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Abstract—Reliable analysis of low-energy earthquakes (mi-

croseismic) depends on how accurately one can detect and pick the

arrival times, which are strongly influenced by the noise content.

The study of microseismic events becomes even more challenging

when the sensors are located on the surface because of the poor

signal-to-noise ratio (SNR). Consequently, efficient and robust

techniques for denoising microseismic data are necessary. In this

study, we propose a method based on an infinite impulse response

(IIR) Wiener filter. The proposed method uses statistics based on

signal observations (noisy data) and the underlying noise, both

recorded by various sensors. The method presented here precludes

the need for statistics or prior knowledge of the signal of interest.

The second-order statistics of the noise and the noisy data are

extracted from the recorded data only. As an advantage, in deriving

the filter’s impulse response, no underlying structure of noise is

assumed. Therefore, our method works for various types of noise,

e.g., uncorrelated, spatially correlated, temporally correlated,

Gaussian and non-Gaussian noise. Hence, the proposed method can

be suitable as well for microseismic data recorded in diverse

seismic noise environments. The criteria used to optimize the filter

impulse response is the minimization of the mean square error. The

proposed method is tested on synthetic and field data sets and found

to be effective in denoising microseismic data with very low SNR

(�12 dB).

Key words: Microseismic/microearthquake data, IIR filter,

Wiener filter, signal-to-noise ratio, autocorrelation.

1. Introduction

A microseismic event is considered to be a small

magnitude earthquake, having a magnitude as low as

�3 (Maxwell et al. 2008). It can occur as a natural

phenomenon or as a result of human activities within

the earth. Analysis of artificially induced microseis-

mic events is essential for oil and gas reservoir

geophysics (e.g., Kendall et al. 2011) and in geologic

carbon dioxide storage (e.g., Verdon 2011). Both

these examples of applications of microseismic

monitoring are related to conventional reservoirs.

However, microseismic analysis is used extensively

in unconventional reservoirs as well for imaging the

fracture networks. Moreover, microseismic monitor-

ing has been common in the mining industry for over

100 years where it is primarily used for safety from

rockbursts and assessing the state of stress within a

mine (Mendecki 1993; Castellanos and van der Baan

2013) in the study of water reservoir-induced seis-

micity for at least 5 decades (Simpson et al. 1988)

and in the geothermal industry (Pearson 1981), but its

application in the oil and gas industry is relatively

new. High-pressure fluid is typically injected to

fracture the rock and increase permeability, thus

enhancing production. During such a process,

microfractures can be induced in the vicinity of the

injection well. Monitoring and analyzing these

microfractures help understand the rock-breaking

mechanisms during the injection process and reser-

voir exploitation (e.g., Maxwell 2011). To locate the

microseismic hypocenters, the accurate identification

of microseismic events is crucial.

To monitor these microseismic events, typically

8–12 three-component sensors are placed in nearby

wells or on the earth’s surface (Eaton et al. 2014;

Caffagni et al. 2016). Since it is more cost effective

to place geophones on the surface than burying them

deeply in a borehole, several hundred sensors can be

used in surface arrays (Duncan 2012). Moreover,

surface arrays offer other advantages as well. For

example, it is known that the accuracy and precision

of the hypocenter locations in microseismic moni-

toring depend on both the signal-to-noise ratio (SNR)

of the recorded data and the spatial distribution of the

receivers. Usually, downhole monitoring provides

better detection because of a higher SNR; however,
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the precise location of events might be difficult,

especially in the case of a single monitoring well

(Eisner et al. 2010). Unlike the accurate depth esti-

mation, epicentral errors for microseismic event

locations using downhole arrays increase as a func-

tion of distance from the monitoring well. On the

other hand, although surface monitoring often suffers

from low SNR, the ability to place receivers in

multiple azimuths and offsets allows for precise

epicenter (horizontal) event location (Mousavi et al.

2016a). The surface microseismic data are charac-

terized by a low SNR (Shemeta and Anderson 2010);

consequently, the main challenge in the study of

microseismic events is to enhance the SNR by sup-

pressing/removing the noise.

Generally, several denoising or SNR enhance-

ment methods exist in the literature. Seismic

interferometry is a well-known technique to enhance

the SNR of the seismic data record, which includes

cross-correlation, stacking and convolution (Al-shu-

hail et al. 2012; Mallinson et al. 2011; Bharadwaj

et al. 2013). A different approach that allows the

reconstruction of signals from noisy observations is

based on time-frequency analysis (Mousavi and

Langston 2016a; Vera Rodriguez et al. 2012; Mou-

savi et al. 2016b). This filtering method encodes the

noisy signal as the instantaneous frequency of a fre-

quency modulated analytic signal. The signal is

recovered by estimating the peak of the time-fre-

quency distribution of the analytic signal. This

approach is sensitive to the noise interferences that

detract the energy concentration in time-frequency

distribution. Furthermore, the wavelet transform is

used to decompose the noisy signal into time-fre-

quency components using the appropriate mother

wavelet. Here, a threshold is necessary to obtain the

enhanced signal. Proper selection of the mother

wavelet and the number of decomposition levels are

crucial for these methods. A reassignment strategy,

together with pre- and post-processing steps, is added

in the time-frequency based method for improving

the denoising results (Mousavi and Langston 2017).

A data-driven approach that derives the basis function

from the noisy signal is known as empirical mode

decomposition (Han and van der Baan 2015). How-

ever, for this decomposition, the basis function might

not be accurate because of the strong noise that

affects the denoising results in a low SNR environ-

ment. There are other denoising methods that are

based on thresholding in time-frequency transforms,

e.g., the Radon transform (Sabbione et al.

2013, 2015), reduced-rank filtering (Sabbione and

Velis 2013; Iqbal et al. 2016) and damped multi-

channel singular spectrum analysis (Huang et al.

2016).

Denoising using a Wiener filter approach is also a

commonly usedmethod in active seismic surveying and

has been used for more than 4 decades (e.g., Peacock

and Treitel 1969; Haldorsen et al. 1994). However, the

Wiener filter method requires the knowledge of the

statistics of the signal, which is not normally available

in practice. A solution to this difficulty is to use the

wavelet transform to partially differentiate the signal

from the noise in an initial stage, and then the Wiener

filter is applied after calculating the signal statistics

(Aghayan et al. 2016; Kimiaefar et al. 2016). In these

methods, wavelets are used to extract the high and low

frequency components. The high frequency compo-

nents are assumed to be noise. Of course a threshold and

a basis function (mother wavelet) are needed for this

purpose. Proper selection of the mother wavelet is

crucial in wavelet transform, and denoising results are

greatly affected by the type of wavelet. Improving the

SNR of speech signals using the Wiener filter without

knowing the signal statistics was proposed by Chen

et al. (2006), who calculated the noise statistics using

the silence intervals in speech that represent pure noise

(including electronically produced noise). Similar

approaches are also used in seismology by intuitively

finding the noise-only part in data prior to an earthquake

or controlled source occurrence (Wang

et al.2008, 2009; Coughlin et al. 2014; Mousavi and

Langston 2016c; Khadhraoui and Özbek 2013; Baziw

and Weir-Jones 2002). Intuitively finding the noise-

only part in surface microseismic data is very difficult

because of the low SNR. Hence, the main challenge in

microseismic surface monitoring is the realistic esti-

mation of the seismic noise. In this study, the noise is

estimated blindly, i.e., without the wavelet transform

(thus avoiding having to select a propermotherwavelet)

or using the assumption that the noise-only portion of

the data is available and known. Mousavi and Langston

(2016b) proposed minimally controlled recursive

averaging in the short-time Fourier transform domain
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for estimating the noise. Their method was based on the

work of Martin (2001) and Cohen (2003). However,

their approach requires a large adaptation time (which,

unfortunately, gives incorrect locations of events), and

the threshold is also fixed for all the frequencies (see

Rangachari and Loizou 2006). Eventually, an IIR

Wiener filter is used for the first time in a non-similar

approach to that used in the FIR Wiener filter together

with a noise estimation method similar to the one pro-

posed by Rangachari and Loizou (2006).

