� �
þ c2randðÞ Jbest � Pkþ1

i

� �
Pkþ1

i

� �
¼ Pk

i þ Vkþ1
i ; ð3Þ

xkþ1
i ¼ xk

i þ vkþ1
i : ð4Þ
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where vki is the velocity of the ith particle at the kth

iteration, Pk
i is the current i model at the kth iteration,

rand() is a uniform random number in the rang (0, 1).

c1 and c2 are the positive consistent numbers which

control the individual and the social behavior (Par-

sopoulos and Vrahatis 2002). c3 is the inertial

coefficient that control the particle velocity. xk
i is the

position of the particle i at the kth iteration. Thus,

PSO has the main advantage of being very fast in

executing the results and shows good balance

between exploration and convergence.

The magnetic anomaly from Eq. 1 is calculated

every iterative step for each xi using the PSO

algorithm. To estimate the quality of data fit at each

iteration step of the inversion process, the RMS is

defined as

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Tm

i xið Þ � Tc
i xið Þ½ �2

N

s
: ð5Þ

This is considered as the misfit between the

observed and calculated anomalies.

2.4. Processing Time

In the present work, the real time for the entire

computation process for a single model structure is

almost 30 s for 100 models, while for 1000 model, the

estimation process may reach from 8 to 12 min

according to the number of iterations. However, for

multiple structure models, the computation time incre-

ments to around 30%. The used code was developed

usingMSFORTRANDeveloper studio inWindow7 on

a simple desktop PC with Intel core i5 Processor.

3. Theoretical Examples

To illustrate the viability of the proposed inver-

sion approach based on PSO algorithm, we have

tested the PSO algorithm with three synthetic mag-

netic anomalies caused by simple geometrical shapes

(a sphere, a horizontal cylinder, a thin sheet) without

noise, tainted with different level of noise (5, 10, 15

and 20%) and multi-model example to investigate

and evaluate whether the models obtained are close

enough to the synthetic bodies.

Figure 1
The work-flow of PSO algorithm applied to magnetic anomalies

interpretation
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3.1. Synthetic Noise-Free and Noisy Examples

The PSO technique was applied to noise-free

synthetic magnetic anomalies due to a sphere model

with K = 5000 nT, z = 7 m, h = 50�, Sf = 2.5, xo =

0 m, and profile length = 80 m, a horizontal cylinder

model with K = 3000 nT, z = 11 m, h = 35�, Sf = 2,

xo = 0 m, and profile length = 80 m and a thin sheet

model with K = 1000 nT, z = 9 m, h = - 30�, Sf =

1, xo = 0 m, and profile length = 80 m. The mag-

netic field anomaly due to these models is computed

from Eq. (1).

We started to test our method using 100 particles

or models. The best model parameters were reached

after 700 iterations, and the ranges of the parameters

for sphere model (K from 3000 to 6000 nT, z from 1

to 12 m, h from 5� to 90�, Sf from 0.2 to 3 and xo
from - 50 to 30 m), horizontal cylinder model

(K from 1000 to 5000 nT, z from 1 to 16 m, h from

5� to 90�, Sf from 0.2 to 3 and xo from -50 to 30 m)

and thin sheet model (K from 0 to 3000 nT, z from 1

to 16 m, h from -50� to 60�, Sf from 0.2 to 3 and xo
from -50 to 30 m)models. The obtained results for

each parameter (K, z, h, Sf, xo) are in a good and close

agreement between exactly known and estimated

model parameters, where the error percentages are

equal to zero.

In addition, the three forward model anomalies for

different source are also contaminated with random

error of 5, 10, 15 and 20% (Figs. 2, 3, 4) to get

magnetic anomalies as much as possible closer to the

real ones and perceive the robustness of the PSO

algorithm. The PSO algorithm was then adopted to

estimate the model parameters (K, z, h, Sf, xo) of the

simple geometrical shapes, utilizing Eq. (2) as the

objective function. Initially, a suitable search range

for each model parameters was selected as mentioned

above and PSO was executed. Next, a PSO algorithm

run was performed and the convergence of each

model parameter and reduction of misfit (less RMS)

were analyzed. PSO algorithm did not find the true

depths, but it gave values close to the true depths.

The results of the proposed technique for sphere,

horizontal cylinder and thin sheet models are men-

tioned in Figs. 2, 3, 4, respectively. According to the

parameter values in the figures, the error in the

estimated parameters and the RMS increase with

increasing the noise on the magnetic field anomaly. In

addition, the estimated model parameters do not vary

too much, and it is realized that the PSO algorithm

solution is not affected by the noise level. It can be

observed that the results of model parameter estima-

tion (K, z, h, Sf, xo) utilizing the PSO algorithm are

attractive up to 20% of the random noise. Hence, this

exhibits the stability of our newly presented method

in light of the PSO algorithm.

3.2. Multi-Model Example

In this section, we produced and studied theoret-

ically multi-model example generated and caused by

multiple source bodies having different geometries

and depths to test the effectiveness of the PSO

algorithm on complicated anomalies.

