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Abstract—Two main stages of seismic modeling are geological

model building and numerical computation of seismic response for

the model. The quality of the computed seismic response is partly

related to the type of model that is built. Therefore, the model

building approaches become as important as seismic forward

numerical methods. For this purpose, three petrophysical facies

(sands, shales and limestones) are extracted from reflection seismic

data and some seismic attributes via the clustering method called

Self-Organizing Maps (SOM), which, in this context, serves as a

geological model building tool. This model with all its properties is

the input to the Optimal Implicit Staggered Finite Difference

(OISFD) algorithm to create synthetic seismograms for poroelastic,

poroacoustic and elastic media. The results show a good agreement

between observed and 2-D synthetic seismograms. This demon-

strates that the SOM classification method enables us to extract

facies from seismic data and allows us to integrate the lithology at

the borehole scale with the 2-D seismic data.

Key words: Implicit finite differences, poroelastic modeling,

self-organizing maps, facies classification, seismic attributes.

1. Introduction

The characterization of wave propagation in

complex geological structures is of fundamental

importance in geophysics. In this paper, we focus on

an exploration geophysics example: the data to be

considered is a 3-D seismic survey acquired in an oil

reservoir called the Waggoner Ranch located in

northeast Texas. Production of this field is primarily

from shallower Permian horizons, where thin sand-

stone and limestone formations represent alternating,

fairly rapid transgressive and regressive marine

sequences. The reservoir is a sand–shale sequence

that is characterized at the borehole and seismic

scales. The well-log data and the lithofacies are

described in detail by Parra et al. (2006) and selected

seismic reflection lines calibrated with well-logs are

given in Parra et al. (2015). Three facies are extracted

from this reflection seismic data by applying Self-

Organizing Maps to a set of instantaneous seismic

attributes derived from a 2-D section of the seismic

data. The SOM serves as a geological model building

tool that delineates the layers of sands, shales and

limestones.

The Self-Organizing Maps (SOM) neural network

algorithm is based on competitive and unsupervised

learning. It was first proposed by Kohonen

(1981, 1982) as a visualization tool and later revisited

in the following references Kohonen (2001, 2013). It

is mainly used for visualization and clustering of data

and it constitutes one powerful data mining tech-

nique. Some of the geophysical applications are given

in Roy et al. (2013) and Roy and Marfut (2012),

where authors successfully apply SOM to identify

diagenetically altered facies of the Mississippi Lime

play. In Konaté et al. (2015) authors applied an SOM

neural network in the classification of metamorphic

rocks from Chinese Continental Scientific Drilling

Main Hole log data. In Stankiewicz et al. (2010) the

SOM has been used to identify classes that corre-

spond to real geological formations. We refer to

Bauer et al. (2008) and Klose (2006) for a tomogra-

phy interpretation. Tselentis et al. (2011)

implemented SOM to facilitate the lithological clas-

sification of the passive seismic tomography results.

In Bauer et al. (2012) authors perform a classification

of the litho-type distribution (in the northeast German
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Basin) combining seismic tomography and inversion

of magnetotelluric data and use SOM to obtain

interesting features such as the characteristic prop-

erties of the Jurassic interpreted as the signature of

shales. In Saraswat and Sen (2012), the authors pro-

pose an artificial immune-based SOM. For waveform

classification based on SOM, see Du et al. (2015) and

Essenreiter et al. (2001).

Since the classic theory of wave propagation in

poroelastic media was proposed by Maurice Biot

(1956a, b), the problem of modeling wave propaga-

tion in poroelastic media has been widely studied

using a variety of different numerical approaches. To

mention but a few authors, see Carcione and Helle

(1999) and Carcione and Quiroga-Goode (1995), they

use a velocity–stress staggered grid performing time

updates in an approximate two-step integration pro-

cess. Zhu and McMechan (1991) investigate the

effects of seismic displacements of the solid frame

and of the fluids due to spatial variations in porosity,

permeability and fluid viscosity using a second-order

2-D explicit scheme. Özdenvar and McMechan

(1997) developed a pseudo-spectral method for

solving poroelastic differential equations in a dis-

placement formulation. Masson et al. (2006)

developed a standard explicit time integration tech-

nique for solving Biot’s equations. Carcione et al.