In this study, a method is proposed based on two

features of the microseismic data. First, the occurrence

of microseismic events is sporadic over time. There-

fore, a suitable monitoring period is necessary; hence,

portions of the recorded traces are occupied by pure

noise. Second, the statistical knowledge (for designing

the Wiener filter) of the microseismic event is

unknown in advance. Considering these two features,

in this study an observation-driven denoising method

based on the IIRWiener filter is proposed. The method

works by estimating the statistics of the noise and the

observation (signal plus noise) from the received data

without any prior knowledge of the signal or the noise

statistics. The filter gives promising results when

applied to synthetic, semi-synthetic and field data sets

at very low SNR of �12 dB, without assuming any

specific type of noise. Thus, this makes it suitable for

denoising surface microseismic data with any type of

noise, e.g., Gaussian, non-Gaussian, correlated,

uncorrelated and coherent noise. Note that this article

presents a contribution to the SNR enhancement using

a data-driven IIR Wiener filter, which, to the best of

our knowledge, has never been proposed before in

microseismic investigation.

In the following section, a derivation of the IIR

Wiener filter is presented. Next, the estimation of the

autocorrelation of the noise and the noisy observa-

tions from the recorded traces, which is needed for

the filter, is discussed. Finally, the proposed method

is validated using synthetic and field data sets.

2. IIR Wiener Filter Design for Microseismic

Denoising

The Wiener filter is used to statistically estimate

the desired signal from the noisy seismic trace,

usually in the case of additive noise. Typically, filters

are designed for a specific frequency response.

However, the Wiener filter adopts a different

approach. It is required to have prior statistical

knowledge of the desired signal and the noise (or the

observation) and the filter is designed so that its

output signal matches with the original desired signal

as much as possible. With the proper design, a

Wiener filter can be used to filter out the noise to get

the underlying signal of interest. In this work, we will

design the Wiener filter without prior statistical

knowledge. To clarify this technique, let A, B and

C be the desired signal, the noisy signal and the

output of the Wiener filter, respectively. Mathemati-

cally, we can write the error er as

er ¼ C � A:

The Wiener filter is designed by minimizing the

mean-square error, i.e.,

min Efe2rg;

where E is the mathematical expectation (Proakis

1985).

In signal processing and mathematics, a discrete-

time signal, which is a sequence of complex or real

numbers, can be converted to a complex frequency

domain representation using the z-transform. This is

equivalent to the Laplace transform in continuous

time. For more details about the Wiener filter and z-

transform, see Proakis and Manolakis (2006), Sayed

(2008) and Haykin (2002). In this section, we present

the IIR Wiener filter, which is designed to estimate

the microseismic signal from the noisy records. The

analysis is carried out using the z-transform. In the

ensuing, the derivation of the filter is reported.

2.1. Filter Derivation

Consider M sensors placed over a monitoring area

for recording microseismic data. Each of these

sensors records a time series of sampled measure-

ments, i.e., a microseismic trace, say yi
k, as

yi
k ¼ si

k þ wi
k; i ¼ 1; 2; . . .;M; ð1Þ

where si
k and wi

k represent the signal and noise sam-

ple, respectively, at time instant t ¼ kT of the ith
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trace (T is the sampling interval). For the derivation,

the time series yi
k, si

k and wi
k are concatenated into

vectors as follows:

yi
k ¼ yi

k; yi
k�1; yi

k�2; . . .
� �T

; ð2Þ

si
k ¼ si

k; si
k�1; si

k�2; . . .
� �T

; ð3Þ

wi
k ¼ wi

k;wi
k�1;wi

k�2; . . .
� �T

: ð4Þ

For our derivations, real numbers are assumed. The

target is to design an IIR filter gi for each trace to

estimate the signal si
k as a linear transformation of the

measurement yi
k. The output of the filter is given as

ŝi
k ¼ giyi

k; ð5Þ

where gi ¼ gi
0; gi

1; gi
2; . . .

� �
. The filter is of an infinite

length duration and so is the data sequence. To esti-

mate the filter coefficients, the mean squared error

(MSE) cost function is minimized according to

Ji
k ¼E ~si

k~s
iT
k

� �
; ð6Þ

where the estimation error is ~si
k ¼ si

k � ŝi
k, andEf:g and

ð:ÞT
represent the mathematical expectation (which

gives the most expected value, i.e., the predictor) and

the transposition operation, respectively. Here, we use

the fact that minimizing the MSE is equivalent to

finding the solution by considering the error to be

orthogonal to each of the data points in the estimation

process. Equation (6) can be solved directly using the

correlation of ~si
k and yi

k (Sayed 2008, p. 36), which is

E ~si
ky

iT
k

� �
¼E si

k � ŝi
k

� �
yiT

k

� �

¼E si
ky

iT
k � giyi

ky
iT
k

� �

¼E yi
ky

iT
k � wi

ky
iT
k � giyi

ky
iT
k

� �

¼E yi
ky

iT
k � wi

ks
iT
k � wi

kw
iT
k � giyi

ky
iT
k

� �

¼ pi
yy;k � pi

ws;k � pi
ww;k � giPi

yy;k;

ð7Þ

where pi
ab;k denotes the correlation between signals

a and b of the ith trace. Assuming that the noise and

the signal are uncorrelated, i.e., pi
ws;k ¼ 0 and there-

fore, (7) looks like:

E ~si
ky

iT
k

� �
¼ pi

yy;k � pi
ww;k � giPi

yy;k: ð8Þ

According to the principle of orthogonality (Haykin

2002), i.e., the estimate ŝi
k, that minimizes the MSE

cost function as in Eq. (6), is the orthogonal projec-

tion of ~si
k into the space spanned by the observations.

This is equivalent to requiring E ~si
ky

iT
k

� �
¼ 0, which

yields

giPi
yy;k ¼ pi

yy;k � pi
ww;k: ð9Þ

Since Eq. (9) holds for an infinite length of filter, it

can not be solved directly using a set of linear

equations nor can it be solved using the z-transform

because the Wiener filter is causal, i.e., gi
k ¼ 0 for

k\0 (Proakis and Manolakis 2006, Chapter 12). To

address this issue, the noisy observation yi
k will be

represented by another equivalent process, yi
k, and

this is done by passing it through a noise-whitening

filter. Mathematically, this reads as

�yi
k ¼ viyi

k ¼ visi
k|{z}

�si
k

þ viwi
k|ffl{zffl}

�wi
k

:
ð10Þ

where vi ¼ vi
0; vi

1; vi
2; . . .

� �
is the impulse response of

the whitening filter. Now ŝi
k can be written as

ŝi
k ¼ qiyi

k; ð11Þ

where qi ¼ qi
0; qi

1; qi
2; . . .

� �
. The IIR Wiener filter can

be seen as a cascade of the whitening filter ViðzÞ and
another filter QiðzÞ in the z-domain, where

ViðzÞ{QiðzÞ} is the z-transform of vi{qi}(Proakis and

Manolakis 2006, pp. 818–822). Application of the

principle of orthogonality, E ~si
ky

iT
k

� �
¼ 0, leads to

qiPi
�y�y;k ¼ pi

y�y;k � pi
w �w;k: ð12Þ

Since yi
k is white, therefore, P

i
�y�y;k is a diagonal matrix

with r2�y as diagonal entries and Eq. (12) becomes

qi ¼ 1

r2�y
pi

y�y;k � pi
w �w;k

� �
: ð13Þ

Now define the z-domain as zþ ¼ ½1; z1; z2; . . .� and
z� ¼ ½1; z�1; z�2; . . .�. Hence, Eq. (13) in the z-do-

main is

QiðzÞ ¼ 1

r2�y
z� pi

y�y;k � pi
w �w;k

� �T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ciþ

�y �w;k
ðzÞ

:
ð14Þ

Ciþ
�y �w;kðzÞ represents the z-transform of the one-sided

autocorrelation sequence pi
y�y;k � pi

w �w;k (Proakis and

Manolakis 2006, pp. 818–822) and
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pi
y�y;k � pi

w �w;k ¼ E yi
ky

iT
k � wi

kw
iT
k

� �

¼ viE yi
ky

iT
k � wi

kw
iT
k

	 
T
n o

; viE
h

yi
ky

iT
k�1 � wi

kw
iT
k�1

	 
T
n o

; . . .�T

¼ vi pi
yy;k � pi

ww;k

� �T

; vi pi
yy;kþ1 � pi

ww;kþ1

� �T

; . . .