We used the above-mentioned Eq. (1) to compute

the magnetic anomaly (DT) for multi-synthetic model

consisting of a sphere model with K = 11,000 nT,

z = 4 m, h = 30�, Sf = 2.5, xo = 0 m, and profile

length = 120 m and a horizontal cylinder model with

K = 5000 nT, z = 6 m, h = 40�, Sf = 2, xo = 30 m,

and profile length = 120 m and the magnetic anom-

aly is shown in Fig. 5.

The PSO algorithm was applied to the multi-

model magnetic profile to appraise the distinctive

model parameters in a way similar to the above-

mentioned example.

However, in this case, all the structures were

modeled altogether. The parameter ranges used as a

part of the inversion process of the magnetic anoma-

lies are presented in Table 1 together with the

outcomes obtained for the model parameters. The

inversion response (RMS of 7.4 nT) is contrasted

with the data in Fig. 5. In addition, Fig. 5 shows the

modeled magnetic anomaly and the subsurface

structures considered for this model. It can be noticed

that the parameters are quite well recuperated from

the PSO algorithm.

4. Field Example

To test the validity of developed method on real

cases, the PSO algorithm is connected to two field

examples taken from the literatures. The results
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obtained by the proposed technique are compared

with the results obtained from other inversion tech-

niques. The two field examples that are utilized for

testing the legitimacy of this technique are magnetic

anomalies for Pima copper mine, USA and Ham-

rawein area, Egypt.

4.1. Pima Copper Mine Field Example, USA

The district of Pima mining is considered as one

of the biggest porphyry copper in the nineteenth

century. The mining area has delivered 4.36 billion

pound of copper and other minerals like molybde-

num, lead, silver and gold. Mineralization related

Figure 2
Noisy and predicted magnetic anomalies of a buried sphere-like geologic structure with K = 5000 nT, z = 7 m, h = 50�, Sf = 2.5, xo = 0 m,

and profile length = 80 m, with a 5%, b 10%, c 15% and d 20% random noise. Error bars represents the standard deviations of the noise add

to the noise-free datum
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with Laramide igneous activity was happened in

Paleozoic sedimentary rocks, Mesozoic sedimentary

and volcanic sequences, and in Paleocene igneous

rocks. Post-mineralization, coarse-grained alluvial-

clastic deposits accumulated in the fault contact with

Precambrian to Paleocene rocks (Shafiqullah and

Langlois 1978).

Figure 6 demonstrates the vertical component of

magnetic anomaly profile over a thin sheet-like

structure in Pima copper mine, Arizona, USA (Gay

1963). The profile length of 696 m was digitized at

interim of 8.7 m. The ranges of the parameters

utilized as a part of the method are presented in

Table 2 which was picked regarding the accessible

Figure 3
Noisy and predicted magnetic anomaly of a buried horizontal cylinder-like geologic structure with K = 3000 nT, z = 11 m, h = 35�, Sf = 2,

xo = 0 m, and profile length = 80 m, with a 5%, b 10%, c 15% and d 20% random noise
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geologic information. Table 2 demonstrates the

assessed result of the model parameters (K = 600

nT, z = 71.08 m, h = - 47.83�, Sf = 0.92, xo =

- 0.49). The comparison between the measured

and the predicted anomalies (Fig. 6) indicates the

good agreement between them. The inverted param-

eters (K, z, h, Sf) are found with a good

correspondence with the drilling information and

other information from published literatures (Gay

1963; Abdelrahman and Sharafeldin 1996) (Table 3).

In addition, we compared our PSO approach results

with very fast simulated annealing (VFSA) (Biswas

et al. 2017) results (Table 3). This demonstrates that

PSO approach has an execution time shorter (30 s)

than VFSA approach.

Figure 4
Noisy and predicted magnetic anomaly of a buried thin sheet-like geologic structure with K = 1000 nT, z = 9 m, h = - 30�, Sf = 1, xo = 0 m,

and profile length = 80 m, with a 5%, b 10%, c 15% and d 20% random noise
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4.2. Hamrawein Area Field Example, Egypt

The contextual investigation over the Hamrawein

area, Egypt, is used for another magnetic data

interpretation using the proposed PSO algorithm. The

Hamrawein area is situated in thewestern edge of theRed

Sea and spreads metavolcanic and sedimentary rocks

(Salem 2005; Salem et al. 2005) (Fig. 7). The magnetic

anomaly profile of 15,253.64 m has been taken from

D
ep

th
 (m

)

6 

12 

4 m

(xo = 0 m) (xo = 30 m)

K= 5000 

6 m
K = 11000

First body 
(sphere)

Second body 
(Horizontal Cylinder)

Figure 5
Synthetic and predicted magnetic anomalies of multi-model

structure which consist of a sphere model with K = 11,000 nT,

z = 4 m, h = 30�, Sf = 2.5, xo = 0 m, and profile length = 120 m

and a horizontal cylinder model with K = 5000 nT, z = 6 m,

h = 40�, Sf = 2, xo = 30 m, and profile length = 120 m

Figure 6
A vertical magnetic anomaly in Pima copper mine, USA (open

circle) and the estimated magnetic anomaly (black circle) using

PSO algorithm

Table 1

Numerical results for a multi-model theoretical example: spherical shape (K = 11,000 nT, z = 4 m, h = 30�, Sf = 2.5, xo = 0 m, and profile

length = 120 m) and a horizontal cylinder (K = 5000 nT, z = 6 m, h = 40�, Sf = 2, xo = 30 m, and profile length = 120 m)

Type of body Parameters Used ranges Result Error (%) RMS (nT)

Sphere K (nT) 5000–12,000 10,730 2.4 7.40

z (m) 2–8 4.2 7.5

h (�) 10–45 28 6.66

Sf (dimensionless) 1–3 2.4 4

xo (m) - 20 to 10 0.76 –

Horizontal cylinder K (nT) 4000–8000 4800 4

z (m) 1–9 6.1 1.67

h (�) 10–60 40.49 1.23

Sf (dimensionless) 1–3 2 0

xo (m) 10–50 29.9 0.33
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magnetic survey data which was led by Salem et al.

(1999) (Fig. 8) and it was digitized at 214.844 m testing

interval (Fig. 9). Table 4 shows the results of the inverted

model parameters (depth, location of the origin, shape

factor, indexangle and the amplitude coefficient) over the

Hamrawein area magnetic anomaly from the present

method. It is seen from Fig. 9 that both predicted

magnetic anomaly and observed magnetic anomaly

curves are well correlated with the optimal RMS of

Figure 7
Geological map of the Hamrawein field example, Quseir area, northern Red Sea, Egypt (Salem et al. 2005)

Table 3

Comparison between numerical results of different methods for the vertical magnetic anomaly of the Pima copper mine field example, USA

Method

parameters

Gay

method

(1963)

Abdelrahman and

Sharafeldin method

(1996)

Asfahani and

Tlas method

(2007)

Tlas and

Asfahani method

(2011)

Tlas and

Asfahani method

(2015)

Biswas et al.

method (2017)

Present

method

K (nT) – 596.50 577.60 576.82 666.15 613.0 610.12

z (m) 70.00 66.00 71.50 71.25 64.10 68.0 68.24

h (�) - 50.00 - 53.00 - 50.50 - 47.58 - 44.70 – - 49.46

Sf (dimensionless) – – – – –

1.0 (fixed) 0.92

xo (m) – – – - 0.22 – - 4.3 - 0.49

Table 2

Numerical results for the vertical magnetic anomaly of the Pima

copper mine field example, USA

Parameters Used Ranges Result RMS (nT)

K (nT) 100–1500 610.12 4.52

z (m) 1–100 68.24

h (�) - 90 to 90 - 49.46

Sf (dimensionless) 0.2–3 0.92

xo (m) - 696 to 174 - 0.49
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15.97 nT. The optimum results of the model parameters

(K, z, h, Sf, xo) are K = 507.64 nT, z = 601.56 m,

h = 57.04�, Sf = 0.89, xo = 4255.98 m for the first

anomaly, while the parameters of the second anomaly

areK = 427.38nT, z = 515.62 m,h = 37.27�,Sf = 0.93,

xo = 14,823.69 m, respectively. From the above results

(Sf = 0.89 and 0.93) we can reason that the twomagnetic

anomalies are caused by thin sheets. The correlation

between the results obtained from our method and that

published in the literature is shown in Table 5.

5. Conclusions

In this investigation, we have represented the

applicability and the stability of the PSO algorithm

(particle swarm optimization) in estimating the dis-

tinctive body parameters (K, z, h, xo, Sf) for various

synthetic and real examples. The PSO algorithm has

been applied for magnetic anomalies of assuming

models, for example, simple bodies (spheres, hori-

zontal cylinders and thin sheets). This technique has

been verified and demonstrated on synthetic magnetic

anomalies with and without random noise, multi-

models and lastly connected to two field examples

from USA and Egypt. The evaluated results revealed

that this approach is steady, powerful and proficient

in tackling such a magnetic problem and solving the

quantitative interpretation of magnetic data when

comparing it with the results published in the state-

of-arts. This technique is not independent on

promising initial models. Furthermore, the

Figure 8
Total magnetic intensity map of the Hamrawein field example, Quseir area, northern Red Sea, Egypt (Salem et al. 2005)
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convergence to the best estimation of the inverted

model parameters of the buried structure is quickly

reached. This new methodology to invert 2D

magnetic data is recommended for quick analysis of

magnetic anomaly profiles in an attempt to estimate

the best inverted model parameter values related to

different bodies such as sphere, horizontal cylinder,

and thin sheet-like geologic structures. In addition,

the PSO outcomes could be of importance for a

gradient-descent method as an initial model.
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Balkaya, C., Ekinci, Y. L., Göktürkler, G., & Turan, S. (2017). 3D

non-linear inversion of magnetic anomalies caused by prismatic

bodies using differential evolution algorithm. Journal of Applied

Geophysics, 136, 372–386.
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