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Abstract—In the process of modelling geophysical properties,

jointly inverting different data sets can greatly improve model

results, provided that the data sets are compatible, i.e., sensitive to

similar features. Such a joint inversion requires a relationship

between the different data sets, which can either be analytic or

structural. Classically, the joint problem is expressed as a scalar

objective function that combines the misfit functions of multiple

data sets and a joint term which accounts for the assumed con-

nection between the data sets. This approach suffers from two

major disadvantages: first, it can be difficult to assess the com-

patibility of the data sets and second, the aggregation of misfit

terms introduces a weighting of the data sets. We present a pareto-

optimal multi-objective joint inversion approach based on an

existing genetic algorithm. The algorithm treats each data set as a

separate objective, avoiding forced weighting and generating

curves of the trade-off between the different objectives. These

curves are analysed by their shape and evolution to evaluate data

set compatibility. Furthermore, the statistical analysis of the gen-

erated solution population provides valuable estimates of model

uncertainty.

Key words: Multi-objective optimisation, joint-inversion,

data set compatibility, model uncertainty, magnetotellurics.

1. Introduction

Geophysical models can benefit greatly from the

combined inversion of multiple data sets. Different

methods are sensitive to different petrophysical

parameters and different parts of the subsurface, and

they usually have uncorrelated noise components.

Even the use of multiple data sets from the same

method can be beneficial, as the noise components of

data sets collected at different times are also likely to

be uncorrelated. Thus, additional information avail-

able for inversion will improve the quality of the

resulting model by reducing solution non-uniqueness

(Muñoz and Rath 2006). Standard joint inversion

approaches are generally used for data that are sen-

sitive to the same petrophysical parameter, such as

electrical and electromagnetic resistivity (Yang and

Tong 1988; Abubakar et al. 2011) and seismic

velocities (Julià et al. 2000), or methods that are

sensitive to different physical parameters, but have a

structural connection (Gallardo and Meju 2003, 2007;

Commer and Newman 2009; Jegen et al. 2009;

Moorkamp et al. 2011).

The classical approach to the joint inversion

problem is based on a scalar objective function that

combines misfit measures for all data sets and also

includes a joint term that connects the different data

sets (Haber and Oldenburg 1997; De Stefano et al.

2011). Weighting has to be employed to aggregate all

misfits into one objective function. Data sets may be

weighted equally (Dobróka et al. 1991; de Nardis

et al. 2005), have individual weightings (Julià et al.

2000; Mota and Santos 2006), or use sophisticated

techniques such as fuzzy c-means coupling for the

joint inversion (Carter-McAuslan et al. 2014). The

choice of weights can vary between problems (Treitel

and Lines 1999), and the choice of inappropriate

weights can lead to bias in the results (De Stefano

et al. 2011). A set of guidelines for setting weights is

given by Marler and Arora (2010).

The use of a combined objective function also

makes it difficult to judge the compatibility of data

sets: it is important to determine whether data sets are

sensitive to similar features and if the assumed rela-

tionship between the data sets is valid. Forcing
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incompatible data sets into a joint model may yield a

model that is worse than the corresponding single

data set models, because an inversion algorithm will

produce unnecessary artefacts trying to compensate

for an underlying incompatibility.

One alternative to the conventional approaches is

the group of multi-objective evolutionary algorithms,

which mimic natural evolution processes (Holland

1975). Such algorithms treat each data set as a sep-

arate objective rather than aggregating them into a

single objective function, which circumvents forced

weighting. Calculating individual objective values

allows for detailed statistical analysis. For example, it

leads to the creation of trade-off surfaces, which

allow inference of data set compatibility. These

methods are direct search methods (Lewis et al.

2000), which do not require linearisation approxi-

mations or any gradient information. They create an

ensemble of solutions rather than a single best fit

result, which has the added advantage that the solu-

tion ensemble can be evaluated to infer qualitative

estimates of model uncertainty.

Multi-objective evolutionary algorithms have

demonstrated potential to solve problems in engi-

neering, computer sciences, and finance (Coello et al.

2007; Zhou et al. 2011), but they have been sparsely

used in the geophysics community. Kozlovskaya

et al. (2007) compared conventional and multi-ob-

jective methods for seismic anisotropy investigations,

but used a neighbourhood algorithm (Sambridge

1999a, b) instead of an evolutionary algorithm. The

earliest applications of multi-objective evolutionary

algorithms in geophysics included (Moorkamp et al.

2007, 2010), to jointly invert teleseismic receiver

functions and magnetotelluric data, as well as recei-

ver functions, surface wave dispersion curves, and

magnetotelluric data. Other work has been done on

seismic data (Giancarlo 2010), magnetic resonance

and vertical electric soundings (Akca et al. 2014),

cross-borehole tomography (Paasche and Tronicke

2014), and reservoir modelling (Emami Niri and

Lumley 2015).

We present here a multi-objective joint optimi-

sation algorithm, which is based on the Borg multi-

objective evolutionary algorithm by Hadka and Reed

(2013). In this work, we focus on the application of

the algorithm to quantify data set compatibility and

also produce a solution ensemble. We will first

explain the algorithm in detail and show how the

solution ensemble can be used to generate reliable

models. We will then demonstrate the functionality of

our data set compatibility measure in synthetic model

tests and evaluate influences of noise and data error

estimates. In our study, we focus on two sets of

magnetotelluric data; however, the concept may be

extended to any pair of geophysical data.

2. Theory

2.1. Definition of Multi-dimensional Pareto-

Optimality

When dealing with multiple conflicting objec-

tives, it is impossible to define a single best solution

without introducing weighting of the objectives. In

combination with solution non-uniqueness, this is the

reason that conventional approaches, which search

for a single best fit solution to a joint-inversion

problem, produce biased results.

To mitigate this problem, an alternative way to

define optimality has to be employed. In the field of

multi-objective optimisation, the most widely used

concept to rate solution quality is that of pareto-

optimality, which was first introduced by Edgeworth

(1881) and Pareto (1896). A solution is considered

pareto-optimal if there is no other feasible solution

that can improve an objective without deteriorating

any other objective, and the entirety of solutions

fulfilling this criterion is called the pareto-optimal

set. When the pareto-optimal set is projected onto a

surface, it is referred to as the pareto-front, which

comprises a trade-off surface between the different

objectives.

The objective value vectors of the pareto-optimal

solutions are pareto-non-dominated. For a minimisa-

tion problem with N objectives, the objective vector

x� ¼ ðx�1; x�2; . . .; x�NÞ, containing the N objective

function values for a given solution, is defined to

pareto-dominate another vector x ¼ ðx1; x2; . . .; xNÞ if
and only if:

x�i � xi 8i 2 f1; 2; . . .;Ng ^ 9j 2 f1; 2; . . .;Ng : x�j \xj;

ð1Þ
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which is denoted by x� �p x (see, e.g., Coello et al.

2007, p. 10–11).

In a pareto sense, all non-dominated solutions are

rated as optimal and no non-dominated solution is

considered better than any of the others. In our case,

pareto-optimality is a minimal optimality condition

that will not always produce physically meaningful

results, but rating of the solutions using pareto-

efficiency allows for solving the optimation free of

weighting biases.

2.2. Multi-objective Evolutionary Algorithm

(MOEA)

The multi-objective joint optimisation algorithm

is a stochastic approach to yield an ensemble of

model solutions to an inversion problem. It is based

on the auto-adaptive Borg Multiobjective Evolution-

ary Algorithm (Hadka and Reed 2013).

The Borg algorithm was chosen as it is a state-of-

the-art multi-objective evolutionary algorithm cap-

able of adapting to various problems. Multi-objective

evolutionary algorithms generally deteriorate in per-

formance for more than three objectives (Ishibuchi

et al. 2008; Zhou et al. 2011); however, the Borg

algorithm performs well on problems with many

objectives (Hadka and Reed 2013). Other advantages

of the algorithm include good convergence and high

solution diversity of the solution ensemble, which is

necessary to infer model ranges and generate reliable

information on the compatibility of different

objectives.

Evolutionary algorithms are direct search methods

that do not require computation of Frechet deriva-

tives. Such methods require significantly more

function evaluations than conventional inversion

algorithms, but parallelisation of codes is often

possible and enhanced computing power is readily

available. The stochastic component inherent in

evolutionary algorithms makes them very robust

against local minima.

The workflow is illustrated in Fig. 1. A starting

population is initiated with random parameters inside

predetermined parameter thresholds. All member

solutions of the population are then evaluated against

the measured data sets and objective values

calculated for every objective. This is followed by

an evaluation of the domination status of each

solution. The objective values are usually expressed

as root mean square (RMS) deviations d, the misfit of

the forward calculated response of a set of model

parameters m to a set of n observed data points d,

normalised by the errors of the observed data points

rd:

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼0

di � FðmÞi

rdi

� �2

v

u

u

t : ð2Þ

The algorithm also allows the user to set misfit con-

straints, which effectively limits the feasible region of

objective space. Solutions outside the feasible region

are treated as invalid.

In addition to the misfit functions, a regularisation

measure has to be defined to stabilise the inversion.

This measure is treated as separate objective, result-

ing in pareto-fronts between the model misfits and

model complexity. This provides stability by making

solutions with lower model complexity outrank

solutions with higher complexity for an equal model

misfit. The calculation of the regularisation measure

is customisable and depends on the model parameters

and geometries. In a conventional inversion scheme,

the regularisation functional is part of the objective

function and its influence in comparison with the

misfit measure(s) is determined by a weighting factor,

which has to be determined appropriately. Treating

the regularisation functional separately from the

objective-functions eliminates the need to find this

weight factor.

New population members are created via recom-

bination operators after the solutions are evaluated

and their domination status is determined. The

solutions to be used for recombination are chosen

via tournament selection (Miller and Goldberg 1995).

There are a variety of different recombination

operators available, but usually, only one is imple-

mented in a given algorithm. Different kinds of

operators have different degrees of effectiveness,

depending on the type and nature of each individual

search problem. This led to the proposal of adaptive

operators (Vrugt and Robinson 2007; Vrugt et al.

2009). Hadka and Reed (2013) implemented the Borg

algorithm with the capability to auto-adaptively
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select from six different recombination operators:

simulated binary crossover (Deb and Agarwal 1994),

differential evolution (Storn and Price 1997), parent-

centric recombination (Deb et al. 2002), unimodal

normal distribution crossover (Kita et al. 1999; Deb

et al. 2002), simplex crossover (Tsutsui et al. 1999;

Higuchi et al. 2000), and uniform mutation (Sys-

werda 1989). The algorithm adapts the probability of

a given operator to be used according to its success

rate in producing solutions in non-dominated solu-

tions. For a given problem, generally, one of the

operators will be dominant (Hadka and Reed 2013).

New solutions produced by all recombination oper-

ators, except for the uniform mutation operator, are

subjected to polynomial mutation (Deb and Goyal

1996). Mutation operators randomly mutate a given

parameter of a solution and add a stochastic compo-

nent to the search, ensuring better search space

exploration and robustness of the search against local

minima.

The new population produced by the recombina-

tion and mutation process is then evaluated and the

loop is repeated until a termination criterion—usually

a maximum number of solution evaluations—is

reached.

It is important to retain optimal solutions during

the search to ensure optimisation success and con-

vergence of the search (Zitzler 1999; Zitzler et al.

2000). Borg exercises this so-called elitism by

keeping an archive of the non-dominated solutions.

When using pareto-efficiency as the optimality

criterion for a multi-objective optimisation approach,

one has to ensure that the calculated pareto-front is as

complete and as close to the real pareto-front as

possible. As population and archive cannot be of

infinite size, a multi-objective evolutionary algorithm

will eventually eliminate solutions, even though they

might be non-dominated, known as deterioration of

the pareto-front (Hanne 1999). Preventing the pareto-

front from deteriorating requires active diversity

management (Purshouse and Fleming 2007). Borg

employs a modified version of e-dominance (Hanne

1999; Laumanns et al. 2002) to ensure solution

diversity.

The N-dimensional objective space is discretised

by dividing it into hyper-rectangles (Coxeter 1973)

with side lengths e[ 0 (Fig. 2). Using the notation
x
e

� �

¼ x1
e

� �

; x2
e

� �

; . . .; xN

e

� �� �

( �b c denotes the floor

function) for a e-box index vector for an N-objective

problem, dominance [Eq. (1)] is redefined as discrete

e-box dominance. An objective vector

x� ¼ ðx�1; x�2; . . .; x�NÞ is defined to e-box dominate a

vector x ¼ ðx1; x2; . . .; xNÞ if and only if one of the

following equivalent conditions holds:

x�

e

	 


�p

x

e

j k

; or ð3aÞ

x�

e

	 


¼ x

e

j k

^ x� � e
x�

e

	 

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

\ x� e
x

e

j k
�

�

�

�

�

�

�

�

�

�

�

�
; ð3bÞ

which is denoted by x� �e x (after Hadka and Reed

2013). The algorithm also allows for individual

Figure 1
Flowchart of the algorithm’s functionality. A starting population is initiated with random parameters and objective values are calculated. After

the domination status for each solution is determined, new population members are created via recombination based on the current population.

The new population is then evaluated and the loop is repeated until a termination criterion is reached. After search termination, the results are

analysed statistically
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ei [ 0 8i; i ¼ f1; . . .;Ng to be assigned for each

objective.

Only one solution per e box is added to the

archive. If a new solution is found that e box

dominates another solution in the same e box, the

former solution will be replaced with the new one.

The e-box criterion is also used to monitor search

progress. The so-called e progress is achieved if a

new-found solution not only e dominates at least on

existing archive entry, but is also located in a

previously unoccupied e box. e progress is checked

sporadically and search restarts will be triggered if

search stagnation is detected. If a restart is triggered,

the size of the main population is adjusted in relation

with the current archive size, according to a prede-

termined population-to-archive ratio and the

population is purged and refilled with new solutions.

These new solutions are generally made up of

(mutated) archive entries, or new randomly initialised

solutions. Maintaining a constant population-to-

archive ratio can assist in the avoidance of local

minima (Tang et al. 2006). This constant ratio also

means that the e values limit the archive and

population sizes and the e values can be chosen to

control these.

We have adapted the Borg algorithm to jointly

invert multiple geophysical data sets, such as elec-

tromagnetic resistivity well-logs, and seismic. Each

data set is treated as a separate objective represented

by its own objective function (see Eq. 2). We have

added modules for the statistical evaluation of the

resulting solution ensembles of the final archive and

intermediate archives, to calculate model statistics

and uncertainties, and to determine data set

compatibilities.

2.3. Solution Ensemble Appraisal

The narch: solutions contained in the final archive

represent the full range of pareto-optimal solutions

found by the algorithm before the termination

criterion was reached. A pareto-set exists whether

or not the data are compatible, but the shape of the

distribution of pareto-set members in conjunction

with the evolution of this distribution during the

optimisation process is dependent on the degree of

compatibility. This final solution ensemble can be

used to analyse the variability of the model param-

eters across all solutions to estimate parameter

uncertainties. An ideal point in objective space is

determined and the solutions close to the ideal point

are evaluated to determine the variability of these

solutions in parameter space, which indicates param-

eter uncertainties (Kozlovskaya et al. 2007). The

solution with the smallest Euclidean distance to the

ideal point is taken as the optimal solution found by

the algorithm. This point is chosen as the ideal point

under the assumption that with correctly estimated

data errors, the normalised misfit will reach a value of

dj
i ¼ 1 for the optimal solution.

In our tests, we will consider the hypothetical

solution with a misfit of d ¼ 1 in all objectives as the

ideal solution or ideal point for our tests, with

d ¼ ðd1; d2; . . .; dNÞT

1 ¼ ð1; 1; . . .; 1ÞT:

Achieving a misfit of unity is reliant on correct error

estimation, and the ideal point will need to be chan-

ged if there is reason to believe that error estimates

are systematically higher or lower than the given

Figure 2
Illustration of e dominance and e progress for a hypothetical two

objective case. Filled circles mark existing archive members, open

circles mark solutions that are newly added to the archive, and grey

e boxes mark the area dominated by the existing archive members.

Solutions (a) and (c) will replace existing archive members,

solutions (b) and (c) also satisfy the conditions for e progress, and
the e boxes marked with a chequerboard pattern are newly

dominated. Modified from Hadka and Reed (2013)
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values. Individual misfits are normalised relative to

their ideal point, such that

dj
i;norm: ¼

dj
i

dj
� � : ð4Þ

Weighted means x and the corresponding variances

r2x are calculated for all parameters fxkgk¼1...narch:
:

x ¼
Pnarch:

k¼1 wk � xk
Pnarch:

k¼1 wk

; ð5aÞ

r2x ¼
Pnarch:

k¼1 wk � ðxk � xÞ2
� 

�
Pnarch:

k¼1 wk

Pnarch:
k¼1 wk

� �2�
Pnarch:

k¼1 w2
k

: ð5bÞ

The weights fwkg are chosen as the distance of a

given solution k to the ideal solution in objective

space:

wk ¼ jjðdk � 1Þjj2; ð6Þ

to ensure that solutions closest to the ideal point have

the largest influence on the result. The regularisation

objective is not included in the computation of the

weights, as it is not calculated as a misfit-function.

The solution’s distance from the ideal point is also

used to assess the convergence of the population

during an inversion by calculating the median of the

distances of all analysed solutions.

2.4. Data Set Compatibility

The concept of data-set compatibility is closely

related to the concept of conflicting objectives and

tries to quantify the degree of conflict. Pareto-front

objective trade-off surfaces can be used to analyse

compatibility of the different conflicting objectives.

Identical data sets are considered maximally

compatible. Hence, for any solution, the misfits

fdkgk¼1...narch:
for perfectly compatible data sets would

be identical across all N objectives and would be

distributed in objective misfit space along

dk;1 ¼ dk;2 ¼ � � � ¼ dk;N8k. Therefore, in two-objec-

tive misfit space, the ideal fit is equivalent to a line

with slope mideal ¼ 1.

To assess the pairwise compatibility of any two

objectives, we calculate a linear fit for the solutions in

the 2-D plane of objective misfit space of the

objectives in question. The deviation of this fit from

the ideal line with slope 1 gives information about the

degree of compatibility between the two data sets.

This scheme is illustrated in Fig. 3.

The standard linear least squares regression

(Lawson and Hanson 1974) is a non-robust measure

(McKean 2004). We choose the robust Theil–Sen

estimator (Theil 1950; Sen 1968) as a regression

method to avoid bias from outliers without needing to

analyse the data set for outliers and remove them.

This estimator for a set of Q 2-D points fðxi; yiÞji ¼
1. . .Qg is calculated as the median ~m of the slopes

fmi;jji; j ¼ 1. . .Qg calculated between every possible

two point combination:

mi;j ¼
yj � yi

xj � xi

8 i 6¼ j; i[ j; ~m ¼ medianfmi;jg:

ð7Þ

The opening angle c between the ideal line and the

fitted line is assessed to make the analysis indepen-

dent of objective misfit scale choice, and we assess

tan c ¼ ~m � mideal

1þ ~m � mideal

�

�

�

�

�

�

�

�

¼ ~m � 1

1þ ~m

�

�

�

�

�

�

�

�

: ð8Þ

Representing the ideal line and fitted line graphically,

and using identically scaled axes, perfect compati-

bility results in a deviation angle from the ideal line

of c ¼ 0�, and maximum incompatibility results in a

deviation angle of c ¼ 90�. Deviation angles of

c\45� indicate data compatibility, whereas deviation

Figure 3
Conceptual misfit visualisation of two objectives for a hypothetical

archive of two compatible data sets. The archive members of the

pareto-optimal set are scattered around the ideal line with slope 1.

The optimal solution is defined as the archive member with the

smallest norm deviation from the point 1 in the space of normalised

misfits
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angles of c[ 45� indicate incompatibility. Figure 4

demonstrates the conceptual differences between the

misfits of solutions for compatible and incompatible

data sets, respectively.

For real-world data sets, perfect compatibility can

never be achieved due to a variety of reasons, which

will have different manifestations in the way the

pareto-fronts deviate from the ideal line: different

methods can have different sensitivities and resolu-

tion, different depth of investigation, or data sets

might have different levels of data error. Different

sensitivities or different depth of investigation can

cause data sets to neither be fully compatible nor

incompatible, but rather partially compatible or

disconnected. The pareto-front surfaces for discon-

nected or partially compatible data sets will have

different characteristics than fronts of truly incom-

patible data sets.

3. Synthetic Tests

We demonstrate the functionality of our approach

using sets of synthetic data. We use simulated 1-D

magnetotellurics (MT) data sets and resistivity well-

logs, which will be inverted for isotropic resistivity

and layer thickness.

Using 1-D MT data, we ensure complete con-

trollability of the compatibility of the data sets,

while still being able to simulate a variety of dif-

ferent compatibility situations, such as partially

compatible data sets with different depths of sensi-

tivity (penetration depth is proportional to the root

of signal period). The choice of 1-D data sets also

enables easy implementation and greatly reduces the

runtime of the algorithm, allowing for intensive

testing.

The misfit for the mth frequency is calculated as

dFm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dm � FðmÞm
rdm

� �2
s

: ð9Þ

To assess partial compatibility, we analyse the misfits

for each individual recording frequency, in addition

to the standard misfits, calculated from the sum of all

individual misfits.

There are a variety of different regularisation

functionals with different characteristics (Pek and

Santos 2006, p. 144) of which we use the discretised

version (discretisation h) of the total variation func-

tional (Rudin et al. 1992)

X

nlayers

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmi �mi�1Þ2þb2
q

�!
h!0

Z 1

0

jrmðzÞjdz; ð10Þ

with a small regularisation constant b[ 0 for

numerical stabilisation. We chose the total variation

as it can conserve sharp contrast in the model. This is

advantageous, as sharp contrasts are often required in

layered models.

We created two different synthetic resistivity

models (Fig. 5). Model I is the reference model with a

low resistivity anomaly between 500 and 600 m and

Model II has been designed to generate data incom-

patible to the first set. Model II has higher

resisitivities than Model I in the top 1290 m of the

model and lower resisitivities below that depth.

3.1. Data Set Properties

For each of the models, two MT data sets with

different frequency ranges are created using Wait’s

Figure 4
Conceptual misfit visualisations for two hypothetical pairs of data

sets: one pair of compatible data sets (blue) and one pair of

incompatible data sets (orange). The slopes of the Theil–Sen

regressions through both archives are indicated by the labelled

‘compatible’ and ‘incompatible’ regions
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recursion formula (Wait 1954). This allows us to

assess how the compatibility measures behave for

data with different depths of sensitivity. The MT data

sets have 17 frequencies each, with a frequency range

of 6–1448 Hz [broadband (BB) data set], and

128–32768 Hz, respectively [audio-magnetotelluric

(AMT) data set]. Eight data points of each of the two

different types of MT data lie within the overlapping

frequency range of 128–1448 Hz. Everything deeper

than the penetration depth corresponding to a 128 Hz

signal can, therefore, only be detected by the

simulated BB MT measurements. In addition, a

resistivity well-log was built for each model, ranging

from a depth of 150–1000 m, with a 0.25 m sample

interval.

Gaussian noise with a standard deviation equiv-

alent to 3% of the impedance tensor amplitude is

added to both the MT data types. Accordingly, error

estimates equal to 3% of the impedance tensor

amplitudes are assigned. Gaussian noise of 5% is

added to the well-log data and error estimates equal

to 5% of the parameter values are assigned.

All tests were run for 250,000 solution evalua-

tions each. For the data set compatibility analysis,

intermediate solution archives are extracted after

1000, 10,000, and 100,000 solution evaluations in

addition to the final archive. As all non-dominated

solutions are retained during the processing, the same

solutions can be contained in multiple iterations of

the archive. Hence, whenever solutions from multiple

archives are analysed together, only unique solutions

are considered to avoid skewing the statistical

analysis.

3.2. Resulting Model Distribution

During the model building, the layer thicknesses

are variable, but the number of layers nlayers is held

constant across all models. The resulting ensemble of

models is evaluated with regard to the geometry and

the resistivity of the layers. To account for the

inherently different data sensitivities and resolutions

of different geophysical data, as well as to increase

comparability between the different archive solutions,

the depth interval between the surface and the deepest

overall estimate for the bottom of the last layer is

evenly divided into small discrete model segments of

constant thickness. A layer-interface can occur at the

top of each individual segment. For each solution, the

parameter values at a certain depth are mapped to the

corresponding segments for each solution, transfer-

ring all solutions into a unified segment space. For

example, for MT data, the sensitivity decreases with

depth dependent on the frequency range. By keeping

the segment thickness constant, it is guaranteed that

no information is lost when jointly working with data

sets from different methods, which have varying

sensitivities and resolution.

The segment resistivities are analysed by calcu-

lating weighted averages across all extracted

solutions.

The layer geometry is evaluated by computing the

probability for an interface to be located in a specific

segment. This is calculated by using the number of

archive solutions that have an interface in a given

segment ci and the total number of final archive

solutions narch::

pinterface
i ¼ ci

narch:
; i 2 f1; 2; . . .; nseg:g ð11aÞ

)
X

nseg:

i

pinterface
i ¼ nlayers: ð11bÞ

If all solutions have an interface in the same seg-

ment, the interface probability at that segment will be

1. Including the top interface of the first layer, which

Figure 5
Synthetic 9-layer model Model I (blue) and the synthetic 7-layer

model Model II (red)
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is assigned a probability of 1, the sum of all interface

probabilities over all segments equals the number of

model layers.

In addition to the standard misfit for all data

points as defined in Eq. 2, for the MT data sets, we

calculate the cumulative misfit over the eight over-

lapping frequencies 128–1448 Hz (Eq. 9), to allow

for a detailed comparison of the regions of equal

sensitivity for the different MT data types:

dCMOF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

8

X

8

m¼0

dFm
2

v

u

u

t : ð12Þ

4. Modelling

To demonstrate the feasibility of the approach, we

analyse the example data sets successively and in

detail to illustrate the influences of the various

parameters. First, we demonstrate the overall func-

tionality and present the algorithm’s outputs using

compatible data sets. Then, we characterise incom-

patible data sets, and extend the concepts from two to

multiple objectives. Finally, we discuss the negative

influence of ill posed problems and the lack of ade-

quate regularisation.

4.1. Two Objectives—Compatible Data Sets

We will first evaluate a simple case with two

compatible objectives to introduce the concepts of the

method. The objectives are built from AMT and BB

MT data sets, combined with regularisation. This

compatible data example uses the MT data sets that

both have been calculated from Model I.

Figure 6 shows the best solution and the average

result for the compatible case calculated from the

final solution archive. The optimal solution achieved

misfits of dAMTI ¼ 1:3 and dBBI ¼ 1:5 and was at a

distance of 0.5 from the ideal point. The average

model exhibits an average standard deviation of 21%

relative to the segment values. There is an overesti-

mation of the resistivity in the low resistivity zone,

which reaches values of 30Xm for the best solution

and 43Xm for the average model, as opposed to the

10Xm of the true model. There is also an

underestimation of the resistivities at greater depths,

with the best solution showing a closer fit than the

average solution. The locations of layer interfaces are

well determined at low depths, but are subject to

higher uncertainty at larger depths. The depth interval

of 700–800 m is jointly constrained by the two data

sets, resulting in well constrained layer boundaries.

Below this depth, the model is only constrained layer

boundaries. Below this depth, the model is only

sensitive to the broadband data, which relies on lower

frequencies and, therefore, has a lower resolution,

making it incapable of determining well constrained

interfaces.

The CMOF are shown in Fig. 7a. The solutions

are distributed along the ideal line. The linear fit

deviates from the ideal line by 3�.

Figure 7b displays the locations in objective space

of all the solutions extracted from the archives. The

different depths of investigation of the two data set

cause the solutions to be distributed in a cone shape,

Figure 6
Model results from the two-objective case with 3% noise. The red

line shows the true synthetic model and the green line represents

the weighted average model based on the 1142 solutions of the final

archive, including the model uncertainties in grey. This are

calculated using Eqs. (5a) and (5b). The optimal solution is

presented in blue. It achieved misfits of dAMTI ¼ 1:3 and dBBI ¼
1:5 and was at a distance of 0.5 from the ideal point. The average

model exhibits an average standard deviation of 21% relative to the

segment values. The interface probabilities are presented in black

calculated from the final archive solutions
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shifted towards higher BB misfits. The main cluster

extends over a misfit of about 1.3–2.4 in the direction

of the AMT misfit and from about 1.5–6.8 in

direction of the BB misfit, with the optimal solution

found with misfits of dAMTI ¼ 1:3 and dBBI ¼ 1:5, at

a distance of 1.9 from the ideal point. The deviation

from the ideal line of the linear fit is 23� (Table 1).

It should be noted that in Fig. 7b, a combination of

archive members after 1000, 10,000, 100,000, and

250,000 evaluations is plotted. Although each indi-

vidual archive does not contain dominated solutions,

earlier archive solutions are likely dominated by

members of later archives. The dominated solutions of

earlier archives are included to capture the evolution

of the solution distribution, which is a major indicator

of the objective compatibility. Therefore, all results

are included during the compatibility analysis; how-

ever, in the final consideration of a representative

model, dominated solutions should be discarded.

4.2. Two Objectives—Incompatible Data Sets

We have established how resulting model distri-

butions behave for compatible data. Now, we explore

the results of the algorithm for incompatible data. The

AMT data set is built from Model I and the BB data

set is calculated using Model II to simulate data

incompatibility.

The resulting pareto-fronts are shown in Fig. 8a.

The CMOF are distributed along a line with a

deviation of 65� from the ideal line and a median

distance from the ideal point of 20.64 (Table 2),

which contrasts the analysis of compatible data. The

main cluster of solutions covers AMT misfits of

4–350 and BB misfits of 5–170. These differences in

misfit ranges are caused by the fact that the models

for Model I and Model II exhibit greater similarity at

depth than close to the surface. Hence, the misfits of

the lower frequency BB data set are smaller.

Figure 7
Archive solutions for AMT objective and the BB-objective in the compatible two-objective case with 3% noise. The 2440 unique solutions

combined from the archives after 1000, 10,000, 100,000, and 250,000 solutions evaluations are displayed, as well as the corresponding Theil–

Sen regression, the ideal line, and the ideal point. a Cumulative objective mists over the overlapping frequencies. b Objective mists over all

frequencies

Table 1

Analysis of the deviation from the ideal line and median distance

from the ideal point (1,1) for the compatible two-objective case

(with 3% noise). The analysis is performed for archives at different

stages of the inversion run, as well as for all extracted archive

members combined and the CMOF of the combined archive

members

Solution

evaluations

Deviation from

ideal line

Median distance from

ideal point

1000 27� 5.6

10,000 9� 2.3

100,000 26� 1.9

250,000 23� 1.9

Combined 23� –

CMOF 3� 0.8
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The same pattern can be observed for the full

frequency range misfits (Fig. 8b). Compared to the

CMOF the line shows a higher degree of scatter, a

slight curvature, and exhibits a deviation from the

ideal line of 71�. This curvature is caused by the

different frequency ranges of the two data sets.

The distances from the ideal solution and the large

deviation from the ideal line illustrate that the

algorithm is able to find solutions with low misfits

for each of the objectives individually, but it is

impossible to find a solution that reaches accept-

able misfits for both objectives at the same time.

4.3. Multiple Objectives

We perform two test runs with three objectives to

investigate the behaviour of the compatibility mea-

sures for compatible and incompatible cases with

more objectives. Both tests use the AMT and the BB

data set based on Model I. The test simulating

compatible data sets uses the synthetic resistivity

well-log based on Model I and the test for incom-

patible data uses the Model II resistivity well-log.

Both well-logs cover depths of 150–1000 m.

Figure 9 shows the best and average results for the

compatible three-objective case. The added informa-

tion from the well-log helps to better define the

position and resistivity of the low resistivity anomaly

compared to the two-objective case (Fig. 6). The

anomaly is identified at the true location and has a

resistivity of 11:8Xm for the best found solution and

24:5Xm for the average solution. The benefit of the

constraints added by the well-log is also reflected in

the smaller error bars of the average solution, as

compared to the two-objective case, with the average

model exhibiting an average standard deviation of

18% relative to the segment values.

As there are three objectives competing in this

test, the compatibility analysis is performed pairwise

for each of the three possible two-objective combi-

nations. In the case of compatible data sets, the linear

Figure 8
Archive members for AMT objective and the BB objective in the incompatible two-objective case with 3% noise. As there is no compatibility

between the objectives, there is no pareto front in this case. The 22,148 unique solutions combined from the archives after 1000, 10,000,

100,000, and 250,000 solution evaluations are displayed, as well as the corresponding Theil–Sen regression, the ideal line, and the ideal point.

a Cumulative objective misfits over the over lapping frequencies. b Objective mists over all frequencies

Table 2

Analysis of the deviation from the ideal line and median distance

from the ideal point (1,1) for the incompatible data two-objective

case with 3% Gaussian noise on the data. The analysis is

performed for archives at different stages of the inversion run, as

well as for all extracted archive members combined and the CMOF

of the combined archive members

Solution

evaluations

Deviation from

ideal line

Median distance from

ideal point

1000 69� 20.1

10,000 70� 17.8

100,000 71� 16.7

250,000 71� 16.4

Combined 71� –

CMOF 65� 20.64
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fits for extracted solutions exhibit deviations from the

ideal line of ccomp;AMT�BB ¼ 5�, ccomp;AMT�WELL ¼ 6�

and ccomp;BB�WELL ¼ 15�, indicating good compati-

bility between all objectives (Table 3). The optimal

found solution has objective values of dAMTI ¼ 1:3,

dBBI ¼ 1:7 and dWELLI ¼ 1:4, and is at a distance of

0.8 from the ideal point. The median distance from

the ideal point achieved by the solutions from the

final archive is 4.85.

Good objective compatibility is also indicated for

the twoMT objectives in the case of incompatible data,

with the linear fit for all solutions deviating by

cincomp;AMT�BB ¼ 3�. The two objective combinations

featuring thewell-log data on the other hand show clear

signs of incompatibility. The linear fit of the solutions

projected onto the objective space plane of the AMT

misfit and the well-log misfit exhibits a deviation of

cincomp;AMT�WELL ¼ 83� from the ideal line, and for the

combination of BB MT data set and well-log the

deviation is cincomp;BB�WELL ¼ 57� (Table 3). This

smaller deviation for the BB-WELL projection com-

pared to theAMT-WELL combination is caused by the

larger penetration depth of the BB data that exceeds the

depth range constrained by the well-log, whereas most

of the depth range that the AMT data are sensitive to is

constrained by the well-log. The median distance from

the ideal point is 9.1, and as such significantly larger

than for the compatible data.

The clear separation into compatible and incompat-

ible data apparent from the analysis of the deviations of

the linear fits from the ideal line is less obvious from a

visual inspection of the solution distributions (Fig. 10).

Theobjective combinations including thewell-log show

similar distributions for the compatible and the incom-

patible case. In each case, the main solution clusters

have a width of about 10 in direction of the well-log

objectives and a width of 40–90 in direction of the MT

objectives. This asymmetry is caused by the fact that the

well-log only constrains part of the model, so that

models fitting the well-log can still vary significantly in

the misfit of the MT data sets.

5. Discussion

The evaluation of jointly inverted or jointly

interpreted geophysical data is complicated, and it is

vital to assess if information from different data sets

can be jointly analysed in the first place. We have

demonstrated that the output of the algorithm can be

interpreted as a measure for the mutual compatibility

of multiple data sets.

Figure 9
Model results from the multi-objective case. The red line shows the

true synthetic model and the green line represents the weighted

average model based on the 6771 solutions of the final archive,

including the model uncertainties in grey. The optimal solution is

presented in blue. It achieved misfits of dAMTI ¼ 1:3, dBBI ¼ 1:7,

and dWELLI ¼ 1:4 and was at a distance of 0.8 from the ideal point.

The average model exhibits an average standard deviation of 18%

relative to the segment values. The interface probabilities are

presented in black calculated from the final archive solutions

Table 3

Analysis of the deviation from the ideal line and median distance

from the ideal point (1,1,1) for the multi-objective case inversion

runs. The analysis is performed for archives at different stages of

the inversion run, as well as for all extracted archive members

combined and the CMOF of the combined archive members. The

three datasets are audiomagnetotelluric (A), broadband magne-

totelluric (BB), and well-log (W)

Solution

evals.

Deviation from ideal line Median distance

from ideal point

Compatible data Incompatible

data

Comp. Incomp.

A-

BB

A-

W

BB-

W

A-

BB

A-

W

BB-

W

1000 28� 58� 64� 4� 49� 50� 11.6 11.1

10,000 1� 32� 23� 20� 56� 53� 5.3 12.6

100,00 2� 1� 15� 2� 86� 56� 5.0 9.8

250,000 9� 13� 13� 6� 80� 59� 4.9 9.1

Combined 5� 6� 15� 3� 83� 57� – –
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Using a linear regression allows us to make direct

meaningful analysis of the geometry of the solution

space. The chosen tool, Theil–Sen regression, is also

very robust with respect to outliers. The slope of the

Theil–Sen regression to the projection of the solution

distribution into 2-D objective space is a good indi-

cator for objective compatibility. Incompatible

objectives generally show deviations of c[ 45� and

compatible objectives exhibit deviations of c\45�.

The results for the deviation angles are consistent

across individual archives, but cases can occur were

the deviation angle results based on different inter-

mediate archives vary significantly. Analysing only

individual archives could, therefore, lead to false

conclusions about the level of objective compatibil-

ity. Archives from the early stage of an inversion in

particular often contain only a small number of

solutions, yielding misleading results. Hence, a

maximal number of solutions should be extracted

during inversion runs to be analysed together.

The necessity for a statistical analysis of the solu-

tion distributions is illustrated by the multi-objective

tests. This case demonstrates that visual inspection can

be deceiving and Theil–Sen analysis is required.

Inspecting the solution distributions of the MT–well-

log projections, the distributions look very similar for

the compatible and the incompatible case, but the

Theil–Sen analysis detects major differences in the

distributions and correctly indicates the compatibility

in both cases. The close clustering of a large number of

solutions can especially lead to false interpretations, as

distribution patterns may be obscured.

The deviation angles show values just above the

compatibility threshold, whereas the distances from

the ideal point are very low and indicate that accept-

able misfits are reached for both objectives. Only the

analysis of the misfits for the coinciding frequencies

yields a deviation angle below the threshold, with

c ¼ 25�. These are the kind of solution distributions

that also have been found to represent compatible

objectives byMoorkamp et al. (2007). In cases like this

a thorough visual and numerical analysis of the solu-

tion distributions has to be performed. This has to be

done carefully, as close clustering of many solutions

can give false impressions. In the test situation, the

linear fit is dominated by solutions that extend along

the dBBI-direction. This is caused by the BB MT data

sets fully constraining theAMTdata set, as the BB data

have a higher penetration depth, which is expressed in

the solution distribution being shifted towards higher

BB data misfits. These types of shifted distribution can

also be observed inMoorkamp et al. (2010), especially

for the combination of Rayleigh wave dispersion data

and MT data.

Figure 10
Pareto-fronts for pairwise AMT-BB objectives (blue triangles), AMT-WELL objectives (red squares), and BB-WELL objectives (green

diamonds) with the corresponding Theil–Sen regressions in the same colour for the multi-objective case for both the a compatible and

b incompatible cases. The ideal point is represented by a magenta star and the broken black line represents the ideal line. For both cases, the

objective misfits are shown over all frequencies. The calculated pareto-front is actually 3D, but here, we visualise the 2D components. Inset in

both cases are zoomed out versions of the graph showing the overall structure of the regressions
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For the assessment of the balance of mutual data

constraint, it is important that the misfits of the

objectives are of comparable magnitude. The nor-

malisation of the data misfits by the data error

(Eq. (2)) ensures that the misfits become comparable

to some extend and also guarantees that fits below the

error level are expressed in misfits of d\1 regardless

of the type of data. Nevertheless, different data types

and/or varying error levels can influence the devia-

tion measure and may bias the assessment of the

mutual constraint balance.

In addition to assessing the compatibility of inverted

data sets, the generated solution ensembles can be used

to estimate average models and model errors. However,

in our case, these are of qualitative rather than objective

nature, as it is not statistically possible to extract robust

estimates of model covariance from a single solution

ensemble generated by a genetic algorithm. The trade-

off for fast convergence of genetic algorithms compared

toMonte Carlo methods is that the final ensemble is not

generated completely independently, but often depends

on good models from the early iterations. Robust sta-

tistical model averages and model errors can be

determinedbyperforming several inversion runs (Stoffa

and Sen 1991) or resampling the final solution ensemble

(Sambridge 1999b).

The inversion runs for this study had run times of

1–20 min for 100,000–250,000 solution evaluations.

General run-time analysis for multi-objective evolu-

tionary algorithms has been performed (Laumanns

et al. 2004), but precise run-time predictions are

difficult as they are highly problem dependent. The

run times are dependent on the number of objectives

and the degree of compatibility between the objec-

tives, as compatible objectives make it easier to find

well fitting solutions and, therefore, show accelerated

convergence. The adaptive nature of the Borg algo-

rithm makes run-time predictions especially difficult,

as the variable population and archive sizes and the

search restarts performed to mitigate search stagna-

tion can not be projected.

6. Conclusions

Multiple approaches to joint inversion modelling

of geophysical data exist, but the application of

evolutionary algorithms is not common in this field.

The ability to jointly invert a number of data sets

without the need for data weighting, while providing

model uncertainty and data set compatibility infor-

mation makes multi-objective approaches

advantageous over conventional linearised schemes.

We have developed and implemented a pareto-

optimal multi-objective inversion algorithm for the

analysis of geophysical data, the advantages of which

are as follows. The use of an evolutionary algorithm

allows the evaluation of a distribution of solution

models. This distribution can be analysed with regard

to the physical implications of the model parameters

and with respect to the quality of the data. Potential

contained ambiguities and resolution restrictions of

the data can be expressed in terms of data set com-

patibility. We have presented a scheme to effectively

assess this compatibility. This analysis can be applied

independent of the actual modelling part, and it can

be combined with other (multi-objective) inversion

and modelling software to independently assess data

set quality. This can improve the overall data and

model interpretation, and it, therefore, is a valuable

addition to the general toolbox for geophysical data

inversion modelling.

We have demonstrated the capabilities of this

algorithm by applying it to synthetic data. By defin-

ing different objective functions, the application of

the algorithm to other data sets, both synthetic and

real, is a straight forward process and does not require

major alterations of the code.

Acknowledgements

We thank the developers of the Borg Algorithm,

David Hadka and Patrick Reed from the Pennsylvania

State University, for making their algorithm available

to us (http://borgmoea.org). The work has been sup-

ported by the Deep Exploration Technologies

Cooperative Research Centre whose activities are

funded by the Australian Government’s Cooperative

Research Centre Programme. We would especially

like to thank Rodrigo Bijani for their extensive help

refining this work through the review process. This is

DET CRC Document (2016/857).

2234 S. Schnaidt et al. Pure Appl. Geophys.

http://borgmoea.org


REFERENCES

Abubakar, A., Li, M., Pan, G., Liu, J., & Habashy, T. M. (2011).

Joint MT and CSEM data inversion using a multiplicative cost

function approach. Geophysics, 76(3), F203–F214. https://doi.

org/10.1190/1.3560898.

Akca, I., Günther, T., Müller-Petke, M., Başokur, A. T., & Yara-
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