� �T

:

ð15Þ

Taking the z-transform of Eq. (15), we get

Ci
�y �w;kðzÞ ¼ z . . .; vi pi

yy;k�1 � pi
ww;k�1

� �T

;

�

vi pi
yy;k � pi

ww;k

� �T

; vi pi
yy;kþ1 � pi

ww;kþ1

� �T

; . . .�T

¼ vi . . .; z pi
yy;k�1 � pi

ww;k�1

� �T

; z pi
yy;k � pi

ww;k

� �T

;

�

z pi
yy;kþ1 � pi

ww;kþ1

� �T

; . . .�T

¼ zþviTz pi
yy;k � pi

ww;k

� �T

¼Viðz�1Þ Ci
yy;kðzÞ � Ci

ww;kðzÞ
� �

:

ð16Þ

Using spectral decomposition, we can write Ci
yy;kðzÞ

as

Ci
yy;kðzÞ ¼ r2�yWðzÞWðz�1Þ: ð17Þ

W(z) is the minimum-phase part, which is analytic in

the region jzj[ r and r\1. With spectral factoriza-

tion the whitening filter becomes ViðzÞ ¼ 1=WðzÞ.
Therefore,

Ciþ
�y �wðzÞ ¼

Ci
yy;kðzÞ � Ci

ww;kðzÞ
Wðz�1Þ

" #þ

¼ r2�yWðzÞ �
Ci

ww;kðzÞ
Wðz�1Þ

" #þ

:

ð18Þ

Now,

QiðzÞ ¼ WðzÞ �
Ci

ww;kðzÞ
r2�yWðz�1Þ

" #þ

: ð19Þ

and finally

GiðzÞ ¼ QiðzÞ
WðzÞ ¼

WðzÞ � Ci
ww;kðzÞ

r2�y Wðz�1Þ

h iþ

WðzÞ :
ð20Þ

For more details on Eqs. (15)–(20), it is recom-

mended to see the book (Proakis and Manolakis

2006, pp. 818–822). In short, to design an IIR Wiener

filter we are required to do spectral factorization of

Ci
yy;kðzÞ, obtain the minimum-phase part W(z) and

finally solve for the causal part of

[WðzÞ � Ci
ww;kðzÞ=r2�yWðz�1Þ].

2.2. Signal-to-Noise Ratio

The SNR is commonly defined as

SNR ¼ r2s
r2w

; ð21Þ

where r2s and r2w are the signal and noise powers,

respectively. Using this definition, the following

interpretation of the IIR Wiener filter in terms of the

SNR can be deduced by considering the two limiting

cases of a noise-free signal and an extreme noisy

signal, which respectively are given by

lim
SNR!1

GiðzÞ ¼ 1; ð22Þ

lim
SNR!0

GiðzÞ ¼ 0: ð23Þ

The justification of Eqs. (22) and (23) is as follows.

When SNR ! 1, this corresponds to zero noise

content and therefore r2w ¼ 0 and similarly
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Figure 1
The response of the IIR filter is plotted for SNR ! 1 and

SNR ! 0. A Ricker wavelet of 30 Hz without noise is used for

SNR ! 1, which gives the filter response a gi
1 ¼ 1, i.e., the filter

offers no attenuation to the noise-free signal. Only noise is used for

SNR ! 0, which gives the filter response, b gi
1 ¼ 0, i.e., the filter

does not allow the noise to pass

Vol. 175, (2018) Observation-Driven Method Based on IIR Wiener Filter for Microseismic Data Denoising 2061



Ci
ww;kðzÞ ¼ 0 and consequently GiðzÞ ¼ 1. However,

when SNR ! 0, this corresponds to a zero signal

content, i.e., r2s ¼ 0; which results in r2�y ¼ r2�w and

Ci
ww;kðzÞ ¼ r2�yWðzÞWðz�1Þ and consequently

GiðzÞ ¼ 0. This means that at a very high SNR, the

filter applies very little or no attenuation to the noise-

free signal, whereas when there is only noise, the

filter enters the stop band region, i.e., does not allow

the input signal (which is only noise) to pass through,

since the filter response is GiðzÞ ¼ 0. In the time

domain, GiðzÞ ¼ 1 corresponds to gi
1 ¼ 1 and

GiðzÞ ¼ 0 corresponds to gi
n ¼ 0; 8 n (see the prop-

erties of z-transform, Proakis and Manolakis 2006, p.

165). The plot for the two cases highlighted above

(Eqs. 22, 23) is shown in Fig. 1. To see the response

of the filter, for SNR ! 1, we have used only a

Ricker wavelet of center frequency 30 Hz without

noise and for SNR ! 0, we have used only noise.

3. Estimation of the z-Transform of the Observation

(Noisy Trace)

In this section, the estimations of the autocorre-

lation sequence of the observation and its

corresponding z-transform in practical scenarios are

detailed. To estimate the autocorrelation of the noisy

observation (and ultimately the z-transform), first the

noisy observation is modeled as an auto-regressive

(AR) process. For this purpose, the following model

is used for the observed data y at instant k

yk ¼ �alyyk�1 þ ck; ð24Þ

where aly ¼ ½a1; a2; . . .; al� are AR coefficients (l is

the number of coefficients), yk�1 ¼
½yk�1; yk�2; . . .; yk�l�T and ck is the white noise with

zero mean and variance r2cy
. To find aly , the Yule-

Walker method (Haykin 2002, Chapter 1) is used.

Here, post multiplying Eq. (24) with yT
k�1 and taking

the mathematical expectation, we obtain

E yky
T
k�1

� �
¼ �E alyyk�1y

T
k�1

� �
þ E yT

k�1ck

� �
:

ð25Þ

Assuming that data and noise are uncorrelated and

the noise has zero mean, Eq. (25) becomes

� pyy ¼ Pyya
T
ly
; ð26Þ

and aT
ly
is calculated as

aT
ly
¼ �P�1

yy pyy; ð27Þ

where pyy ¼ ½py;1; py;2; . . .; py;l�T , Pyy ¼
Toeplitzð½py;0; py;1; . . .; py;l�1�; ½py;0; py;�1;

. . .; py;�lþ1�Þ, and py;m ¼ py;�m (Proakis and Manola-

kis 2006, p. 798). The first column and first row of

the Toeplitz matrix pyy are ½py;0; py;1; . . .; py;l�1� and
½py;0; py;�1; . . .; py;�lþ1�, respectively (here we have

used Matlab-like syntax to represent a Toeplitz

matrix). To ensure that the autocorrelation matrix in

Eq. (27) is positive definite, a biased form of the

estimator is used for py;m, i.e.,

py;m ¼ 1
N

PN�m�1
k¼0 ykykþm;m ¼ 0; 1; . . .; l � 1, where

N is the number of samples in the trace. This esti-

mator results in a stable AR model. To avoid

inversion in Eq. (27), the Levinson-Durbin algorithm

(Haykin 2002) can be used, which is a recursive and

computationally efficient method that utilizes the

Toeplitz structure of the correlation matrix. After

finding aly , then the z-transform of the autocorrelation

sequence can be found as follows. Equation (24) can

be rewritten as

a0lyyk ¼ ck; ð28Þ

where a0ly ¼ ½1; a1; a2; . . .; al� and

yk ¼ ½yk; yk�1; . . .; yk�l�T . Now, taking the z-transform

of Eq. (28), we get

YðzÞ a0lyz
�

� �
¼ cðzÞ: ð29Þ

Multiplying each side of this equation by its respec-

tive time-reversed version (Proakis and Manolakis

2006) gives

Cyy;kðzÞ a0lz
�	 


a0lz
þ	 


¼ r2cy
: ð30Þ

In this way, the noisy observation is modeled by an

AR process, and the respective z-transform of the

autocorrelation sequence can be obtained as

Cyy;kðzÞ ¼
r2cy

a0lyz
�

� �
a0lyz

þ
� � : ð31Þ

Now, r2cy
can be found by multiplying Eq. (28) by its

complex conjugate (*) and taking the mathematical
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expectation, and since ck is a real-valued number,

therefore, Efjckj2g ¼ r2cy
. Now from Eq. (28)

Efckc
�
kg ¼Efa0lyyky

T
k a

0T
ly
g; ð32Þ

r2cy
¼ a0ly Efyky

T
k ga0Tly ; ð33Þ

r2cy
¼ a0lypyya

0T
ly
: ð34Þ

Details of the above derivation can be found in Sayed

(2008). From Eq. (31), it is clear that Cyy;kðzÞ can be

found using the knowledge of aly and r2cy
. This yields

the estimation of the z-transform of the observation

autocorrelation sequence.

4. Estimation of z-Transform of Noise

To estimate the noise autocorrelation matrix, we

use the approach of Rangachari and Loizou (2006). It

consists of five steps, namely, the initial power

spectrum estimation, the minimum tracking, the

event detection, the smoothing factor calculation and

the noise spectrum update. The steps are detailed

next.

4.1. Initial Power Spectrum Estimation of Noisy

Data

The smoothed power spectrum of the noisy data is

estimated using the first-order recursive relation

(Rangachari and Loizou 2006; Doblinger 1995) as

follows,

PiðkÞ ¼ gPiðk� 1Þ þ ð1� gÞjYiðkÞj2; ð35Þ

where YiðkÞ is the short-time Fourier transform of the

noisy data, g is the forgetting factor (which gives less

weight to older samples), and k is the frame index

(Doblinger 1995). The power spectrum jYiðkÞj2 is

obtained by taking the absolute value of each element

and squaring it. The size of YiðkÞ is �N, and the step

size (or hop size) to calculate the short-time Fourier

transform is h.

4.2. Tracking the Minimum of the Noisy Data

The minimum of the noisy data is tracked by a

non-linear approach that averages the the past values

continuously as follows (Doblinger 1995):

Pi;minðkÞ ¼ ½Pi;minðk� 1Þ\PiðkÞ�

� ½cPi;minðk� 1Þ þ 1� c
1� b

ðPiðkÞ � bPiðk� 1ÞÞ�

þ ½Pi;minðk� 1Þ[PiðkÞ� � PiðkÞ;
ð36Þ

where ½Pi;minðk� 1Þ\PiðkÞ� represents element-by-

element comparison, and its resultant vector contains

1s (if condition is true) and 0s (otherwise), ‘‘�’’

denotes the Hadamard product (element-by-element

multiplication), and Pi;minðk� 1Þ is the local mini-

mum of the noisy data power spectrum. c and b are

the adaptation constants that are determined experi-

mentally (Rangachari and Loizou 2006; Doblinger

1995).

4.3. Microseismic Event Detection Probability

To detect the presence of microseismic events, the

ratio of the noisy data spectrum to its local minimum,

SiðkÞ, is defined as (Cohen and Berdugo 2002),

SiðkÞ ¼ PiðkÞøPi;minðkÞ; ð37Þ

where ‘‘ø’’ represents the element-by-element divi-

sion. The ratio is based on the fact that the power

spectrum of the noisy trace will be nearly equal to its

local minimum when a microseismic event is absent.

The smaller the ratio in Eq. (37) is, the higher the

probability that the event is absent. The ratio is

compared with a frequency-dependent threshold d,
and consequently the event presence probability

I iðkÞ is updated, using first-order recursion, as

(Rangachari and Loizou 2006),

I iðkÞ ¼ apI iðk� 1Þ þ ð1� apÞ½SiðkÞ[ dÞ�; ð38Þ

where ½SiðkÞ[ dÞ� represents a comparison of each

element in SiðkÞ with the frequency-dependent

threshold d (to be discussed later in the results sec-

tion) and its result is a vector with 1s (if the condition

is true) and 0s (otherwise). The quantity ap is a

smoothing constant (Rangachari and Loizou 2006).
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The recursion in Eq. (38) implicity exploits the cor-

relation among the frames for detecting the event.

4.4. Calculation of the Smoothing Factor

The time-frequency dependent smoothing factor

is computed as (Cohen and Berdugo 2002),

as ¼ ad þ ð1� adÞI iðkÞ: ð39Þ

where ad is a constant and as is a time-varying

smoothing parameter. Note that as has values in the

range of ad � as � 1 (Rangachari and Loizou 2006).

4.5. Updating the Estimation of the Noise Spectrum

Finally, the noise power spectrum estimate N iðkÞ
is updated according to

N iðkÞ ¼ asN iðk� 1Þ þ ð1� asÞjYiðkÞj2: ð40Þ

The above procedure is done for all frequency bins

altogether, as obvious by using the vector notation in

equations. Note that constants (mixing parameters)

g; c; b; ap and ad can easily be determined experi-

mentally, and their values lie between 0 and 1

(Rangachari and Loizou 2006). The overall algorithm

can be summarized as follows. After classifying the

frequency bins as event absent/present, the event

presence probability is updated using Eq. (38). Using

this probability, the time-frequency-dependent

smoothing factor is updated as in Eq. (39). Finally, the

noise power spectrum is estimated using update

Eq. (40). After obtaining the noise power spectrum

estimate, it is averaged over all k’s N a ¼
P

k NiðkÞ
and converted back to the time domain, which gives

the noise autocorrelation estimate pw;0; pw;1; . . .; pw;l�1.

Then, from these estimates, pww and Pww are found (as

done for pyy and Pyy). To find the z-transform of the

noise autocorrelation sequence, the procedure outlined

in Sect. 3 has been used.

5. Summary of the Denoising Method

In this section, we summarize our proposed

method and suggest some enhancements for esti-

mating the correlation matrices.

5.1. Proposed Denoising Method

The outline of our proposed denoising method can

be summarized as follows:

1. Find the autocorrelation of noisy data and noise

using py;m ¼ 1
N

PN�m�1
k¼0 ykykþm and

pw;m ¼ 1
N

PN�m�1
k¼0 wkwkþm;m� 0, respectively,

and then form pyy;Pyy, pww and Pww for each trace.

2. Find the AR parameters for the noisy observation

and the noise using aT
ly
¼ �P�1

yy pyy and

aT
lw
¼ �P�1

wwpww, respectively.

3. Find the z-transform of the autocorrelation

sequence for the observed data and the noise as

Cyy;kðzÞ ¼
r2cy

a0
ly
z�

� �
a0

l;y
zþð Þ

and

Cww;kðzÞ ¼
r2cw

a0
lw
z�ð Þ a0

l;w
zþð Þ, respectively, where

r2cy
¼ a0lyp

T
yya

0T
ly

and r2cw
¼ a0lwp

T
wwa

0T
lw

.

4. Find W(z) by calculating the roots of Cyy;kðzÞ that
fall inside the unit circle in the z-plane and

r2�y ¼ r2cy
.

5. Find the causal part of WðzÞ � Ciþ
ww;k

ðzÞ
r2�y Wðz�1Þ

h i
.

6. Finally, find the transfer function of the IIR filter

using GiðzÞ ¼
WðzÞ�

Ciþ
ww;k

ðzÞ

r2
�y
Wðz�1Þ

� �þ

WðzÞ and filter the noisy

observation to get the clean signal.

7. The procedure is repeated in an iterative fashion to

get a clearer signal.

The work flow for the proposed denoising method is

presented in Fig. 2. For simplicity of the notation, the

superscript i (that corresponds to the ith trace) is

omitted, and the work flow is the same for all traces.

5.2. Proposed Enhancement Method

Assuming that the noise has the similar autocor-

relation (or power spectral density in frequency-

domain) for various traces (Caffagni et al. 2016;

Cieplicki et al. 2014), the estimation of the autocor-

relation sequences for data and noise can be

improved by stacking over the adjacent traces and/

or components in case of 3C sensors. This is done as

follows.
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Noisy observation, yk

Input

py,m = 1
N

N−m−1
k=0 ykyk+m,

Find pyy ,Pyy

Autocorrelation of noisy data
noise power spectrum estimate

Ni(λ) = αsNi(λ − 1)
+(1 − αs)|Yi(λ)|2 ,

Find pw,m,pww ,Pww

Autocorrelation of noise

aT
ly = −P−1

yy pyy,
aT

lw = −P−1
wwpww

AR parametersCyy,k(z) =
σ2

γy

a
ly

z− a
l,y

z+
,

Cww,k(z) =
σ2

γw

a
lw

z− a
lw

z+
,

where, σ2
γy

= alyp
T
yya

T
ly ,

σ2
γw

= alwpT
wwa

T
lw

z-transform

W (z) corresponds to roots
of Cyy,k(z) that fall inside

the unit circle in the z-plane,
σ2

ȳ = σ2
γy

Minimum-phase part

causal part of W (z)− Ci+
ww,k

(z)

σ2
ȳW (z−1)

Causal part

transfer function of the IIR filter

using Gi(z) =

⎡
⎣W (z)−

C
i+
ww,k

(z)

σ2
ȳW (z−1)

⎤
⎦
+

W (z)

Transfer function

filter the
noisy observation yk to
get the clean signal ŷk

Filtering

Iterate, if needed, by
setting yk = ŷk

Iterate

Figure 2
Work flow of the proposed denoising method. For simplicity of the notation, the superscript i (that corresponds to the ith trace) is omitted. The

work flow is the same for all traces
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First, the autocorrelation of noisy data and noise is

found using pij
y;m ¼ 1

N

PN�m�1
k¼0 y

ij
k y

ij
kþm and

pij
w;m ¼ 1

N

PN�m�1
k¼0 w

ij
k w

ij
kþm;m� 0, respectively, for

the ith trace and jth component of a 3C sensor.

Second, after finding these autocorrelations for all the

traces, the autocorrelations are stacked to improve the

estimation, i.e.,

pw;m ¼ 1

3M

X3

j¼1

XM

i¼1

pij
w;m; ð41Þ

A similar procedure is used for estimating the auto-

correlation of observation, i.e.,

py;m ¼ 1

3M

X3

j¼1

XM

i¼1

pij
y;m; ð42Þ

After finding the autocorrelation of the noisy data

py;m, and noise pw;m, the autocorrelation matrices

pyy;Pyy, pww and Pww are formed, and the rest of the

procedure is the same as for the proposed method.

Importantly, in the proposed enhancement

method, we are not stacking the traces prior to the

autocorrelation but we are stacking the autocorrela-

tions of the traces, i.e., first the autocorrelations are

found for each trace followed by the stacking of the

autocorrelations. The autocorrelations do not need to

be aligned as they are already aligned. The estimation

improves if traces have similar power spectral

densities, i.e., traces have white noise or Brownian

noise, etc. Now the question arises, if traces have the

similar power spectral densities but different noise

levels (variances), are the results affected? More

importantly, our method compensates automatically

for the difference in the variances. The IIR Wiener

filter is the ratio of two autocorrelations. Hence, if the

noise level changes, the level of the noisy observation

also changes and so does the magnitude of the

autocorrelations of the noisy observation and noise

(remember that the autocorrelations are derived from

the traces). Since the filter is a ratio of autocorrela-

tions (Eq. 13) or power spectral densities (Eq. 20), it

will compensate for the effect. Even if a bias is

present because of a broken channel, this will not

affect the results.

In summary, the proposed denoising method

estimates the autocorrelation in a trace-by-trace

manner, whereas the proposed enhancement method

improves the estimation of the autocorrelation by

averaging over the adjacent traces.

Other steps of the denoising method remain the

same. With the improvement of the autocorrelation

sequence estimation, the proposed method will here-

after be called the proposed enhanced method.

6. Results

In this section, the IIR Wiener filter is tested on

synthetic, semi-synthetic and field data. To test the

robustness of the proposed method, two cases for

noise (correlated and uncorrelated noise) are used.

6.1. Synthetic Data Set

For the synthetic data set, a Ricker wavelet with a

center frequency of 5 Hz is used as the microseismic

source signature to generate the data set. Fifty

receivers are placed inline, and the middle receiver

is assumed to be the closest to the source. Moreover,

a constant medium velocity is assumed, and the

sampling frequency is set to 1 kHz. The resulting data

are depicted in Fig. 3. For the proposed method, the

number of AR coefficients is set to l ¼ 10 for all the

data sets used. Testing revealed that increasing the
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Figure 3
Synthetic data without noise. A Ricker wavelet with a center

frequency of 5 Hz is used. Fifty receivers are placed inline, and the

middle receiver is assumed to be the closest to the source. A

constant medium velocity is assumed, and the sampling frequency

is set to 1 kHz
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number of parameters does not improve the SNR.

However, large values of l increase the complexity

because of the inversion of the large matrix in

Eq. (27). Finally, N needs to be known for the

estimation of the autocorrelation of the observation,

py;m. The observation or the observed data in our case

are traces; therefore, N is equal to the number of

samples in each trace. For long recordings, the data

can be divided into windows instead of processing the

whole data altogether, and then the proposed method

can be applied to these windows. The test revealed

that the optimum values of the constants used for

noise estimation are g ¼ 0:85; c ¼ 0:998; b ¼
0:85; ap ¼ 0:2; ad ¼ 0:95; �N ¼ N=10; and h ¼ N=20.

The two kinds of noise (correlated and uncorre-

lated noise) are added to the raw traces (Fig. 3) to test

the proposed method. The SNR [defined as

10 log10fr2s=r2wg in decibel (dB)] of the noisy obser-

vation in both cases is equal to �12 dB. It is apparent

that the traces are noisy and the microseismic event is

difficult to identify, as can be seen in Fig. 4a, b. For

generating the correlated noise, white Gaussian noise

is filtered using a geophone’s impulse response given

by Hons and Stewart (2006). After filtering, the

spectrum and autocorrelation of noise are shown in

Fig. 5a, b, respectively. The spectrum is not flat, and

the autocorrelation is not an impulse, unlike white

noise (uncorrelated), which has a flat spectrum, and

its autocorrelation is that of an impulse-type function

at zero time lag (zero correlation index). The

spectrum in Fig. 5a is flat except for frequencies

greater than 150 Hz.

Here, the noise is estimated first using the

procedure discussed in Sect. 4. For trace 1, the power
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Figure 4
a Synthetic data with white Gaussian noise. b Synthetic data with correlated noise. The SNR of the noisy observation in both cases is set to

�12 dB. It is apparent that the traces are noisy, and the microseismic event is difficult to identify. For generating the correlated noise, white

Gaussian noise is filtered using a geophone’s impulse response given by Hons and Stewart (2006)
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Correlated noise specifications: a spectrum of correlated noise.

b Its corresponding autocorrelation. For generating the correlated

noise, white Gaussian noise is filtered using a geophone’s impulse

response given by Hons and Stewart (2006). The spectrum is not

flat and the autocorrelation is not an impulse, unlike white noise

(uncorrelated), which has a flat spectrum and its autocorrelation is

that of an impulse-type function at zero time lag (zero correlation

index)
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spectrum of the noiseless data and event-presence

probability I i (with white Gaussian noise), calculated

using Eq. (38), is shown in Fig. 6a, b. Note that by

defining a suitable value of the threshold, the event

can be detected with higher confidence. As seen in

Fig. 6b, some noise-only regions are detected as the

events. This overestimation of events is not likely to

affect the enhanced event (after denoising), since the

detection probability improves with the iteration,

hence eliminating the false event detected regions

(Fig. 6b–e). The threshold value used is

d ¼
2; 1� k�F

5; F � k� fs=2;


ð43Þ

where F is the frequency bin corresponding to 100 Hz

frequency. Above 100 Hz, a higher value of the

threshold is used because the event will be in the low

frequency range (within 100 Hz).

In the first experiment with white Gaussian noise

(uncorrelated case), when the filter is applied to the

data, the noise is increasingly suppressed with each

iteration (Fig. 7), and the microseismic event is

dominating. This proves the effectiveness of our

proposed method. Figure 8a, b shows the denoising

results (after iteration 4) under the white Gaussian

noise case using the proposed method and the

proposed enhanced method, respectively. In the

second experiment with correlated noise, again the

filter attenuates the noise, and the event becomes

clearer (Fig. 8c, d after iteration 4). Next, to show

the improvement in the SNR in each iteration, the

noise level is plotted against the number of

iterations, as depicted in Fig. 9. It is apparent from

the figure that the SNR is improving with every

iteration. With more iterations, we lose the basic

assumption that noise and signal are uncorrelated;

hence, the SNR starts to decrease after the fourth

iteration. Consequently, we used only four iterations

throughout our simulation results. To ensure that we

get the best results in terms of denoising, after the

fourth iteration of applying the filter, the wavelet-

based denoising can also be applied before the final

output (results shown in Figs. 7 and 8 are without

the wavelet-based denoising method). This is nec-

essary to remove any in-band noise present after the

filter application. The details of the wavelet denois-

ing method are presented later.

The blind estimation of the noise is clearly an

advantage of the proposed method. However, the

nature of the noise is really important. With white

noise, the spectrum is flat, and when we move to the

time-frequency domain for the noise estimation, the

noise contents are more or less equally distributed

along the frequency. On the other hand, with colored

noise, the spectrum is concentrated in some fre-

quency bands (which include the band of the events).

Since we have used the same variance (level) of the

noise in both cases (white and color), the in-band

noise (noise in the band of event) is less in the white

noise case (contents are equally distributed along the

spectrum) than in the colored noise case (contents are

concentrated in some bands). Therefore, the

Figure 6
a Power spectrum of the noiseless synthetic data using short-time Fourier transform. Event presence probability I 1 of noisy version of trace

1, iteration 1, c iteration 2, d iteration 3, e iteration 4. The detection probability improves with the iteration, hence eliminating the false event

detected region
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performance of estimation in the colored noise case is

somewhat lower than in the white noise case.

6.2. Comparison of Denoising Methods

The quantitative assessment of the proposed

method can be verified by comparing the mean

square error (MSE), mean absolute error (MAE),

SNR, peak-signal-to-noise ratio (PSNR) and maxi-

mum correlation coefficient (CC), which are listed in

Table 1. In this table, the performance of the

proposed method in the case of a synthetic data set

with white Gaussian noise is compared with bandpass

filtering, wavelet decomposition, empirical mode

decomposition and FIR Wiener filtering. For denois-

ing using wavelet decomposition, the ‘wden’ function

in the wavelet toolbox of MATLAB is used (Misiti

et al. 1996). Various wavelet basis functions with

their variants, i.e., Daubechies (db2, db3, db4),

Coiflets (co2, co4, co5) and Symlets (sy2, sy3, sy4)

(Daubechies 1992; Mallat 1989), are tested on the

pseudo-real data set, and then the coif5 wavelet is

selected for comparison based on its best perfor-

mance over the other wavelets. Furthermore, we used

soft thresholding with the principle of Stein’s unbi-

ased risk (Stein 1981).1 Another method used for

comparison is the empirical mode decomposition

(Rilling et al. 2007) that derives the basis function

from the observed data. This is also a well-known

method used for denoising in geophysics. There are

several different methods for denoising seismic data

based on empirical mode decomposition. Here, we

have used the ensemble empirical mode decomposi-

tion with the adaptive thresholding method (Han and

van der Baan 2015). One more widely used method

used for enhancing the SNR of noisy seismic data is

interferometry (Al-Shuhail et al. 2013). Comparison
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Figure 7
Denoised synthetic data using proposed method: a iteration 1, b iteration 2, c iteration 3, d iteration 4. The noise is increasingly suppressed

with each iteration, and the microseismic event is dominating

1 The same method of wavelet denoising is used in the pro-

posed method after the fourth iteration.
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of the above-mentioned methods reveals that our

proposed method is superior to the other methods (see

Table 1). Moreover, comparing the performance of

the proposed method with the wavelet-based method,

we can see that the IIR-based filter has improved the

performance by 15% at the cost of doubling the

computational complexity. For the proposed

enhanced method, stacking is done (see Eq. 42) over

the adjacent three traces. In comparing the FIR

Wiener filter with the IIR Wiener filter, the length of

the FIR Wiener filter is taken to be equal to N / 10

(for performance and complexity compromise). Due

to the inversion of a large matrix, the FIR Wiener

filter took 9 s as compared to 4 s by the IIR Wiener

filter as shown in Table 1.

6.3. Semi-synthetic Data Set

Next, an earthquake data set is used to validate the

proposed method. The data set is obtained from

Incorporated Research Institutions for Seismology

(IRIS). The event occurred on 9 October 2017 in

Central Alaska, USA, and had a magnitude of

Ml ¼ 5:2. The data were recorded on four tri-

component (3C) sensors at a sampling frequency of

250 Hz.

The noiseless and noisy data (corrupted with

correlated noise, hereafter denominated ‘‘semi-real’’

or ‘‘semi-synthetic’’ data set) are shown in Fig. 10a,

b, respectively (for compactness three components

are plotted on the same figure). An improvement in

SNR of about 13 dB is achieved with the proposed

Figure 8
Denoised synthetic data: a proposed method (white noise case), b proposed enhanced method with stacking of adjacent traces (white noise

case), c proposed method (correlated noise case), d proposed enhanced method with stacking of adjacent traces (correlated noise case). In the

second experiment with correlated noise, again the filter attenuated the noise, and the event became clearer with the iteration
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method (Fig. 10c) and 14-dB improvement with the

proposed enhanced method (Fig. 10d).

6.4. Field Data Set

Finally, the proposed method is applied to a real

data set. Figure 11a shows the amplitude normalized

and mean subtracted version of the data set. This data

set is obtained from the IRIS website, and the

sampling rate is 4 ms. Similar to Mousavi and

Langston (2016c), this microearthquake data set has a

magnitude Ml ¼ 0:4 and a depth of 4.8 km with the

seismometer located on the surface. The earthquake

occurred in the California-Nevada Border Region.

This scenario is taken to prove the effectiveness of

the proposed method in the case of microearthquakes.

The parameters used here are the same as those used

for the synthetic data set.

The result of the filtering process is shown in

Fig. 11b. The results are shown after the fourth

iteration and application of the wavelet-based denois-

ing approach. As demonstrated in this figure, our

proposed method is indeed able to detect the earth-

quake signal effectively and attenuated the noise.

The aforementioned test was on a natural micro-

earthquake. The algorithm was originally tested on a

real induced microseismic data set from the local oil

industry in the Middle East. However, due to legal

issues we are unable to report the results here. To

demonstrate the effectiveness of the proposed denois-

ing method, we apply it on another field data set that

is used by Liu et al. (2017) (Fig. 12a). These data

come from the High Resolution Seismic Network

(HRSN) operated by Berkeley Seismological Labo-

ratory, University of California, Berkeley. The

sampling frequency is 250 Hz. The effectiveness of

the proposed method can be appreciated from

Fig. 12b, which shows the P- and S-arrivals clearly.
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Figure 9
Noise level versus number of iterations. Curves for SNR before and

after denoising (for white noise and correlated noise case) using the

proposed method. The SNR is improving with every iteration. With

more iterations, we lose the basic assumption that noise and signal

are uncorrelated; hence, the SNR starts to decrease after the fourth

iteration. Consequently, we used only four iterations throughout

our simulation results

Table 1

Mean square error (MSE), mean absolute error (MAE), signal-to-noise ratio (SNR), peak-signal-to-noise ratio (PSNR) and maximum

correlation coefficient (CC) from the synthetic data experiment (white Gaussian noise case) using bandpass filtering, interferometry, wavelet

decomposition, empirical mode decomposition, FIR Wiener filtering and the proposed method

Method MSE MAE SNR (dB) PSNR (dB) CC Elapsed time (s)

Noisy data set 0.39 0.50 - 12.03 4.00 0.244 –

Interferometry 0.013 0.085 2.836 18.868 0.805 13.18

Bandpass filtering 0.027 0.109 - 0.286 15.746 0.555 1.32

Wavelet decomposition 0.013 0.084 2.875 18.907 0.797 1.93

Empirical mode decomposition 0.024 0.122 0.160 16.192 0.721 8.47

FIR Wiener filter 0.0256 0.1021 0.9081 15.9256 0.645 9.13

Proposed method 0.011 0.081 3.643 19.675 0.838 4.08

Proposed enhanced method 0.009 0.076 4.285 20.317 0.863 3.98

For a fair comparison, in this table we have not applied the wavelet-based denoising after the fourth iteration of application for the IIR Wiener

filter

Vol. 175, (2018) Observation-Driven Method Based on IIR Wiener Filter for Microseismic Data Denoising 2071



7. Discussion

Typical microseismic data are characterized by

low SNR and highly non-stationary noise. Suppress-

ing noise will drastically improve signal detection,

seismogram composition studies, source discrimina-

tion for small local/regional seismic sources as well

as fracture characterization and monitoring in oil and

gas reservoir. The SNR-enhancing methods usually

rely on cross-correlation from the seismic traces

recorded by geophone arrays. In this work, we
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Figure 10
The field data set was obtained from the Incorporated Research Institutions for Seismology (IRIS). The event occurred on 9 October 2017 in

Central Alaska, USA, and has magnitude Ml ¼ 5:2. The data were recorded on a 3C sensor with sampling frequency of 250 Hz (resampled).

a Field data set without noise. b Field data set with added white Gaussian noise (SNR = �7 dB). c Denoised data using the proposed method

(SNR= 5.9 dB). d Denoised data using the proposed enhanced method (SNR = 7.2 dB). Wavelet-based denoising method is used after forth

iteration for these results
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a Noisy field data; b denoised field data. The parameters used here

are the same as those used for the synthetic data set. Results are

shown after the fourth iteration and application of the wavelet

denoising method 0
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a Field data set (Liu et al. 2017) from the High Resolution Seismic

Network (HRSN) operated by Berkeley Seismological Laboratory,

University of California, Berkeley. The sampling frequency is 250

Hz. b Denoised traces using the proposed denoising method
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propose a data-driven method to denoise seismic

data. To isolate the noise from the signal, we need to

acquire knowledge of the second-order statistics of

the noise and the noisy signal. Since the occurrence

of microseismic events is sporadic, the statistics are

estimated directly from the received data. In this

study, noise is first estimated and then removed from

the receiver record. This makes a practical sense for

microseismic denoising, since it is usually possible to

estimate the statistics of the noise but not for the

signal. The autocorrelations needed for the filter are

either estimated from each trace separately or from

multiple traces. In the former case, the advantage is

that we can use the filter in the case of a single sensor,

e.g., microseismic recorded by a single station or use

parallel processing as in the case of a sensor array.

However, in the latter case, the correlation estimation

is improved by stacking the correlation estimates

obtained from multiple seismic traces recorded by a

geophone array. The stacking does not involve

alignment of traces, since the proposed method relies

on the autocorrelation. Hence, ambiguities resulting

from misalignment are also eliminated here. Another

advantage of the proposed method is that it does not

impose any assumption on the noise statistics, which

makes it suitable for applications with different noise

types. Similar denoised results are obtained for the

correlated and uncorrelated noise. It is also worth

mentioning that our focus in this study is on low SNR

seismic signals to prove the effectiveness of the

proposed method. However, it is expected to perform

well in case of earthquakes with magnitude greater

than 2 and active (controlled source) seismic data.

The reason is that no underlying assumption about the

type of data is used, while designing the filter.

Application of the proposed method on synthetic and

field microseismic traces with both uncorrelated and

correlated noise shows promising results. Our filter-

ing procedure has been applied in an iterative fashion

and improvements in SNR shown (see Fig. 9).

8. Conclusion

In this study, we proposed an IIR Wiener filter-

based denoising method. The proposed method is

directly based on the second-order statistics of the

noise and the observations, which can be obtained

easily from the recorded time-series data. The pro-

posed method gives a promising performance in a

low SNR situation. The filter does not assume any

specific noise statistics; this is desirable for applica-

bility of the denoising method to field data recorded

in diverse seismic noise environments. More impor-

tantly, its computational complexity is much lower in

comparison to an equivalent FIR filter approach.

Acknowledgements

The authors acknowledge the support provided by the

Center for Energy and Geo Processing (CeGP) at

King Fahd University of Petroleum & Minerals

(KFUPM) and the Georgia Institute of Technology

under grant no. GTEC1311. The authors also thank

the reviewers and Prof. Stewart Greenhalgh, Saudi

Aramco Chair Professor of Geophysics, for their

comments, which improved the paper content and

presentation considerably.

REFERENCES

Aghayan, A., Jaiswal, P., & Siahkoohi, H. R. (2016). Seismic

denoising using the redundant lifting scheme. Geophysics, 81(3),

V249–V260.

Al-shuhail, A., Aldawood, A., & Hanafy, S. (2012). Application of

super-virtual seismic refraction interferometry to enhance first

arrivals: A case study from Saudi Arabia. The Leading Edge, 31,

34–39.

Al-Shuhail, A., Kaka, S. I., & Jervis, M. (2013). Enhancement of

passive microseismic events using seismic interferometry. Seis-

mological Research Letters, 84(5), 781–784.

Baziw, E., & Weir-Jones, I. (2002). Application of Kalman filtering

techniques for microseismic event detection. Pure and Applied

Geophysics, 159(1), 449–471.

Bharadwaj, P., Wang, X., Schuster, G., & McIntosh, K. (2013).

Increasing the number and signal-to-noise ratio of OBS traces

with supervirtual refraction interferometry and free-surface mul-

tiples. Geophysical Journal International, 192(3), 1070–1084.

Caffagni, E., Eaton, D. W., Jones, J. P., & van der Baan, M. (2016).

Detection and analysis of microseismic events using a Matched

Filtering Algorithm (MFA). Geophysical Journal International,

206(1), 644–658.

Castellanos, F., & van der Baan, M. (2013). Microseismic event

locations using the double-difference algorithm. CSEG Recorder,

38, 26–37.

Chen, J., Benesty, J., Huang, Yiteng, & Doclo, S. (2006). New

insights into the noise reduction Wiener filter. IEEE Transactions

on Audio, Speech and Language Processing, 14(4), 1218–1234.

Vol. 175, (2018) Observation-Driven Method Based on IIR Wiener Filter for Microseismic Data Denoising 2073



Cieplicki, R., Mueller, M., and Eisner, L. (2014). Microseismic

event detection: Comparing P-wave migration with P- and

S-wave cross-correlation. In SEG Technical Program Expanded

Abstracts 2014 (pp. 2168–2172). Society of Exploration

Geophysicists.

Cohen, I. (2003). Noise spectrum estimation in adverse environ-

ments: Improved minima controlled recursive averaging. IEEE

Transactions on Speech and Audio Processing, 11(5), 466–475.

Cohen, I., & Berdugo, B. (2002). Noise estimation by minima

controlled recursive averaging for robust speech enhancement.

IEEE Signal Processing Letters, 9(1), 12–15.

Coughlin, M., Harms, J., Christensen, N., Dergachev, V., DeSalvo,

R., Kandhasamy, S., et al. (2014). Wiener filtering with a seismic

underground array at the Sanford Underground Research Facil-

ity. Classical and Quantum Gravity, 31(21), 215003.

Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia:

Society for Industrial and Applied Mathematics.

Doblinger, G. (1995). Computationally efficient speech enhance-

ment by spectral minima tracking in subbands. In Proceedings of

Eurospeech (pp. 1513–1516).

Duncan, P. M. (2012). Microseismic monitoring for unconven-

tional resource development. Geohorizons, 26–30.

Eaton, D. W., van der Baan, M., Birkelo, B., & Tary, J.-B. (2014).

Scaling relations and spectral characteristics of tensile micro-

seisms: Evidence for opening/closing cracks during hydraulic

fracturing. Geophysical Journal International, 196(3),

1844–1857.

Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., &

Keller, W. (2010). Comparison of surface and borehole locations

of induced seismicity. Geophysical Prospecting, 58(5), 809–820.

Haldorsen, J. B. U., Miller, D. E., & Walsh, J. J. (1994). Mul-

tichannel Wiener deconvolution of vertical seismic profiles.

Geophysics, 59(10), 1500–1511.

Han, J., & van der Baan, M. (2015). Microseismic and seismic

denoising via ensemble empirical mode decomposition and

adaptive thresholding. Geophysics, 80(6), KS69–KS80.

Haykin, S. (2002). Adaptive filter theory (4th ed.). Upper-Saddle

River: Prentice Hall.

Hons, M. S., & Stewart, R. R. (2006). Transfer functions of geo-

phones and accelerometers and their effects on frequency content

and wavelets. CREWES Research Report, p. 18.

Huang, W., Wang, R., Chen, Y., Li, H., & Gan, S. (2016). Damped

multichannel singular spectrum analysis for 3D random noise

attenuation. Geophysics, 81(4), V261–V270.

Iqbal, N., Zerguine, A., Kaka, S., & Al-Shuhail, A. (2016). Auto-

mated SVD filtering of time-frequency distribution for enhancing

the SNR of microseismic/microquake events. Journal of Geo-

physics and Engineering, 13(6), 964–973.

Kendall, M., Maxwell, S., Foulger, G., Eisner, L., & Lawrence, Z.

(2011). Microseismicity: Beyond dots in a box Introduction.

Geophysics, 76(6), WC1–WC3.

Khadhraoui, B., & Özbek, A. (2013). Multicomponent time-fre-

quency noise attenuation of microseismic data. In 75th EAGE

Conference and Exhibition incorporating SPE EUROPEC 2013,

pp. 200–204.

Kimiaefar, R., Siahkoohi, H. R., Hajian, A. R., & Kalhor, A.

(2016). Seismic random noise attenuation using artificial neural

network and wavelet packet analysis. Arabian Journal of Geo-

sciences, 9(3), 234.

Liu, E., Zhu, L., Govinda Raj, A., McClellan, J. H., Al-Shuhail, A.,

Kaka, S. I., & Iqbal, N. (2017). Microseismic events

enhancement and detection in sensor arrays using autocorrela-

tion-based filtering. Geophysical Prospecting.

Mallat, S. (1989). A theory for multiresolution signal decomposi-

tion: The wavelet representation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 11(7), 674–693.

Mallinson, I., Bharadwaj, P., Schuster, G., & Jakubowicz, H.

(2011). Enhanced refractor imaging by supervirtual interferom-

etry. The Leading Edge, 30(5), 546–560.

Martin, R. (2001). Noise power spectral density estimation based

on optimal smoothing and minimum statistics. IEEE Transac-

tions on Speech and Audio Processing, 9(5), 504–512.

Maxwell, S. C. (2011). What does microseismicity tells us about

hydraulic fractures? In SEG Technical Program Expanded

Abstracts 2011, pp. 1565–1569. Society of Exploration

Geophysicists.

Maxwell, S. C., Shemeta, J. E., Campbell, E., & Quirk, D. J.

(2008). Microseismic deformation rate monitoring. In SPE

Annual Technical Conference and Exhibition. Society of Petro-

leum Engineers.

Mendecki, A. (1993). Real time quantitative seismology in mines.

In 3rd International Symposium on Rockbursts and Seismicity in

Mines (pp. 287–295). Canada: Kingston.

Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J. (1996). Wavelet

toolbox for use with MATLAB. Natick, MA: The MathWorks.

Mousavi, S. M., Horton, S. P., Langston, C. A., & Samei, B. (2016a).

Seismic features and automatic discrimination of deep and shallow

induced-microearthquakes using neural network and logistic

regression. Geophysical Journal International, 207(1), 29–46.

Mousavi, S. M., & Langston, C. (2016a). Fast and novel micro-

seismic detection using time-frequency analysis. In SEG

Technical Program Expanded Abstracts 2016, pp. 2632–2636.

Society of Exploration Geophysicists.

Mousavi, S. M., & Langston, C. A. (2016b). Adaptive noise esti-

mation and suppression for improving microseismic event

detection. Journal of Applied Geophysics, 132, 116–124.

Mousavi, S. M., & Langston, C. A. (2016c). Hybrid seismic

denoising using higherorder statistics and improved Wavelet

block thresholding. Bulletin of the Seismological Society of

America, 106(4), 1380–1393.

Mousavi, S. M., & Langston, C. A. (2017). Automatic noise-re-

moval/signal-removal based on general cross-validation

thresholding in synchrosqueezed domain and its application on

earthquake data. Geophysics, 82(4), V211–V227.

Mousavi, S. M., Langston, C. A., & Horton, S. P. (2016b). Auto-

matic microseismic denoising and onset detection using the

synchrosqueezed continuous wavelet transform. Geophysics,

81(4), V341–V355.

Peacock, K. L., & Treitel, S. (1969). Predictive deconvolution:

Theory and practice. Geophysics, 34(2), 155–169.

Pearson, C. (1981). The relationship between microseismicity and

high pore pressures during hydraulic stimulation experiments in

low permeability granitic rocks. Journal of Geophysical

Research: Solid Earth, 86(B9), 7855–7864.

Proakis, J. (1985). Probability, random variables and stochastic

processes. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 33(6), 1637–1637.

Proakis, J. G., & Manolakis, K. D. (2006). Digital signal pro-

cessing (4th ed.). Upper Saddle River, NJ: Prentice-Hall Inc.

Rangachari, S., & Loizou, P. C. (2006). A noise-estimation algo-

rithm for highly non-stationary environments. Speech

Communication, 48(2), 220–231.

2074 N. Iqbal et al. Pure Appl. Geophys.



Rilling, G., Flandrin, P., Gonalves, P., & Lilly, J. (2007). Bivariate

empirical mode decomposition. IEEE Signal Processing Letters,

14(12), 936–939.

Sabbione, J. I., Sacchi, M. D., & Velis, D. R. (2015). Radon

transform-based microseismic event detection and signal-to-

noise ratio enhancement. Journal of Applied Geophysics, 113,

51–63.

Sabbione, J. I., & Velis, D. R. (2013). A robust method for

microseismic event detection based on automatic phase pickers.

Journal of Applied Geophysics, 99, 42–50.

Sabbione, J. I., Velis, D. R., & Sacchi, M. D. (2013).

Microseismic data denoising via an apex-shifted hyperbolic

Radon transform. In SEG Technical Program Expanded

Abstracts 2013, pp. 2155–2161. Society of Exploration

Geophysicists.

Sayed, A. H. (2008). Adaptive filters. Hoboken, NJ: Wiley.

Shemeta, J., & Anderson, P. (2010). It’s a matter of size: Magni-

tude and moment estimates for microseismic data. The Leading

Edge, 29(3), 296–302.

Simpson, D., Leith, W., & Scholz, C. (1988). Two types of

reservoir-induced seismicity. Bulletin of the Seismological

Society of America, 78(6), 2025–2040.

Stein, C. (1981). Estimation of the mean of a multivariate normal

distribution. Annals of Statistics, 9(6), 1135–1151.

Vera Rodriguez, I., Bonar, D., & Sacchi, M. (2012). