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Abstract—In Part I, a dynamic fracture compliance model

(DFCM) was derived based on the poroelastic theory. The normal

compliance of fractures is frequency-dependent and closely asso-

ciated with the connectivity of porous media. In this paper, we first

compare the DFCM with previous fractured media theories in the

literature in a full frequency range. Furthermore, experimental tests

are performed on synthetic rock specimens, and the DFCM is

compared with the experimental data in the ultrasonic frequency

band. Synthetic rock specimens saturated with water have more

realistic mineral compositions and pore structures relative to pre-

vious works in comparison with natural reservoir rocks. The

fracture/pore geometrical and physical parameters can be con-

trolled to replicate approximately those of natural rocks. P- and

S-wave anisotropy characteristics with different fracture and pore

properties are calculated and numerical results are compared with

experimental data. Although the measurement frequency is rela-

tively high, the results of DFCM are appropriate for explaining the

experimental data. The characteristic frequency of fluid pressure

equilibration calculated based on the specimen parameters is not

substantially less than the measurement frequency. In the dynamic

fracture model, the wave-induced fluid flow behavior is an

important factor for the fracture–wave interaction process, which

differs from the models at the high-frequency limits, for instance,

Hudson’s un-relaxed model.

Key words: Fracture compliance, poroelastic theory, synthetic

fractured rock, ultrasonic measurement, wave-induced fluid flow.

1. Introduction

In recent years, elastic wave propagation in frac-

tured porous media has attracted extensive attention

in the rock physics community (Müller et al. 2010;

Carcione et al. 2012; Ding et al. 2014; Sarout et al.

2017). Porous rocks containing fractures and viscous

fluids cannot be treated as purely elastic materials.

Propagating elastic waves dissipate energy in such

media. Anelasticity in porous rocks provides an

approach for investigating structures and fluid prop-

erties in hydrocarbon-saturated reservoirs (Chapman

2003; Wang et al. 2016; Ba et al. 2016, 2017). By

incorporating the so-called global fluid flow at the

wavelength scale (Biot 1956) and the squirt flow at

the pore/grain scale (Hudson et al. 1996; Jakobsen

and Chapman 2009; Pride and Berryman 2003; Wang

et al. 2016), the wave-induced fluid flow (WIFF) in a

porous medium, which is related to the fluid pressure

gradient relaxation/un-relaxation at different scales,

has been found to be the most important mechanism

causing intrinsic wave attenuation and dispersion.

The WIFF process of squirt flow in a fractured porous

medium is frequency-dependent and is related to the

local heterogeneity scale (e.g., the radius or the

spacing of fractures) and to the connectivity between

fractures and host rock. The pore system of a real

fractured rock is generally assumed to consist of stiff

pores and soft pores (fractures/cracks). For these

rocks, the WIFF between fractures and those inter-

granular pores is the dominant energy dissipation

mechanism, if the wave scattering effects can be

neglected at those specific investigation frequencies

or scales.

Most of the WIFF theoretical models in the lit-

erature are presented to establish the relationship

between fracture (or/and structure) parameters and

wave response (Hudson et al. 1996; Thomsen 1995;

Chapman 2003; Liu et al. 2000; Brajanovski et al.

2005; Guéguen and Sarout 2009, 2011; Guéguen and

Kachanov 2011). These theories can be classified into
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two categories: the effective stiffness approach and

the compliance superposition approach. The main

differences between the two approaches and their

advantages were discussed in the previous paper

(Wang et al. 2017). Studies have focused on the

compliance approach in recent decades. Note that the

existing compliance models mainly focus on the dry

and sealed (i.e., closed fractures without fluid

exchange between the fractures and the pores) fluid-

saturated fractures (Sayers and Kachanov 1995;

Schoenberg 1980; Schoenberg and Sayers 1995;

Verdon et al. 2008). In Part I (Wang et al. 2017), a

new fracture compliance model was presented based

on the poroelastic theory. The fracture compliance

tensor is complex-valued and frequency-dependent

due to WIFF between fractures and pores. Using this

definition of compliance, we can effectively dis-

criminate different saturating fluids in the fractures

even if they have a similar bulk modulus (e.g., water

and oil). The effects of solid phase of the host rock on

the frequency-dependence characteristics of the nor-

mal compliance were then analyzed (Wang et al.

2017). In this paper, the dynamic fracture compliance

model (DFCM) is analyzed and validated, and in the

comparative analysis, we include the results of the

theoretical models published in the literature and the

experimental data on the synthetic rock specimens

obtained in this study.

One of the fracture models was developed by

Brajanovski et al. (2005) using the propagation

matrix theory, where they presented the frequency-

dependent effective P-wave elastic moduli of a

porous rock containing parallel fractures. This

model was built based on a simplified physical

system consisting of a periodic assemblage of two

layers with different poroelastic properties as first

proposed by White et al. (1975). It was shown that

the fluid exchange between fractures and pores had

a significant impact on velocity dispersion and

attenuation. In addition, the pressure equilibration

time strongly depends on the connectivity of the

porous medium and the distance between two

neighbouring fractures. In this study, the differ-

ences between DFCM and Brajanovski’s model are

investigated in numerical examples with variable

rock parameters.

On the other hand, DFCM is analyzed and val-

idated by comparing with the experimental data

from synthetic rocks. The fracture geometry and

pore physical parameters can hardly be obtained for

natural fractured rocks without destroying the

specimens. This is also an issue if natural rocks are

used in laboratory experiments to validate the

models. The approach of synthetic fractured physi-

cal models (the solid materials are mostly organic

glass, epoxy resin, and silicone rubber, etc.) was

introduced to control fracture properties (de Fig-

ueiredo et al. 2013; Rathore et al. 1995). However,

the large ratio of fracture dimension to wavelength

and the low connectivity of the host rock in these

studies were obviously inconsistent with natural

rocks (Ass’ad et al. 1992; de Figueiredo et al. 2013).

Rathore et al. (1995) made a synthetic sandstone

containing fractures of known dimensions and

geometry using sand cemented with epoxy glue. The

measurement results were compared with the exist-

ing theoretical models. However, epoxy glue can

cause excessive attenuation and dispersion due to its

viscoelastic properties, which differs from the grain

cement in natural rocks. This can possibly lead to

equivoke interpretation of wave dispersion and

attenuation in fractured media. Tillotson et al.

(2012) made synthetic silica cemented samples with

controlled fracture geometry. Ding et al. (2014)

extended Rathore’s method and investigated how

wave velocities were influenced by fracture density

and fluids. Their method can be used to produce

samples with mineral composition and cementation,

which approach natural rocks.

In this paper, we present two synthetic samples

saturated with water and with different fracture den-

sities using Ding’s manufacturing method (Ding et al.

2014). One P-wave and two S-wave velocities are

measured using the pulse transmission technique. The

measurements are compared to the theoretical pre-

dictions of the DFCM and of Hudson’s high-

frequency model. The DFCM also shows a good

agreement with Thomsen’s low-frequency model

(Thomsen 1995), where fluid is allowed to flow

between fractures and intergranular pores.

2988 D. Wang et al. Pure Appl. Geophys.



2. Numerical Comparison Results

In this section, the results of a typical compliance

model are compared with those of the DFCM. The

theoretical models for the WIFF process in fractured

porous media in the literature are derived from dif-

ferent physical approximations (Chapman 2003; Liu

et al. 2000; Brajanovski et al. 2005; Guéguen and

Sarout 2009, 2011; Guéguen and Kachanov 2011). In

the DFCM and Brajanovski’s model, the fractures are

modelled as thin porous layers with different pore

structure and petrophysical parameters relative to the

host rock. Therefore, the fractures and host rock have

a different reaction to an incident wave. A local

pressure gradient between fractures and background

pores takes place at the interface of fractures. Bra-

janovski’s model is built based on the propagation

matrix theory in which the stress (including the fluid

pressure) and strain induced by a wave are continuous

on the planes of fractures. On the other hand, the

DFCM is derived by combining the linear slip

method and the poroelasticity theory. In the DFCM,

the displacement is discontinuous across a fracture

and the fluid flow process is controlled by pressure

diffusion equations in a relatively low-frequency

region. We compare the numerical results of DFCM

with Brajanovski’s model for different fracture and

matrix parameters in this study.

According to Wang et al. (2017), the explicit

expression of the dynamic normal compliance of a

fracture was expressed as follows:
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First of all, note that the subscript c in Eq. (1)

denotes the physical parameters within the fractures.

funic ¼ acMc=Cc, where Mc ¼ ½ðac � /cÞ=Ks þ
/c=Kf ��1

is the pore space modulus, ac ¼
1� Kdry

c =Ks is the Biot–Willis effective stress coef-

ficient (Biot and Willis 1957), Cc is the

compressional P-wave modulus of the fluid-saturated

porous medium given by Gassmann’s equations. Kdry
c ,

Ks and Kf are the bulk moduli of the skeleton frame,

rock grain, and pore fluid, respectively. hc is the

fracture thickness. The diffusion parameter is given

by Dc ¼ jcMcLc=gCc, where g is the viscosity coef-

ficient of the pore fluid, jc is the permeability of the

fractures, and Lc is the dry compressional P-wave

modulus. The fluid coupling parameter G is given by

the following:
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and w can be expressed as follows:

w ¼ rcKsat
c Cm þ rmKsat

m Cc

amMmCc � acMcCm
ðnunic � nunim Þ�1: ð3Þ

Similarly, subscript m in Eqs. (2) and (3) denotes

the physical parameters within the host rock. The

spacing between two neighbouring fractures is H;

rc ¼ hc=H and rm ¼ hm=H are the fracture and

background layer thickness fraction, respectively.

The poroelastic parameter Ksat ¼ Kdry þ a2M is

given by Gassmann’s equations (Gassmann 1951).

Equation (1) shows that in a porous host rock, the

variation of compliance of a fracture saturated with a

fluid in comparison with the compliance of the dry

case is caused by fluid exchange between the frac-

tures and the rock matrix.

We first give and compare the equations of the

DFCM and Brajanovski’s model in the relaxed and

un-relaxed regimes. At both the high- and low-fre-

quency limits, the moduli of fractured media are

frequency-independent. Combining Eqs. (1)–(3), the

normal compliance of the fractures derived from the

DFCM is given as follows:

Zhigh
n ¼ hc=Cc; ð4Þ

for the high-frequency limit. On the other hand, the

effective P-wave modulus perpendicular to the frac-

tures is given by the following:

1

Ceff

¼ 1

Cb
þ Zn

H
: ð5Þ

Obviously, Zhigh
n =H is equivalent to the second

part (i.e., the fracture compliance) of Eq. (36) in
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Brajanovski et al. (2005), as expected. When the

angular frequency x ! 0, the normal compliance is

Z low
n ¼ hc

Cc
þ hcGlow

Mcac

amMmCc � acMcCm

rcKsat
c Cm þ rmKsat

m Cc

acMc

Cc
� amMm

Cm

� �

2þ hcCc

Lc

� �

;

ð6Þ

where Glow ¼ �1=2ðhcDmjc=hmDcjm þ 1Þ. When

the fracture is infinitely thin but remains a nonzero

value (i.e., hc ! 0 but hc 6¼ 0), the fracture does not

have a pore structure and is hollow (/c ! 1, funic � 1,

ac ! 1), and hcCc=Lc � 2. The limits Mc ! Cc and

acMc=Cc ! 1 exist as hc ! 0 (Brajanovski et al.

2005). Therefore, we can obtain as follows:

Z low
n ¼ rc

Mc
ðamMm � CmÞ2

H
rc

Lc
LmMmKsat

m þ rmKsat
m Cm

:

ð7Þ

Besides the specific parameters in Eq. (7), Z low
n =H

has the same form compared to the second part (i.e.,

the fracture compliance) of Eq. (18) in Brajanovski

et al. (2005). Note that the fracture thickness in

Eq. (7) for DFCM has a nonzero value, even though

hc ! 0. Equation (7) can be rewritten with the same

defined parameters as given by Eq. (18) in Bra-

janovski et al. (2005) if one takes the limit

Zdry
n ¼ hc=Lc as Lc ! 0 when hc ! 0. We can see

that the normal compliance of fractures is propor-

tional to the fracture spacing (H) for a fixed fracture

thickness fraction (rc) (Eq. 7). However, the effective

elastic modulus of P-wave is independent of the

fracture spacing (H) from Eqs. (5) and (7). The

comparison between two models for the case of an

oil-saturated fractured rock (the Lame constants used

in this comparison are cited from Part I) shows that

there is a good agreement between the DFCM and

Brajanovski’s model over the entire frequency range,

just as shown in Fig. 1. It is shown that the fracture

compliance calculated by DFCM (Eq. 1) is slightly

less than that of the Brajanovski’s model (Eq. 13 in

Brajanovski et al. 2005), and these two models are

completely consistent with each other, as x ! 1 or

hc ! 0.

These two theoretical models (DFCM and Bra-

janovski’s model) are also compared in a full

frequency regime by considering P-wave velocities in

a direction perpendicular to the aligned fractures. To

compute the wave velocities of the fractured medium,

the fracture compliances are used to derive the

effective elastic moduli of the fractured medium. The

relationships between compliances and stiffness

matrix are given in Appendix. The assumption

underlying this relationship is that the wavelength is

much larger than the fracture scale (e.g., fracture size

or spacing). Figure 2 shows that the deviations

between the two models are acceptable (� 0:5% )

and are frequency-dependent for different petro-

physical parameters. Figure 2a shows that the

difference between the two models increases with an

increasing fracture thickness. The main reason is that

the displacement across a fracture in DFCM is dis-

continuous, while the stress is continuous based on

the linear slip theory. The P-wave velocity calculated

by DFCM is less than that by Brajanovski’s model as

the high-frequency part of the effective modulus in

the latter is computed by the weighted harmonic

average of the saturated moduli of the host rock and

fractures, and this deviation increases with increasing

wave frequency. For instance, at the high-frequency

limit, the effective modulus in Brajanovski’s model is

1 =Cvert
eff ¼ ð1� rcÞ =Cm þ rc =Cc, while, in the

DFCM, the modulus is given by

1 /Cvert
eff ¼ 1=Cm þ rcCc. As has been discussed, the

increasing fracture thickness has a similar effect as

that of increasing wave frequency, by a factor

hc

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ix=Dc

p

(the ratio of characteristic size to

Figure 1
Differences of the normal fracture compliances between the DFCM

and Brajanovski’s model for an oil-filled fracture with /m ¼ 0:12,

/c ¼ 0:48, H ¼ 1:5m, and rc ¼ 0:003

2990 D. Wang et al. Pure Appl. Geophys.



diffusion length) in Eq. (1). On the other hand, the

two models exhibit a similar frequency dependence

as is shown in Fig. 2b, and the characteristic fre-

quency of the velocity deviation curve tends to the

low-frequency range with an increasing fracture

spacing. The difference between the two models

increases with an increasing porosity of the host rock

(Fig. 2c). It is caused by the fact that the WIFF effect

is gradually weakened and the role of the rock matrix

is enhanced by the increase of /m. When /m ! /c,

the fractured rock becomes a homogeneous porous

medium and the effects of fractures vanish. The

WIFF disappears and the effective elastic modulus is

equivalent to the results of the high-frequency limit.

3. Experimental Comparison Results

To verify the DFCM and other theoretical models,

a reasonable manufacturing and measurement work-

flow for synthetic specimens is required to guarantee

that the pore structure of synthetic specimens is close

to that of natural rocks and matches that of theoretical

models (Ding et al. 2014, 2017), i.e., these synthetic

Figure 2
Differences of the vertical P-wave velocities between the DFCM and Brajanovski’s model as a function of frequency with (a) different

fracture thicknesses: /m ¼ 0:12, /c ¼ 0:48, H ¼ 1:5 m; (b) different fracture spacing: /m ¼ 0:12, /c ¼ 0:48, rc ¼ 0:003; and (c) different

host porosities: H ¼ 1:5 m, /c ¼ 0:48, and rc ¼ 0:003
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rocks should not only embed the pores and fractures,

but should also allow fluids to flow between the

fractures and the connected pores when waves

propagate through the specimens. This suggests that

the WIFF process at the local fracture scale is an

important dispersion and attenuation mechanism.

Meanwhile, we need to estimate the selected physical

and geometrical parameters of the pores and fractures

during the specimens manufacturing process. In other

words, we guarantee that the theoretical characteristic

frequencies of squirt flow (Wang et al. 2017; Chap-

man 2003) calculated using the selected physical

parameters of specimens (Table 1) are not at the low-

or high-frequency limits relative to the laboratory

testing frequency.

3.1. Synthetic Rock Specimens and Experimental

Measurements

Ultrasonic wave velocity measurements in octag-

onal-shaped synthetic fractured rock specimens are

utilized in this study, based on a new manufacturing

method shown in Fig. 3a (Ding et al. 2014). This

method not only can produce samples whose mineral

compositions and cementations are similar to natural

rocks, but it allows for producing synthetic sand-

stones containing controlled fracture density and

geometrical distribution. The epoxy discs (fractures)

are located within the same plane on the surface of

each layer and surrounded by a sand mixture (host

medium) during the manufacture process. Then, the

samples are left to dry at a constant temperature in an

oven for several weeks. Finally, the samples are

sintered in a furnace and the high molecular (epoxy)

discs are decomposed and drained out, leaving flat

cavities simulating fractures.

P, SH (S1) and SV (S2) wave velocities are

measured in these synthetic sandstones at the inci-

dence angle of 0� (perpendicular to the fractures),

45�, 90� (parallel to fractures), and 135� using an

ultrasonic measurement system with 0.5 MHz trans-

ducers at full-water saturation and at different

fracture densities. The main elastic parameters of

the matrix and fractures of the two synthetic speci-

mens are shown in Table 1. Besides the parameters of

fractures, all physical parameters of the background

matrix in Table 1 are obtained from a reference

specimen manufactured without fractures. This ref-

erence specimen has the same pore structure as the

matrix of fractured synthetic specimens. The 1D

fracture number densities at normal direction of the

two specimens are 400 and 500/m, and the corre-

sponding volume densities are 0.0486 and 0.0665

calculated by na3
	

V , where n is the total fracture

number of a rock specimen, a is the radius of

fractures, and V is the volume of this rock specimen.

The DFCM is derived using the first-order com-

pliance method, and the contribution of fracture

interactions to the effective elastic tensor is assumed

negligible. This assumption is supported by the

results obtained by Grecheka and Kachanov (2006)

for crack densities lower than 0.1. The fracture

densities of synthetic rocks are less than 0.1, as

shown in Table 1; therefore, the basic assumption of

linear behavior of DFCM and Hudson’s first-order

model can be fully satisfied at the fracture densities of

the specimens.

3.2. WIFF in Synthetic Sandstone Specimens

Figure 3b is the fracture distribution diagram of

the synthetic specimens. In the normal direction,

fractures are simulated by a set of parallel discs. The

fracture network is designed in accordance with the

geometrical and mechanical properties used for the

wave-induced fluid flow in the DFCM. The WIFF

mainly occurs around the disc-shaped fractures, while

pore fluid in the rest of the sample remains essentially

unperturbed.

The DCFM and other existing theoretical models

require the knowledge of the permeability of the host

rock and that of the fractures. Permeability of the

fractures and host rock in the DFCM is given by

Table 1

Physical parameters of two synthetic specimens

Variable Value SI unit

Kdry
1 ldry1 12.4, 7.61 GPa

Kdry
2 ldry2 12.7, 7.02 GPa

H1;H2; hc 0.0031, 0.0025, 0.00006 m

a1; a2 0.8169, 0.8792 –

/m1;/m2 0.41, 0.44 –

r1; r2 0.002, 0.0015 m

e1; e2 0.60, 0.68 –

qdry1 ;qsat1 ;qdry2 ; qsat2 1456, 1872, 1424, 1869 kg/m3

2992 D. Wang et al. Pure Appl. Geophys.



j ¼ b‘2/3=ð1� /Þ2 based on the Kozeny–Carman

equation (Bear 1972; Mavko et al. 1998). The

permeability of the host matrix is still calculated by

this empirical equation, because the test frequency is

much lower than the Biot’s characteristic frequency

computed from Table 1. However, since the fractures

in the synthetic specimens are non-porous (/c ¼ 1),

the permeability within the fractures cannot be

described by the Kozeny–Carman equation. Navier–

Stokes equation is an alternative to analyze the fluid

flow in these non-porous fractures in the normal

direction. We use the specific permeability of the

circular fractures to compute wave responses by the

DFCM corresponding to the specimens’ parameters.

We assume that viscous fluid flow in a penny-shaped

fracture in the normal direction satisfies the viscous

laminar flow condition. According to the viscous

fluid mechanics, the permeability of circular fractures

in the normal direction is as follows (Wang and

Zhang 2014):

jjðxÞ ¼ � g
ixqf

1�
2J1 rj
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where rj is the fracture radius, qf is the density of

water, g is the viscosity of water, and J0 and J1 are

the zero- and first-order Bessel functions,

respectively. Indexes j ¼ 1; 2 denote the two different

rock specimens, and they have the same definitions in

this paper. Equation (8) describes the wave-induced

average flux within fractures in the normal direction.

When x ! 0, jjð0Þ¼r2j

.

8, which is equivalent to the

permeability of a penny-shaped fracture correspond-

ing to Poiseuille flow. In contrast, when x ! 1,

jjð1Þ ! 0, where the skin depth within fractures

tends to zero and the fluid cannot flow within a wave

oscillation period. The WIFF in synthetic specimens

satisfies the basic assumptions of the fluid diffusion

equations of the DFCM for periodic aligned fractures.

To calculate the velocities for the synthetic speci-

mens, according to the definition of the effective

stiffness for fractured media presented by Liu et al.

(2000), the theoretical total effective stiffness of the

synthetic specimens can be derived as the area

weighted average Ctot
j ¼ ð1� ejÞC0 þ ejCj (Cj is the

effective stiffness of a single cylinder element based

on the DFCM and is derived in Appendix on the basis

of the relation between the stiffness matrix and the

compliance matrix), where ej is the fracture surface

density (the total surface area of fractures in a layer

divided by the total layer area) of the jth specimen of

each fractured layer (ej is invariable for each frac-

tured layer within a rock specimen); and C0 is the

elastic matrix of the saturated host medium, which

can be computed by Gassmann’s equation (Gassmann

1951). Then, using Christoffel’s equations, the

Figure 3
a Synthetic rock specimens with the parallel-aligned penny-shaped fractures. b Fracture spatial distribution in the synthetic rocks in the

normal direction
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velocity and attenuation characteristics of elastic

waves are obtained.

3.3. Scale Correlations of the DFCM with Discrete

Fractures Model

In the DFCM, the WIFF process between the

more compliant layers and stiffer layers in a sequence

of periodic poroelastic layers is considered, and the

compliant layer models a fracture with an infinite

radius, parameterized with different physical proper-

ties in comparison with the host poroelastic medium

(stiffer layer). However, the fractures in the synthetic

rocks are discrete and have a finite dimension. Now,

we discuss how the effects of fracture parameters of

the synthetic rocks are considered in the DFCM.

A key parameter in the synthetic rocks is the

aspect ratio of the fractures. Fractures in the synthetic

rocks have a small and finite aspect ratio (Table 1),

while the aspect ratio of fractures in the DFCM is

infinitely small (� 0). According to the diffusion

equation, the WIFF depends on the initial pressure

difference and the permeability of the porous

medium. Equation P0
c ¼ funic rn was used to obtain

the fractures’ instantaneous (undrained) initial pres-

sure (Norris 1993; Wang 2000; Wang et al. 2017),

where rn is the stress normal to the fracture surface.

Therefore, the induced pore pressure within fractures

is equivalent to the uniaxial stress wave if the

fractures have a large porosity (ac ¼ 1,

Mc ¼ Cc ¼ Kf , and funic ¼ 1). However, this relation-

ship is not applicable for the small-scale fractures

with a finite aspect ratio. Therefore, the instantaneous

pressure induced in penny-shaped fractures needs to

be reconsidered based on the equation P0
c ¼ funic rn

(Zatsepin and Crampin 1997; Chapman 2003), where

funic ¼Kf =½Kf þ plc=2ð1� mÞ�, m and l are the Pois-

son’s ratio and shear modulus of the matrix material,

respectively, and c is the aspect ratio. This formula

implies that a fracture with a small aspect ratio can be

compressed and deformed easily. It can be obtained

as funic ! 1, when c ! 0 (e.g., the infinite flat

fractures). In the DFCM, the fracture-related funic is

used to analyze the effects of aspect ratio on WIFF

and calculate wave propagation velocities, when we

compare the theoretical results with the experimental

data.

In addition to the wave-induced pressure in the

fractures, the aspect ratio of the fractures also

influences the subsequent fluid flow process. The

previous models have used Darcy’s law to analyze

the fluid exchange between fractures and the pores in

the host medium (Jakobsen et al. 2003; Chapman

et al. 2002; Chapman 2003), and the corresponding

equation is given by the following:

Q ¼ ðPc � PmÞ
b

j
pa2

g
; ð9Þ

where a is the fracture radius, b is half the fracture

thickness, and j is the permeability of the host rock.

The effects of aspect ratio are incorporated into

Eq. (9). The influence of aspect ratio of the fractures

of the synthetic rocks is also taken into account by the

DFCM during the WIFF process. The parameter b in

Eq. (9) is hidden in Eq. (1) and corresponds to the

fracture thickness and spacing in the DFCM, while

the effects of parameter a in Eq. (9) are considered

when we calculating the effective elastic moduli of

the synthetic rocks (Liu et al. 2000; Chapman 2003).

First, for each layer including fractures, the effective

moduli can be derived as Ceff ¼ C0 � eCfra (Liu et al.

2000), where e is the fracture surface density (related

to the parameter a) and Cfra is the first-order excess

stiffness correction of the individual fracture. On the

other hand, the total effective stiffness is given by

Ctot
j ¼ ð1� ejÞC0 þ ejCj for the fractures spatial dis-

tribution as is shown in Fig. 3b. For a set of fractures,

the fracture surface density is e ¼ 1 and Cj ¼ Ceff

based on Liu’s equation (Liu et al. 2000). Therefore,

the total effective stiffness of the jth rock specimen

can be rewritten as Ctot
j ð1� ejÞC0 þ ejðC0 � CfraÞ,

and then, it is transformed into the expression

Ctot
j ¼ C0 � ejCfra, which is consistent with the pre-

vious definition (Liu et al. 2000).

3.4. Comparisons Between Theoretical Model

and Experimental Results

Figure 4 shows that velocity anisotropy (velocity

variation with angle) is significant for the two water-

saturated specimens. The highest P-wave velocity can

bemeasured at an incidence angle of 90� and the lowest
at 0�, normal to the fractures. It is qualitatively

consistent with the anisotropy interpreted from multi-
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azimuth P-wave data (Hall and Kendall 2003;

Maultzsch et al. 2007). The S1-wave (i.e., the fast

shear-wave, with a polarization parallel to the frac-

tures) velocity shows variation similar to that of the P-

wave velocity, while a maximum of S2-wave (i.e.,

slow shear-wave,with a polarization normal to fracture

planes) velocity occurs at 45�. The shear-wave split-

ting (SWS) theory is considered, which is expressed as

the parameter SWS ð%Þ ¼ 100� ðVS1 � VS2Þ. The

value of SWS is an indicator of the fracture character-

istics (Crampin 1985; Verdon and Kendall 2011). The

polarization of the fast S-wave can be the indicator of

the fracture directions and the SWS is a measure of the

magnitude of fracture-induced anisotropy.

The experimental data agree well with the theo-

retical velocities. For an incidence orthogonal to the

fractures, the difference between the measured P-

wave velocities and the corresponding theoretical

results is smaller than that of the S-wave velocities.

This is due to the effects of the WIFF that are most

significant for P-waves across fractures in the normal

direction. On the other hand, the WIFF process

vanishes for the S-waves in this direction. In contrast,

the S-wave velocities calculated by the theoretical

model are closer to the experimental values than the

P-wave velocities, for an incidence parallel to the

fractures. The fast S-wave (S1-wave) is equivalent to

the slow S-wave (S2-wave) as the same polarization

at 90� direction. To estimate the significance of the

effects of WIFF, the theoretical results are also

compared with Hudson’s high-frequency model

(Fig. 5). Hudson’s original model is a high-frequency

approximation with respect to the WIFF process

(Hudson 1981). It ignores the fluid exchange between

the fractures and the pores when elastic waves

propagation through the rocks. As shown in Fig. 5,

P-wave velocities from the DFCM are relatively more

accurate than Hudson’s model in relation to the

laboratory data, especially perpendicular to the

fracture planes because of the WIFF process. An

equation for error analysis is presented to thoroughly

estimate the agreement between the theoretical

models and laboratory data. We use the root-mean-

square error (RMSE) equation Error ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P5
i¼1 ðVlab � VmodelÞ2i

.

5

r

(where i denotes the ith

testing angle) to decide which model exhibits better

fit to the laboratory data. It is evidently observed that

in Fig. 5, the P- and S2-waves are more accurate by

the DFCM, and these waves have the smaller square

errors (RMSE of P-wave are 62.72 and 139.79 m/s

from the DFCM and Hudson’s model, respectively;

RMSE of S2-wave are 65.92 and 95.97 m/s from the

DFCM and Hudson’s model, respectively). The

effects of local fluid flow on these waves are more

important than the S2-wave. On the other hand, S2-

wave from Hudson’s model has a relatively accurate

Figure 4
Comparisons between the measured data and the complex fracture compliance model: a synthetic rock 1 and b synthetic rock 2
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results compared with the results calculated using the

DFCM. Almost all velocities based on Hudson’s

model are higher than the DFCM, because the fluid in

fractures is isolated (and un-relaxed) in Hudson’s

model. We anticipate that the dynamic fracture

compliance model will approach Hudson’s model at

the high-frequency limit.

Although the experimental testing frequency is in

the ultrasonic band, the DFCM is appropriate for

explaining the experimental data, as shown in Fig. 4.

The permeability of the synthetic rocks is about

170 mD, and the characteristic frequency of the

synthetic rocks can be estimated by Wang et al.

(2017) or Chapman (2003) using the parameters in

Table 1. From Appendix in Part I (Wang et al. 2017),

these characteristic frequencies of the synthetic rocks

corresponding to squirt flow are given by xc ¼
4

ffiffiffi

2
p

Dc

	

h2
cð1þ jc

ffiffiffiffiffiffiffi

Dm

p 	

jm

ffiffiffiffiffiffi

Dc

p
Þ and are about

0.6 MHz, which has the same frequency range as

the testing frequency. It means that the WIFF process

is an important mechanism for wave propagation in

fractured rocks. Overall, this shows that the DFCM

yields better agreements with the laboratory obser-

vations (Fig. 5) than the high-frequency model

(Hudson’s model).

3.5. Comparisons Between Theoretical Models

at the Low-Frequency Limit

The dynamic fracture compliance model is fre-

quency-dependent, and it is also valid at the low-

frequency limit. Figure 6 shows the comparison

between DFCM and Thomsen’s low-frequency model

(Thomsen 1995), which also considers the exchange

of fluid between pores and fractures. Using the

parameters (e.g., the porosity and fracture radius) of

the synthetic rocks in Table 1, the results of the

DFCM agree well with Thomsen’s low-frequency

model for all waves. Furthermore, the results from the

DFCM are slightly lower than Thomsen’s results as a

assumption that the porosity of the host medium was

restricted in a relatively low region (\ 10%) in

Thomsen’s original model (Thomsen 1995). Obvi-

ously, the porosity of the synthetic rocks exceeds this

porosity range (see Table 1). As shown in Figs. 5c

and 6b, the S1-wave is frequency-independent, since

particle oscillates parallel to the fracture surfaces (a

pure shear oscillation will not compress the frac-

tures), and as such no WIFF occurs.

4. Discussion

Scattering and intrinsic attenuation mechanisms

are the two main wave loss mechanisms for hetero-

geneous porous media fully saturated with a single

fluid (Sarout 2012; Wang et al. 2016). Besides the

intrinsic anelasticity due to WIFF, the scattering

effects should also be considered, in the case that the

ratio of fracture radius to wavelength is about 0.3 for

the two synthetic rocks (Smyshlyaev et al. 1993;

Hudson et al. 2001). However, the experimental

results are still helpful for the qualitative validation of

the dynamic fracture compliance model, since the

Figure 5
Comparisons between Hudson’s high-frequency model and the complex fracture compliance model, using the parameters of synthetic rock 2:

a P-wave; b S1-wave; c S2-wave
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fracture density in the two synthetic rocks is very low

(\0:1), and the interactions between fractures are

weak. Several useful correlations were performed by

Tillotson et al. (2014) between experimental data and

theoretical models, which suggest that the model

predictions are relatively unaffected by scattering.

Smyshlyaev et al. (1993) extended the self-consistent

method to calculate wave velocity in media contain-

ing aligned circular fractures with a volume density

e ¼ 0:1 and for an incidence angle of 45� to the nor-

mal direction. The phase velocity in this model has a

deviation of around 3% from the estimate value at the

long wavelength approximation. The experimental

results of the two specimens support the methodology

of the dynamic fracture compliance model. The

results of the model agree better with the experimental

data as compared to Hudson’s model. The signifi-

cance of WIFF in a fractured porous medium plays a

dominant role in explaining the observed wave

anelasticity characteristics rather than the mechanism

of scattering in the models considered here

The effective moduli of a fractured porous med-

ium are dependent on the incidence angle relative to

the direction normal to the fracture interfaces. The

discrepancies between the experimental data and

theoretical results in the direction perpendicular to

the fractures are less than those in the direction par-

allel to the fractures. For these flat fractures, fluid

flow only depends on the stress variations perpen-

dicular to the fracture surface. The normal component

of plane-wave stress along its propagation path was

provided by White (1983).

5. Conclusions

The theoretical model of dynamic fracture com-

pliance presented in the companion paper (Part I) is

compared with other model published in the literature

and the experimental data on synthetic rocks speci-

mens. In the examples of numerical comparison, the

DFCM gives a good agreement with Brajanovshi’s

model with different fracture and rock parameters in

a full frequency regime. In the experimental com-

parative analysis, two synthetic specimens fully

saturated with water have the similar mineral com-

ponents and pore structures to natural rocks. The

geometrical and physical parameters of fractures and

pores can be controlled during the specimens manu-

facturing process. The results based on the DFCM are

appropriate for explaining the experimental data. The

characteristic frequency of squirt flow in the synthetic

specimens is close to the testing frequency, and

therefore, the range of ultrasonic testing frequency

cannot be simply treated as the high-frequency limit.

It is essential to consider the effects of WIFF on the

Figure 6
Comparisons between the Thomsen’s low-frequency model and the complex fracture compliance model, using the parameters of synthetic

rock 2: a P-wave; b S-wave
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analysis of laboratory data. Overall speaking, the

DFCM is in better agreement with the experimental

data than Hudson’s high-frequency (un-relaxed)

model.

This paper focuses on the accuracy of analytical

solutions of the dynamic fracture compliance model.

Although the comparison with laboratory data is

performed in the ultrasonic frequency range, it is still

reasonable to believe that the DFCM is applicable for

characterizing the fractured porous reservoirs in nat-

ure. Further investigations are required on the issues

about the more complex fracture systems and dif-

ferent saturation patterns, e.g., multiple fracture sets

and partial saturation.

Acknowledgements

This work is financially supported by the ‘‘Distin-

guished Professor Program of Jiangsu Province,

China’’, the open fund of the State Key Laboratory

of the Institute of Geology and Geophysics, CAS

(SKLGED2017-5-2E), and the open fund of SINO-

PEC Key Laboratory of Geophysics. The authors

thank Joel Sarout and Yves Gueguen for the helpful

comments.

Appendix

Effective Elastic Moduli of a Fractured Medium

By taking u as the angle between the direction

normal to paralleled fractures and the coordinate

system Y1-axis (as shown in Fig. 7), the matrix of

fracture compliance (Eq. 10) can be given in the

observing coordinate system based on the Band’s

conversion (Liu et al. 2006; Winterstein 1990). When

u ¼ 0�, the off-diagonal terms of the compliance

matrix are zero:

Sf ¼

Sf
11 Sf

12 0 0 0 Sf
16

Sf
22 0 0 0 Sf

26

0 0 0 0

Sf
44 Sf

45 0

Sf
55 0

Sf
66

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

; ð10Þ

where

Sf
11 ¼

3Zn þ Zt

8
þ Zn cosð2uÞ

2
þ ðZn � ZtÞ cosð4uÞ

8

ð11Þ

Sf
22 ¼

3Zn þ Zt

8
� Zn cosð2uÞ

2
þ ðZn � ZtÞ cosð4uÞ

8

ð12Þ

Sf
44 ¼

Zt½1� cosð2uÞ�
2

ð13Þ

Sf
55 ¼

Zt½1þ cosð2uÞ�
2

ð14Þ

Sf
66 ¼

Zn þ Zt

2
� ðZn � ZtÞ cosð4uÞ

2
ð15Þ

Sf
12 ¼

ðZn � ZtÞ½1� cosð4uÞ�
8

ð16Þ

Sf
16 ¼

Zn sinð2uÞ
2

þ ðZn � ZtÞ sinð4uÞ
4

ð17Þ

Sf
26 ¼

Zn sinð2uÞ
2

� ðZn � ZtÞ sinð4uÞ
8

ð18Þ

Sf
45 ¼

Zt sinð2uÞ
2

: ð19Þ

The host porous medium is isotropic and homo-

geneous, and the corresponding compliance is given

by the following:

Figure 7
Diagram of paralleled fractures in the observing coordinate system
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S0 ¼

1
E

�m
E

�m
E 0 0 0

1
E

�m
E 0 0 0
1
E 0 0 0

1
l 0 0

1
l 0

1
l

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

; ð20Þ

E, m, and l are the Young modulus, Poisson ratio, and

shear modulus of the saturated host frame, according

to the Gassmann’s equations (Gassmann 1951),

respectively. Then, the effective compliance of the

fractured medium is derived as follows:

S ¼ S0 þ Sf

H
: ð21Þ

The effective elastic stiffness matrix of a fractured

medium is as follows:

C ¼ S�1; ð22Þ

where

C11 ¼
S22S33S66 � S2

26S33 � S2
23S66

Q
ð23Þ

C12 ¼
S13S23S66 þ S16S26S33 � S12S33S66

Q
ð24Þ

C13 ¼
S2
26S13 þ S12S23S66 � S13S22S66 � S16S23S26

Q

ð25Þ

C16 ¼
S2
23S16 þ S12S26S33 � S13S23S26 � S16S22S33

Q

ð26Þ

C22 ¼
S11S33S66 � S2

16S33 � S2
13S66

Q
ð27Þ

C23 ¼
S2
16S23 þ S12S13S66 � S11S23S66 � S13S16S26

Q

ð28Þ

C26 ¼
S2
13S26 þ S12S16S33 � S11S26S33 � S13S16S23

Q

ð29Þ

C33 ¼
S11S22S66 þ 2S12S16S26 � S212S66 � S2

16S22 � S2
26S11

Q

ð30Þ

C36 ¼
S11S23S26 þ S13S16S22 � S12S13S26 � S12S16S23

Q

ð31Þ

C44 ¼
S55

S44S55 � S2
45

ð32Þ

C45 ¼
�S45

S44S55 � S2
45

ð33Þ

C55 ¼
S44

S44S55 � S2
45

ð34Þ

C66 ¼
S11S22S33 þ 2S12S13S23 � S212S33 � S2

13S22 � S2
23S11

Q

ð35Þ

Q ¼ 2ðS12S16S26S33 þ S12S13S23S66 � S13S16S23S26Þ
þ S11S22S33S66 þ S2

13S2
26 þ S2

16S2
23 � S2

12S33S66

ð36Þ
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