(2010) provide a thorough review of the previous

literature of computational poroelasticity.

Recently Liu and Sen (2009) developed efficient

implicit space derivative operators using a staggered-

grid scheme with even-order accuracy for first-order

derivatives. The results showed that the finite differ-

ence (FD) accuracy tends to increase as the operator

length increases and the wave number range drops.

Liu (2014), shows an improvement of his method and

proposed a LS-based scheme to derive globally

Optimal FD coefficients for spatial derivatives,

computing them over a given wave number range

using the LS method. We apply the approach given in

Itzá et al. (2016) where the authors used the OISFD

method given in Liu (2014) to solve poroelastic

equations (showing stability and dispersion analysis)

to model the seismic data acquired at Waggoner

Ranch.

There are various mathematical formulations to

simulate wave propagation in a variety of media with

different physical properties. However, all these tools

are to some degree, simplifications of the real world.

Consequently, they might not be good enough to

measure the effects and the relative importance of the

physical parameters. In our work, we illustrate the

differences among elastic, poroacoustic and poroe-

lastic models by computing synthetic seismograms in

a complex model.

Using the well-log information and a rock phys-

ical analysis given in Parra et al. (2015) we can

establish the physical properties of these three litho-

logical units in this specific study area. Once we have

determined the complex geological settings and its

physical properties, this information will constitute

the inputs to our numerical modeling technique.

In summary, in this paper we will proceed as

follows: we first describe the SOM method that

includes its theoretical basis and how it is used to

construct a geological model for an oil and gas

reservoir in northeast Texas. Secondly, we explain

the modeling technique that is applied to simulate

surface reflection seismic waves. Finally, we conduct

numerical modeling, by comparing acquired real data

and synthetic seismograms, to demonstrate the com-

bined application of SOM and reservoir modeling.

2. SOM Method

2.1. Theory and Definition of Self-Organizing Maps

The Self-Organizing Maps consist of a set of N

nodes or neurons fg1; g2; . . .; gNg (the neurons out-

puts are real numbers) in a 2-D hexagonal,

rectangular or irregular grid, also called retina. There

are two dimensions for the retina which correspond to

each direction and their product has to be the same as

the total number of neurons, i.e. N ¼ size X � size Y .

The number of neurons in the retina may range from

a few dozen to several thousands. In most applica-

tions, it is chosen much smaller than the total number

of data vectors. Hexagonal grids are more common

since they allow more neurons to update their weights

than rectangular grids because each neuron in the grid

has direct contact with six neurons (immediate

neighbors) instead of four; we use a hexagonal grid.

An input vector x ¼ ðn1; n2; . . .; nnÞ 2 Rn (in this

case, the inputs are the selected seismic attributes) is
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connected in parallel to all neurons in the grid with

some weights wij (also called reference vectors). In

Fig. 1 an example of a SOM retina illustrates how the

weights are connected to all the neurons in the retina

and to all the inputs. For the relative size of the two

axes (i.e. size X and size Y) of the retina, Kohonen

(2013) suggested to use the ratio of the two largest

eigenvalues from the covariance matrix analysis of

the input data. Since these criteria indicate just a ratio

between the sizes of the two axes, the precise size of

the retina needs to be determined by a trial-and-error

method; large maps take longer to train than smaller

maps. According to our experiments, we have

obtained the best results with a retina of size 11 � 11.

The main virtue of the SOM is the visualization of

the data space, whereupon the clustering structures

must be visible. There is no sense in using the SOM

for very small data sets since there are better methods

to analyze small data sets. The Self-Organizing Maps

neural network is a quantizing method and has

limited resolution to show the cluster structures,

sometimes the data set may contain few clusters, so a

coarse resolution is sufficient.

In this work we use the parallel Batch-Map learning

mode which is a variant of the original sequential SOM

(see Kohonen 2001 section 3.6, p.138). In the parallel

Batch-Map version the weights update their values

after presenting the full set of inputs.

Vesanto and Alhoniemi (2000) proposed a two-

level approach for conducting clustering tasks, called

SOM-Ward. Firstly, the data set is projected onto a

two-dimensional retina using SOM (Batch-Map).

Then the resulting SOM is divided into groups using

the Ward’s clustering algorithm. This is an agglom-

erative hierarchical clustering method that starts with

a clustering in which each map node is treated as a

separate cluster. The two clusters with minimum

distance are merged in each step until there is only

one cluster left in the map, see Ward (1963). SOM-

Ward’s clustering is a modification of Ward’s

algorithm which limits cluster agglomeration to

topological neighboring nodes. After training the

SOM we apply this hierarchical agglomerative clus-

tering of the trained SOM, see Day and Edelsbrunner

(1984). This is an advantage because for the case of

large data sets, the clustering is done in a smaller

number of samples (in the 2-D retina) than the

original data set. In this case, the size of the retina is

11 � 11 ¼ 121 instead of the total number of input

vectors: number of traces � number of time

samples � number of attributes ¼ 116 � 501 �
11 ¼ 639; 276 . This is a clear benefit in terms of

computational time.

2.2. Application of SOM to Construct the Geological

Model

We briefly describe how the seismic section

with facies used in the numerical simulation was

obtained. In order to train the SOM we used 11

Figure 1
Example of a Self-Organizing Map retina with its neurons gi, weights wi and inputs xi
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attributes as inputs: time; stacked seismic trace;

Hilbert transform; envelope; phase; instantaneous

frequency; thin bed indicator; instantaneous band

width, decay; factor of attenuation Q; acceleration

and semblance; which are defined in the following

references: Barnes (2015), Chopra and Marfurt

(2007) and Taner et al. (1979, 1994). The selection

of these seismic attributes was done using SOM,

starting with a wider selection of 23 attributes and

discarding the redundant ones by keeping the ones

that had different feature maps among them. The

feature maps are the values of the weights related

Figure 2
a The seismic section for the cross line 1176 of the Waggoner ranch. b Three seismic facies for the Waggoner seismic line: sands (yellow),

shales (green) and limestones (blue) obtained using Self-Organizing Maps. In addition, we plot the facies that are computed directly from

well-log data
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to each attribute. This can be visualized in the

retina with colors and it creates a color map of

weights. If two ore more attributes have similar

feature maps it implies that they have similar

weight vectors. This fact suggest that these

attributes are redundant and hence we keep those

with different feature maps. This number of

attributes determines the mathematical dimension-

ality of the input data. We used the free software

called LabSOM1 that allows us to use hierarchical

agglomerative clustering of the trained SOM, see

Day and Edelsbrunner (1984). The reservoir geol-

ogy of the Waggoner Ranch is a sand and shale

sequence with a small amount of limestone as

markers. The Self-Organizing Maps use reflection

attributes that are able to capture the three geolog-

ical units. The SOM image correlates with the

lithological units and the seismic reflection lines as

well. The geological map obtained using SOM with

three different facies (classes): sands (yellow),

shales (green) and sandstones (blue) is shown in

Fig. 2b. This map is a matrix of size 116 � 501 (=

number of traces � number of time samples),

which corresponds to the size of the seismic

section. Each grid node has a label given by the

clustering analysis (according to the interpretation

analysis we selected three facies/labels). These

three facies have certain physical properties given

in Parra et al. (2015) and these constitute the input

(the physical or real geological model) to the FD

engine.

3. Modeling and Analysis

The first step of our analysis is to develop the

algorithm to simulate synthetic waveforms in a

heterogeneous reservoir. This requires finding the

numerical solution of Biot’s equations using a finite

difference scheme, testing this solution with a simple

model and then generating synthetic seismograms

using the real geological model obtained with the

SOM method.

3.1. Formulation

Following the work of Biot (1956a), we consider the

velocity-stress formulation (low-frequency range) poroe-

lastic equations. The system of equations is given by:

r2 _vi ¼ m sxi;x þ siz;z

� �
þ qf bVi þ dxip;x þ dizp;z

� �

ð1Þ

r2 _Vi ¼ �qf sxi;x þ siz;z

� �
� q bVi þ dxip;x þ dizp;z

� �

ð2Þ

_sij ¼ l vi;j þ vj;i

� �
þ dij kc vx;x þ vz;z

� �
þ aM Vx;x þ Vz;z

� �� �

ð3Þ

_p ¼ �aM vx;x þ vz;z

� �
� M Vx;x þ Vz;z

� �
ð4Þ

where we denote by vi ¼ component of solid veloc-

ity, Vi ¼ component of fluid velocity (relative to the

the solid), dij is the Kronecker delta, sij are the

stresses (i; j 2 fx; zg), p is the pore pressure and

r2 ¼ mq� q2
f . The overall density of the saturated

medium is determined by q ¼ /qf þ ð1 � /Þqs,

where / is the porosity, qf is the pore fluid density

and qs is the density of the solid grains. In an iso-

tropic porous medium, we denote by Ks and Kf as the

bulk moduli of the solid and fluid phases, Kdry and l
are the bulk and shear moduli of the porous material

(dry or saturated). Then the poroelastic coefficient of

effective stress is a ¼ 1 � Kdry=Ks (this is also known

as Biot & Willis constant, see Biot and Willis 1957),

the coupling modulus between the solid and fluid is

given by M ¼ ða� /Þ=Ks þ /=Kf

� ��1
and the Lamé

parameter of the saturated matrix is given by

kc ¼ Kd � 2=3lþ a2M. The effective fluid density is

given by m ¼ Tqf =/, where T is the tortuosity.

Finally, b ¼ g=j is called the friction coefficient (it is

also called the mobility of the fluid), i.e. the ratio of

fluid viscosity g and rock permeability j (the usual

hydrological permeability).

We perform the discretization as in Itzá et al.

(2016), and then the space and time discretizations

for the field variables are denoted by a sub-index or a

super index respectively: v
nþ1=2
i ¼ viðx; tnþ1=2Þ,

V
nþ1=2
i ¼ Viðx; tnþ1=2Þ,sn

ij ¼ sijðx; tnÞ and pn ¼
pðx; tnÞ with tn ¼ nDt. The approximations to spatial

derivatives at the point x and direction xk are given by

of=oxkjx � Dkf . Time discretization is done with a

central differences scheme. The discretization yields:

1 http://www.dynamics.unam.edu/DinamicaNoLineal3/

labsom.htm.
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v
nþ1=2
i ¼ v

n�1=2
i þ ADjs

n
ij þ BDip

n þ ChVn
i i ð5Þ

DV
nþ1=2
i ¼ V

n�1=2
i þ EV

n�1=2
i þ FDjs

n
ij þ GDip

n

ð6Þ

snþ1=2
ij ¼ sn�1=2

ij þ H Div
n
j þ Djv

n
i

� �
þ IDiv

n
i þ JDiV

n
i

� �
dij

ð7Þ

pnþ1=2 ¼ pn�1=2 � Jvn
i;i þ KVn

i;i ð8Þ

where the notation h�i means

hVn
i i ¼ V

nþ1=2
i þ Vn�1=2

� �
=2 ð9Þ

The coefficients involved in (5–8) are given by:

A ¼ ðmDtÞ=r2

B ¼ ðqfDtÞ=r2

C ¼ ðqf bDtÞ=ð2r2Þ
D ¼ 1 þ qbDt=ð2r2Þ
E ¼ �qbDt= 2r2

� �

F ¼ �qfDt=r2

G ¼ qDt=r2

H ¼ lDt

I ¼ kcDt

J ¼ aMDt

K ¼ �MDt

In order to compute the wave field over the entire

staggered grid and since the material parameters are

only defined on grid points with integer index, we

need to compute averages of qs, qf , m and b on half-

point grid nodes.

The horizontal component of velocity (vx or Vx)

uses the following harmonic averages:

qsi;jþ1=2 ¼ 1

2

1

qsi;j

þ 1

qsi;jþ1

 !" #�1

a similar formula for qf ;

mi;jþ1=2 ¼ 1

2

1

mi;j
þ 1

mi;jþ1

� 	
 ��1

bi;jþ1=2 ¼ 1

2

1

bi;j
þ 1

bi;jþ1

� 	
 ��1

:

While for the vertical component (vz or Vz) we

require:

qsiþ1=2;j ¼
1

2

1

qsi;j

þ 1

qsiþ1;j

 !" #�1

a similar formula for qf ;

miþ1=2;j ¼
1

2

1

mi;j
þ 1

miþ1;j

� 	
 ��1

biþ1=2;j ¼
1

2

1

bi;j
þ 1

biþ1;j

� 	
 ��1

:

To compute sxz we need the harmonic average of l on

grid points with a non-integer index:

liþ1=2;jþ1=2 ¼ 1

4

1

li;j

þ 1

li;jþ1

þ 1

liþ1;j

þ 1

liþ1;jþ1

 !" #�1

:

Finally, we do not need to use an average of

parameters kc, a and M, because we only need them

on grid points with an integer index.

3.2. Numerical Modeling

One approach widely used to compute synthetic

seismograms in layered media is the use of propaga-

tor matrices (see for example, Aki and Richards

1980; Claerbout 1968; Haskell 1953, 1960, 1962;

Kennett and Kerry 1979). The displacements at the

top and bottom of the stack of layers are related by a

product of propagator matrices, one for each layer.

The response of the model includes the effects of all

multiples. The advantage of this method is that, since

it is an analytic solution, the computation is very fast

and when one considers the full waveform inversion

it could be an alternative to speed up the computa-

tion. On the contrary, this is a 1-D approach and does

not capture the lateral variations of the physical

properties (i.e. 2-D effects). Consequently, we choose

the Optimal Implicit Finite Differences to solve

numerically the set of Eqs. (1–4) with the physical

properties that correspond to the facies illustrated in

Fig. 2 obtained by the SOM method. The poroelastic

parameters that correspond to this medium (these

were obtained directly from well-log data) are given

in Tables 1 and 2, see Parra et al. (2015). We have

taken the velocity and the density for oil as Vp ¼
1459 m/s and qf ¼ 827:7 kg/m3, see Higuti et al.

(2001). In terms of saturating fluids, three depth

intervals are considered: an upper and bottom interval
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saturated with brine, while the middle interval is

saturated with oil.

The Self-Organizing Maps classification, yields a

three-facies spatial classification (sands, shales and

limestones); this allows us to provide lateral and

vertical variations imposed by each facies. For any

given position in space (x, z) = (x, depth) we have a

facies assigned to it. Therefore, when setting up the

physical parameters for that cell in the numerical

modeling phase we assign the properties (in Tables 1

and 2) that correspond to the given depth interval.

The result of the SOM clustering, is a matrix of

size 116 � 501 (= number of traces � number of time

samples) which corresponds to the size of the seismic

section. The physical distance between contiguous

traces is 21.02 m. This matrix contains three different

labels that represent the three facies: sand, shale and

limestone. Therefore, the classification has a seismic

scale and we have to reconcile this with the numerical

mesh. From the 501 time samples (or facies labels)

we need to consider only 156 time samples that lay in

the study area which has a depth interval of [487.86,

792.57] m. The area that we need to model is larger in

the x-direction than in the z-direction (i.e. depth).

Therefore in order to have at least 6 nodes per

wavelength we have to set a numerical mesh (i.e. a

staggered grid) of size Nx ¼ 1624, Nz ¼ 312 with

Dx ¼ 1.5 m and Dz ¼ 0.976 m. Since the reduced

matrix of labels given by the SOM classification has

size 116 � 156 we need a larger numerical mesh than

Table 1

Parameters for the Waggoner poroelastic model

Depth intervals 1 and 3 (487.68–745.24 m) [ (749.81–792.48 m)

saturated with brine

Depth interval 2 (745.24–749.81 m) saturated with oil Units

Limestone Shale Sand Limestone Shale Sand

Vp 5200 3309 3695 5427 3585 3700 m/s

Vs 2700 1653 2068 2789 1777 2040 m/s

Kf 2.25 2.25 2.25 1.8566 1.8566 1.8566 GPa

Ks 62 25 35 62 28 35 GPa

Kdry 45.746 17.422 15.461 43.452 21.261 16.482 GPa

qs 2690 2540 2340 2700 2540 2380 kg/m3

qf 1000 1000 1000 872.2 872.2 872.2 kg/m3

/ 0.18 0.17 0.2 0.012 0.15 0.16 –

g 1 1 1 1.729 1.729 1.729 cP

j 1 0.01 200 1 0.01 200 mD

T 2 2 2 2 2 2 –

1cP = 10�3 Pa s; 1mD = 10�15 m2

Table 2

Complementary parameters corresponding to the partial differential equation which describes the poroelastic model

Depth intervals 1 and 3 (487.68–745.24 m) [ (749.81–792.48 m)

saturated with brine

Depth interval 2 (745.24-749.81 m) saturated with

oil

Units

Limestone Shale Sand Limestone Shale Sand

m 11,110 11,760 10,000 145,400 11,630 10,900 Kg/m3

q 2386 2278 2072 2678 2290 2139 Kg/m3

b 1 9 1015 1 9 1017 5 9 1012 1.729 9 1015 1.729 9 1017 8.645 9 1012 Pa s/m2

l 19.61 6.940 10.01 21 8.021 9.905 GPa

a 0.026 0.303 0.382 0.299 0.241 0.529

M 12.30 12.36 10.40 90.13 11.90 10.34 GPa

k 33.52 13.93 10.30 37.52 16.60 12.77 GPa

Vol. 175, (2018) Modeling Poroelastic Wave Propagation 2981



the given by the SOM labels. Consequently, in the x-

direction we repeat 14 times each one of the 116

labels to obtain 1624 nodes (note that 116 9 14 =

1624). This is done dividing the area that is covered

by the stations, i.e. 2438.4 m/1624 which gives

Dx ¼ 1.5 m. The physical properties of these numer-

ical nodes are assigned according to the facies that

was designated by the SOM to that trace. For the z-

direction (depth) we perform a similar procedure. We

need to model in depth a physical distance of 304.8 m

and we have 156 time samples given by the seismic

data and the SOM labels. We need Dz ¼ 0.976 m, as

a result, we repeat each row (corresponding to a time

sample) to obtain 312 (= 156 � 2) grid nodes. With

this setting we can ensure enough wavelength

sampling for the range of frequencies considered

and all the different velocities of the complex

medium. For all numerical experiments the time step

will be Dt ¼ 0.00001 s. With this configuration we

have on average 30 layers (per trace) with a minimum

of 20 layers and a maximum of 39. These layers are

set by the SOM clustering and they have different

widths. For the first example, we use as the source

function a Ricker wavelet:

SðtÞ ¼ exp �2½tf0 � 1:5�2
� �

cosð½tf0 � 1:5�Þ; ð10Þ

with central frequency f0 ¼ 110 Hz. The bulk source

is located at the center of the numerical domain, i.e.

in terms of grid points coordinates are x0 ¼ 130 and

z0 ¼ 812. In Fig. 3 we illustrate the wave propagation

in the Waggoner heterogeneous medium showing

snapshots of displacements obtained from the OISFD

scheme at time (a) t ¼ 0:05 s, (b) t ¼ 0:14 s, and

(c) t ¼ 0:24 s.

We simulate a more realistic source by transmit-

ting a normal plane wave incident at the depth 487.68

m. In the resulting synthetic seismogram we remove

the source effect because there is not a source applied

at the depth of 487.68 m in the real data. The source

used in this example is the wavelet extracted from the

seismic data with central frequency f0 ¼ 110 Hz.

To demonstrate the use of the poroelastic mod-

eling solution we select the data from Table 1 to

compute seismic waveforms at the seismic scale so

we can compare them with a select observed seismic

trace at the well location. In Fig. 4 we compare the

observed trace with synthetic seismograms for poroe-

lastic, poroacoustic and elastic models (black, blue,

purple and red wiggle traces, respectively). Firstly, in

Fig. 5 we illustrate the full waveforms of the three

models. The two vertical dashed black lines corre-

spond to time window shown in Fig. 4, which

corresponds to the main area of interest, since it

includes the productive Milliham sand. As we

expected the poroelastic and poroacoustic waveforms

are more attenuated than the elastic waveform. The

medium is partially saturated with hydrocarbons and

brine; as a consequence the wave creates a deforma-

tion in the porous medium partially saturated with

fluids. Viscous losses during the induced flow led to

irreversible energy loss and the resulting wave

attenuation (Parra et al. 2015). In addition, we

noticed that the poroacoustic and poroelastic models

produce traces with similar trends. These results are

in agreement with Özdenvar and McMechan (1997);

also in this paper, the authors suggest the use of the

most complete model to get seismograms with

correct scale. Whilst it is not expected that the

OISFD and the SOM model reproduce the precise

details of real data, synthetic data captures the main

trends (reflections, including multiples, from the

given layered model) of the real traces. From Fig. 4

we observe that the poroelastic model produces better

approximations than the elastic and poroacoustic

models. However, we adjust the trace scale before

comparing with the real trace.

3.3. Selection of the Frequency Range

in the Numerical Model

We calibrated the frequency to choose the one

that produces the best results in terms of the

comparison between real and synthetic data. Accord-

ing to Masson et al. (2006) the seismic band of

frequency is loosely defined as x=ð2pÞ\10 kHz. The

frequency we have chosen for the simulations is

within the frequency spectra of the seismic trace that

corresponds to the trace located at the well-bore.

Most of the energy in Fig. 6 is within the range 5 –

130 Hz. Therefore we believe that the results are

consistent with the data.
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Figure 3
Snapshots of pressure obtained by the OISFD for the Waggoner heterogeneous poroelastic model at a t ¼ 0:05 s, b t ¼ 0:14 s, c t ¼ 0:24 s
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4. Conclusions

The numerical results show that the geological

setting obtained with the SOM constitutes an ade-

quate description of the real data, since the synthetic

traces resemble the acquired data. The elastic,

poroacoustic and poroelastic models produce differ-

ent results, as expected, and one of these differences

is the amplitude. From these three models, the

poroelastic model showed the best approximation

although the poroacoustic model also captures the

main trends of the real data. If a simple description of

the medium response is required, then the poroa-

coustic model is enough. The poroelastic model could

be use as a starting velocity model for a more com-

plex full waveform inversion procedure. The Optimal

FD provides an accurate forward modeling tool for

complex geological structures. It should be noted that

for the Optimal FD to be practical to calculate syn-

thetic seismograms in an iterative procedure, such as

full waveform inversion, more work is needed to

implement the code in GPUs or other devices to

Figure 4
Comparison between the vertical component of the displacement in the solid, synthetic trace vz, and real trace. The black wiggle traces

correspond to the real data, whereas blue, purple and red correspond to poroelastic, poroacoustic and elastic modeling, respectively. We have

chosen to show only the trace (repeated three times for each case) that corresponds to the well-log; however, similar trends are seen in the

other traces of this seismic line. The time window shown in these seismograms corresponds to the interest zone where the Milliham productive

sand is located
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Vertical component of the displacement in the solid, synthetic trace

vz, of the elastic, poroacoustic and poroelastic models. The two

vertical black lines correspond to the times shown in Fig. 4

2984 R. Itzá Balam et al. Pure Appl. Geophys.



speed up computations. Far-reaching implications on

the physical parameters (permeability, porosity or

fluid saturation) that are lowering the attenuation are

important.

Other clustering techniques such as k-means,

multivariate normal distributions, and density-based

spatial clustering can be also applied and will be

studied in future work.
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