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Abstract—Natural fractures play an important role in migration

of hydrocarbon fluids. Based on a rock physics effective model, the

linear-slip model, which defines fracture parameters (fracture

compliances) for quantitatively characterizing the effects of frac-

tures on rock total compliance, we propose a method to detect

natural fractures from observed seismic data via inversion for the

fracture compliances. We first derive an approximate PP-wave

reflection coefficient in terms of fracture compliances. Using the

approximate reflection coefficient, we derive azimuthal elastic

impedance as a function of fracture compliances. An inversion

method to estimate fracture compliances from seismic data is

presented based on a Bayesian framework and azimuthal elastic

impedance, which is implemented in a two-step procedure: a least-

squares inversion for azimuthal elastic impedance and an iterative

inversion for fracture compliances. We apply the inversion method

to synthetic and real data to verify its stability and reasonability.

Synthetic tests confirm that the method can make a stable estima-

tion of fracture compliances in the case of seismic data containing a

moderate signal-to-noise ratio for Gaussian noise, and the test on

real data reveals that reasonable fracture compliances are obtained

using the proposed method.

Key words: Fracture detection, Azimuthal seismic data,

Bayesian inference, Seismic inversion, Linear-slip model.

1. Introduction

Detection of natural fractures has been an

important task in unconventional reservoirs (tight

sand and shale reservoirs). Rock physics effective

models are useful for analyzing how rock properties

(porosity, minerals, saturation, etc.) affect the stiff-

ness matrix of the rock (Mavko et al. 2009). A linear-

slip model is proposed to describe the effects of

fractures on the compliance matrices of fractured

rocks (Schoenberg and Douma 1988; Schoenberg and

Sayers 1995). In the case of vertical or subvertical

fractures embedded in a homogenous and isotropic

rock, the normal and tangential facture compliances

(KN and KT) are defined to describe the effects of

fractures on the compliance matrix. To discriminate

infilling fluids in fractures, Schoenberg and Sayers

(1995) suggested a fracture fluid factor, i.e., the ratio

of the normal facture compliance to the tangential

fracture compliance (KN=KT). Bakulin et al. (2000)

re-express the fracture fluid factor in terms of S-wave

to P-wave velocity ratio and fracture weaknesses.

Following Bakulin et al. (2000) and Chen et al.

(2014) first implement seismic inversion for fracture

weaknesses and then calculate the fluid factor.

However, this indirect implementation accumulates

errors in estimating the velocity ratio and fracture

weaknesses. In the present study, we establish an

efficient approach to estimate the normal and tan-

gential fracture compliances from azimuthal seismic

data.

A rock containing vertical or subvertical fractures

can be considered to be a medium with horizontal

transverse isotropy (HTI) (Gurevich 2003). Rüger

(1997, 1998) derived a linearized PP-wave reflection

coefficient for HTI media in terms of Thomsen

(1986) anisotropic parameters. Using Rüger’s reflec-

tion coefficient, much work has been done to predict

fractures from amplitude versus offset and azimuth

(AVOA) data via estimating anisotropic parameters

(Chen et al. 2005; Goodway et al. 2007; Sayers 2009;

Hunt et al. 2010; Far et al. 2014; Chen et al.

2014, 2017a, b). AVOA data inversion can have

satisfactory results in some cases (Gray and Head

2000; Gray et al. 2003); however, if there is no better
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constraint, it is usually unstable because AVOA data

are influenced by random noise. Elastic impedance

(EI), which is an extension of acoustic impedance

(AI), was initially proposed by Connolly (1999).

Martins (2006) derives an extended EI in terms of

anisotropy parameters for weakly anisotropic media.

Seismic inversion for elastic properties (P- and

S-wave impedances, velocities, density, etc.) has

been divided into two procedures: EI inversion from

seismic data stacked over incidence angles, and

estimation of elastic properties from the inversion

results of EI. Seismic inversion based on EI has the

advantage of both improving the signal-to-noise ratio

(SNR) owing to the stack processing (Liu et al. 2009)

and making the estimation of elastic properties more

stable, because the input inversion results of EI

contain no effects of wavelets (Chen et al. 2014). In

this paper, we derive azimuthal EI in terms of frac-

ture compliances and implement seismic inversion

for fracture compliances based on the derived azi-

muthal EI.

Shaw and Sen (2004, 2006) present a method to

derive linearized reflection coefficients for weakly

anisotropic media using a scattering function and

perturbation in stiffness matrix. Following Shaw and

Sen (2004, 2006), we first express perturbations in

stiffness parameters in terms of fracture compliances

for the case of an interface separating two media that

contain vertical or subvertical fractures. Using the

scattering function and the perturbations, we derive a

linearized PP-wave reflection coefficient and azi-

muthal EI in terms of fracture compliances. Using the

derived azimuthal EI, we establish a two-step inver-

sion method to estimate fracture compliances, which

involves a model-constrained and damped least-

squares inversion for EI at different azimuths and an

iterative inversion for fracture compliances based on

a Bayesian framework. We apply the established

method to synthetic and real data sets to validate their

stability and reasonability.

2. Theory and Method

2.1. Perturbations in Stiffness Parameters

Schoenberg and Douma (1988) present the linear-

slip model to express the compliance matrix S of a

fractured rock:

S ¼ Siso þ Sf ; ð1Þ

where Siso is the compliance matrix of the isotropic

background, and Sf is fracture excess compliance.

For the case of a rock containing rotationally

invariant vertical fractures (Shaw and Sen

2004, 2006), Sf is given by Schoenberg and Sayers

(1995) and Gurevich (2003) as:

Sf ¼

ZN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT

2
6666664

3
7777775
; ð2Þ

where ZN and ZT are the normal and tangential

fracture compliances.

Inverting the compliance matrix S yields stiffness

matrix C in terms of fracture compliances:

C¼ S�1

¼

kþ 2l k k 0 0 0

k kþ 2l k 0 0 0

k k kþ 2l 0 0 0

0 0 0 l 0 0

0 0 0 0 l 0

0 0 0 0 0 l

2
666666664

3
777777775

�

ðkþ2lÞ2ZN

1þðkþ2lÞZN

kðkþ2lÞZN

1þðkþ2lÞZN

kðkþ2lÞZN

1þðkþ2lÞZN
0 0 0

kðkþ2lÞZN

1þðkþ2lÞZN

k2ZN

1þðkþ2lÞZN

k2ZN

1þðkþ2lÞZN
0 0 0

kðkþ2lÞZN

1þðkþ2lÞZN

k2ZN

1þðkþ2lÞZN

k2ZN

1þðkþ2lÞZN
0 0 0

0 0 0 0 0 0

0 0 0 0 l2ZT

1þlZT
0

0 0 0 0 0 l2ZT

1þlZT

2
6666666666664

3
7777777777775

;

ð3Þ

where k and l are Lamé constants of the isotropic

background.

Schoenberg and Douma (1988) demonstrate two

approximations,
ðkþ2lÞZN

1þðkþ2lÞZN
� ðkþ 2lÞZN and

lZT

1þlZT
� lZT, under assumptions of ðkþ

2770 H. Chen and G. Zhang Pure Appl. Geophys.



2lÞZN\\1 and lZT\\1; hence, Eq. (3) is approx-

imately written as:

C �

kþ 2l k k 0 0 0

k kþ 2l k 0 0 0

k k kþ 2l 0 0 0

0 0 0 l 0 0

0 0 0 0 l 0

0 0 0 0 0 l

2
666666664

3
777777775

�

ðkþ 2lÞ2ZN kðkþ 2lÞZN kðkþ 2lÞZN 0 0 0

kðkþ 2lÞZN k2ZN k2ZN 0 0 0

kðkþ 2lÞZN k2ZN k2ZN 0 0 0

0 0 0 0 0 0

0 0 0 0 l2ZT 0

0 0 0 0 0 l2ZT

2
6666666664

3
7777777775

:

ð4Þ

Using the approximate expression for the stiffness

matrix in Eq. (4), we present the perturbation in the

stiffness matrix:where Dk, Dl, DZN, and DZT are

changes in Lamé constants and fracture compliances

across the interface. Under assumptions of small

changes in Lamé constants and fracture compliances

and weak fracture compliances, we ignore the items

proportional to DkðZN þ DZNÞ, DlðZN þ DZNÞ,
DlðZT þ DZTÞ, ðDkÞ2 and ðDlÞ2 in the derivation

of the perturbation in the stiffness matrix. It is

important to stress that we assume the rock contains a

set of vertical fractures and the vertical fractures have

only one dominant azimuth.

2.2. Linearized PP-Wave Reflection Coefficient

and Azimuthal Elastic Impedance

Shaw and Sen (2004, 2006) present an approach

to use scattering function and perturbations in

stiffness parameters to derive linearized reflection

coefficients for weakly anisotropic media. The PP-

wave reflection coefficient is given by:

RPP ¼ 1

4q cos2 h

Dqnþ DC11C11 þ DC12C12 þ DC13C13

þDC21C12 þ DC22C22 þ DC23C23

þDC31C13 þ DC32C23 þ DC33C33

þDC44C44 þ DC55C55 þ DC66C66

0
BBB@

1
CCCA;

ð6Þ

where q is density, Dq is its perturbation, and h is the

angle of incidence, and where n ¼ cos 2h
�

V2
P ; C11 ¼

sin4 h cos4 /
�

V2
P ; C12 ¼ sin4 h sin2 / cos2 /

�
V2
P ; C13

¼ sin2 h cos2 h cos2 /
�

V2
P ; C22 ¼ sin4 h sin4 /

�
V2
P ;

C23 ¼ sin2 h cos2 h sin2 /
�

V2
P ; C33 ¼ cos4 h

�
V2
P ;

C44 ¼ �4 sin2 h cos2 h sin2 /
�

V2
P ; C55 ¼ �4 sin2 h

DC ¼

Dkþ 2Dl Dk Dk 0 0 0

Dk Dkþ 2Dl Dk 0 0 0

Dk Dk Dkþ 2Dl 0 0 0

0 0 0 Dl 0 0

0 0 0 0 l 0

0 0 0 0 0 l

2
666666664

3
777777775

�

ðkþ 2lÞ2DZN kðkþ 2lÞDZN kðkþ 2lÞDZN 0 0 0

kðkþ 2lÞDZN k2DZN k2DZN 0 0 0

kðkþ 2lÞDZN k2DZN k2DZN 0 0 0

0 0 0 0 0 0

0 0 0 0 l2DZT 0

0 0 0 0 0 l2DZT

2
6666666664

3
7777777775

;

ð5Þ
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cos2 h cos2 /
�

V2
P ; C66 ¼ 4 sin4 h sin2 u cos2 /

�
V2
P ; in

which / is the azimuth, and VP is the P-wave velocity

of the isotropic background.

Incorporating Eqs. (5)–(6), we derive the expres-

sion of PP-wave reflection coefficient:

RPPðh;/Þ ¼ aPðhÞRP þ aSðhÞRS þ aDðhÞRD

þ aZN
ðh;/ÞDZN þ aZT

ðh;/ÞDZT; ð7Þ

where aPðhÞ ¼ sec2 h, aSðhÞ ¼ �8g sin2 h, aDðhÞ ¼
4g sin2 h� tan2 h; aZN

ðh;/Þ ¼ � lg
4 cos2 h

1
g � 2
h

ðsin2 h sin2 /þ cos2 hÞ�2, and aZT
ðh;/Þ ¼

lg sin2 h cos2 /ð1� tan2 h sin2 /Þ; and where RP¼ DIP
2IP
,

RS¼ DIS
2IS

and RD¼ Dq
2q are P-wave impedance (IP), S-

wave impedance (IS), and density (q) reflectivities,

and DIP and DIS are changes in P- and S-wave

impedances across the interface. In practice, the

quantities l and g are provided by well-logging data.

Following Buland and Omre (2003), we extend the

derived PP-wave reflection coefficient as a time-

continuous function:

(a)

(b)

Figure 1
Noisy seismic angle gathers. a SNR = 5, and b SNR = 2

(a)

Figure 2
Comparisons between true values (blue) and inversion results (red)

of logarithmic EI. a SNR = 5, and b SNR = 2. The green curve

represents the initial model of logarithmic EI which is the

smoothed version of the true value
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RPPðt; h;/Þ ¼
1

2
aPðt; hÞ

o

ot
ln IPðtÞ þ

1

2
aSðt; hÞ

o

ot
ln ISðtÞ

þ 1

2
aDðt; hÞ

o

ot
ln qðtÞ

þ 1

2
aZN

ðt; h;/Þ o
ot

ZNðtÞþ
1

2
aZT

ðt; h;uÞ o
ot

ZTðtÞ;

ð8Þ

where IPðtÞ, ISðtÞ, qðtÞ, ZNðtÞ, and ZTðtÞ are time

samples of P-wave impedance, S-wave impedance,

density, and the normal and tangential fracture

compliances.

Combining the relationship between reflection

coefficient and EI RPP � 1
2
DEI
EI �

1
2
o
ot LEI

� �
and taking

a time integral operation for Eq. (8), we express the

logarithmic EI (LEI) as:

LEIðt; h;/Þ ¼aPðt; hÞ ln IPðtÞ þ aSðt; hÞ ln ISðtÞ
þ aDðt; hÞ ln qðtÞ

ð9Þ

The expression of azimuthal EI is given by:

EIðt; h;/Þ ¼ IPðtÞaPðt;hÞISðtÞaSðt;hÞqðtÞaDðt;hÞ exp½aZN
ðt; h;/ÞZNðtÞ

þ aZT
ðt; h;/ÞZTðtÞ�;

ð10Þ

where exp½ � denotes the exponential function.

2.3. Azimuthal Elastic Impedance Inversion

and Fracture Compliance Estimation

Implementation of seismic inversion for fracture

compliances involves azimuthal EI inversion from

seismic data stacked over the incidence angle and

estimation of fracture compliances from the inversion

results of azimuthal EI. The convolution model can

be used to generate seismic data vector B using a

wavelet vector W and logarithmic EI vector X:

B ¼ CX; ð11Þ

where

B ¼

Bðt1; h;/Þ
Bðt2; h;/Þ

..

.

BðtNN ; h;/Þ

2
6664

3
7775; C ¼ 1

2
WD;

X ¼

LEIðt1; h;/Þ
LEIðt2; h;/Þ

..

.

LEIðtNN ; h;/Þ

2
6664

3
7775; D is a difference operation

matrix given by

D ¼

�1 1 0 . . .
0 �1 1 0

0 0 �1 1

0 0 0 . . .

2
664

3
775; and NN is the number

of time samples.

A model-based and damped least-squares inver-

sion algorithm is employed to solve Eq. (11) to

obtain the logarithmic EI:

X ¼ XmodþðCTCþ sIÞ�1CTðB� CXmodÞ; ð12Þ

where Xmod is a given smooth initial model, I is a unit

matrix, s is a damping factor, and T is transpose of a

matrix.

After obtaining the logarithmic EI, we proceed to

the estimation of fracture compliances using an

iterative inversion method based on the Bayesian

framework. Using Eq. (9), the relation between the

logarithmic EI and unknown parameters (P- and S-

wave impedances, density, and fracture compliances)

is succinctly expressed as:

d ¼ Gm; ð13Þ
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(b)

Figure 2
continued

(a)

(b)
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where

d ¼
LEIðh1;/1Þ LEIðh2;/1Þ LEIðh3;/1Þ

� � � LEIðh1;/MÞ LEIðh2;/MÞ
LEIðh3;/MÞ

2
64

3
75

T

m ¼ LP LS LD ZN ZT½ �T ; and

G ¼

APðh1Þ ASðh1Þ ADðh1Þ AZN
ðh1;/1Þ AZT

ðh1;/1Þ
APðh2Þ ASðh2Þ ADðh2Þ AZN

ðh2;/1Þ AZT
ðh2;/1Þ

APðh3Þ ASðh3Þ ADðh3Þ AZN
h3;/1ð Þ AZT

ðh3;/1Þ
..
. ..

. ..
. ..

. ..
.

APðh1Þ ASðh1Þ ADðh1Þ AZN
ðh1;/MÞ AZT

ðh1;/MÞ
APðh2Þ ASðh2Þ ADðh2Þ AZN

ðh2;/MÞ AZT
ðh2;/MÞ

APðh3Þ ASðh3Þ ADðh3Þ AZN
ðh3;/MÞ AZT

ðh3;/MÞ

2
6666666666664

3
7777777777775

and where, LEI ¼ ½LEIðt1Þ . . . LEIðtNNÞ �T ;
LP ¼ ½ ln IPðt1Þ . . .ln IPðtNNÞ�T ; LS ¼

½ ln ISðt1Þ . . . ln ISðtNNÞ �; LD ¼ ½ ln qðt1Þ
. . .lnqðtNNÞ�T ; ZN ¼ ZNðt1Þ . . . ZNðtNNÞ½ �T
; ZT ¼ ZTðt1Þ . . . ZTðtNNÞ½ �T ; AP ¼ diag ½aPðt1Þ

� � � aPðtNNÞ�; AS ¼ diag ½aSðt1Þ � � � aSðtNNÞ�; AD ¼
diag aDðt1Þ½ � � � aDðtNNÞ�; AZN

¼ diag[aZN
ðt1Þ � � �

aZN
ðtNNÞ�; and AZT

¼ diag ½aZT
ðt1Þ � � � aZT

ðtNNÞ�. The
incidence angles, h1, h2 and h3, represent near, mid-

dle and far incident angles.

Bayesian theory is used to construct the objective

function for estimating the unknown parameter vector

m from the input data (i.e., the inversion results of

logarithmic EI at different azimuthal angles). The

posterior probability distribution function (PDF),

PðmjdÞ, of the unknown parameter vector is given by:

PðmjdÞ / PðdjmÞPðmÞ; ð14Þ

where PðdjmÞ and PðmÞ are the likelihood function

bFigure 3

Comparisons between true values (blue) and inversion results (red)

of P- and S-wave impedances, density, and fracture compliances.

a SNR = 5, and b SNR = 2. The green curve represents the initial

model, which is the smoothed version of the true value

Figure 5
Formation MicroImager (FMI) log picture and fracture azimuth

rose diagram. Fractures are marked by red arrows in the FMI log

picture

(a) (b) (c) (d)

Figure 4
Seismic angle gathers at different azimuths. a /1 = 10�, b /1 = 30�, c /1 = 150�, and d /1 = 170�
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(a)

(b)

Figure 6
Stacked seismic profiles at different azimuths. a /1 = 10�, b /1 = 30�, c /1 = 150�, and d /1 = 170�. The curves represent P-wave velocity
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(c)

(d)

Figure 6
continued
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(a)

(b)

Figure 7
Inversion results of logarithmic EI at different azimuths. a /1 = 10�, b /1 = 30�, c /1 = 150�, and d /1 = 170�. The curve plotted in each

figure is P-wave velocity from well log data

2778 H. Chen and G. Zhang Pure Appl. Geophys.



(c)

(d)

Figure 7
continued
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and the prior information PDF, respectively. The

likelihood function depends on differences between

the input data and the synthetic data predicted for a

given unknown parameter vector. Assuming the

probability distribution of the difference to be

Gaussian, we express the likelihood function as:

PðdjmÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞNNðr2errorÞ

NN
q

exp
X�ðd�GmÞTðd�GmÞ

2r2error

" #
;

ð15Þ

where r2error is the variance of the difference.

We employ Cauchy distribution prior informa-

tion, which can produce sparse results that have a

high-resolution (Downton 2005; Alemie and Sacchi

2011):

PðmÞ ¼ 1

ðp2rmÞNN exp �2
X

ln 1þm2

r2m

� �� 	
; ð16Þ

where r2m is the covariance of the unknown parameter

vector.

Combining Eqs. (15) and (16), we obtain the

expression of the posterior PDF. Maximizing the

posterior PDF can produce the solution of the

inversion problem (Alemie and Sacchi 2011), which

means minimizing the function JðmÞ involved in the

posterior PDF. The expression for J mð Þ is given by:

JðmÞ ¼
X ðd�GmÞTðd�GmÞ

2r2error
þ 2

X
ln 1þm2

r2m

� �
:

ð17Þ

To obtain the unknown parameter vector m that

minimizes the function JðmÞ, we need to solve the

following equation

Figure 8
Inversion results of P- and S-wave impedances and density. The corresponding curve from well log data is plotted in the profile of inversion

result

2780 H. Chen and G. Zhang Pure Appl. Geophys.



o½JðmÞ�
om

¼ 0: ð18Þ

After applying some algebraic operations,

Eq. (18) can be further expressed as:

GTGþ 4r2error
r2m þm2

� �
m ¼ GTd: ð19Þ

Figure 9
Comparisons between inversion results (red) and well log curves (blue) of P- and S-wave impedances and density

Figure 10
Inversion results of the normal and tangential fracture compliances. The ellipse represents the location of the fractured reservoir
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Because Eq. (19) is nonlinear, we employ an

iterative approach to obtain the solution of the

unknown parameter vector:

miþ1 ¼ GTGþ 4r2error
r2m þm2

i

� ��1

GTd; ð20Þ

where miþ1 is the calculated result based on the ith

solution mi. P- and S-wave impedances and density

in the initial solution m1 are constructed using well

log data, and for real data inversion, the normal and

tangential fracture compliances in the initial solution

m1 are assumed to be zero.

3. Results

3.1. Synthetic Test

Using the convolution model based on Eqs. (9)

and (11) and a 40 Hz Ricker wavelet, we first use a

well log model to generate synthetic seismic gathers

at different incidence angles and azimuths. Given a

constant fracture density, we construct fracture com-

pliances of the well log model using elastic

parameters (P- and S-wave impedances and density)

and expressions of dry fracture compliances (Ap-

pendix). Using an incidence angle range of 0�–30�,
and four azimuths /1 = 0�, /2 = 30�, /3 = 60�, and
/4 = 90�, we first generate seismic angle gathers, and

then we stack the seismic gathers over different

incidence angle ranges to obtain small (h1 = 5�
stacked over the range 0�–10�), middle (h2 = 15�
stacked over the range 10�–20�), and large (h3 = 25�
stacked over the range 20�–30�) incidence angle

seismic data. To verify the robustness of the proposed

approach, we add Gaussian random noise with

different SNRs (SRNs are 5 and 2, respectively) into

synthetic seismic gathers. Figure 1 shows noisy

synthetic seismic angle gathers.

Using the small, middle and large angle stacked

seismic data at different azimuths; we implement the

inversion for azimuthal logarithmic EI. Comparisons

between true values of logarithmic EI calculated

using Eq. (9) and inversion results obtained by the

model-based and damped least-squares inversion

algorithm as discussed in the previous section are

shown in Fig. 2.

From Fig. 2, we observe that the logarithmic EI

can be estimated stably even in the case of the SNR

being 2. With the estimated logarithmic EI in hand,

we proceed to the inversion for P- and S-wave

impedances, density, and fracture compliances, and

we show comparisons between true values and

inversion results in Fig. 3. We use the smoothed

version of the unknown parameter (i.e., P- and

S-wave impedances, density and fracture compli-

ances) as the initial model (green curves) in the

inversion.

From Fig. 3, we see that P- and S-wave

impedances and fracture compliances can be esti-

mated reasonably. However, the accuracy of density

inversion should be improved by involving more

large-offset data.

3.2. Real Data

Real data acquired in Northwest China are

employed to implement azimuthal EI inversion and

fracture compliances extraction to further verify the

proposed approach. For the data, the incidence angle

range for each common-midpoint-profile (CMP)

gather is 4�–37�. In Fig. 4, we plot angle gathers at

CMP 1445, in which a P-wave velocity curve (red) is

added. We find there is an anomalous amplitude

(around 4020 ms) which has been proved to be a

fractured and gas-bearing reservoir by a Formation

MicroImager (FMI) log as shown in Fig. 5. We also

show fracture azimuth estimated using a method of

amplitude versus offset and azimuth (AVOA) anal-

ysis presented by Chen et al. (2017a, b).

From Fig. 5, we observe that there are some

vertical or subvertical fractures in this reservoir,

which confirms the assumption of HTI media. We

stack seismic angle gathers over different angle

ranges to obtain small (h1 = 9� stacked over the

range 4�–14�), middle (h1 = 20� stacked over the

range 15�–25�) and large (h1 = 31� stacked over the

range 26�–37�) angle seismic profiles, as shown in

Fig. 6.

From Fig. 6, we observe a ‘‘bright-spot’’ anomaly

and structural high around 4020 ms in the vicinity of

the drilled well. Using the model-based and damped

least-squares inversion algorithm discussed in the

previous section, we invert the stacked seismic
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profiles at different azimuths for the logarithmic EI. It

is important to stress that, assuming fracture compli-

ances are zero, we use the P- and S-wave impedances

and density of the well-logging data to calculate the

logarithmic EI, and the smoothed result of the

calculated logarithmic EI is used as the initial model

in the logarithmic EI inversion for all azimuths. For

the case of complicated subsurface structure, Chen

et al. (2017a, b) presented the approach of construct-

ing initial models using a commercial software

package. The inversion results of logarithmic EI are

displayed in Fig. 7.

From Fig. 7, we see that the inversion result of

logarithmic EI show a low value in the location of the

reservoir (around 4020 ms, CDP 1445). After obtain-

ing the results of logarithmic EI, we proceed to the

iterative inversion for fracture compliances. To

implement the inversion, we use the smoothed

version of well log data as initial models for P- and

S-wave impedances and density, and we let initial

models of fracture compliances be zero. Inversion

results of P- and S-wave impedances and density are

shown in Fig. 8. We observe that the inversion results

of P- and S-wave impedances and density show

relatively low values in the location of fractured

reservoirs, and there is a reasonable match between

the inversion result and the well log curve, as shown

in Fig. 9.

We next plot inversion results of the normal and

tangential fracture compliances in Fig. 10. From

these inversion results, we observe that both the

normal and tangential fracture compliances show

high values in the vicinity of the fractured reservoir.

These inversion results can be used to detect fracture

distribution and calculate the fracture fluid factor.

4. Conclusions

Motivated by the fracture fluid factor defined in

terms of fracture compliances, we have established an

efficient approach to estimate fracture compliances

from observed seismic data based on azimuthal EI.

The assumptions under which we implemented this

research are that the rock contains a set of vertical

fractures and the vertical fractures have only one

dominant azimuth. Based on the linear-slip model,

we first express perturbations in stiffness parameters

in terms of fracture compliances. Combining these

perturbations and the scattering function, we derive a

linearized PP-wave reflection coefficient and azi-

muthal EI as a function of fracture compliances. The

inversion for fracture compliances is implemented in

a two-step approach, which involves a model-based

and damped least-squares inversion for azimuthal EI

from seismic data stacked over different incidence

angle ranges at different azimuths, and an iterative

inversion for P- and S-wave impedances, density, and

fracture compliances from the estimated results of

azimuthal EI. Applying the approach to noisy syn-

thetic seismic data confirms that the inversion for P-

and S-wave impedances and fracture compliances is

stable in the case of seismic data containing a mod-

erate SNR noise. A test on real data shows that

reasonable results of P- and S-wave impedances and

fracture compliances can be obtained and P- and

S-wave impedances show relatively low values and

fracture compliances show relatively high values in

the location of fractured reservoirs.
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Appendix: Expressions of Dry Fracture Compliances

Using relationships between fracture compliances

and fracture weaknesses (Bakulin et al. 2000), we

derive expressions of dry fracture compliances in

terms of Lamé constants and fracture density:

ZN ¼ 4e

3lðkþ lÞ � 4eðkþ 2lÞ ;

ZT ;¼ 16e

3lð3kþ 4lÞ � 16el
;

ð21Þ
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where e is fracture density.

Lamé constants are expressed as:

l¼ðISÞ2=q
k¼ðIPÞ2=q� 2ðISÞ2=q

: ð22Þ
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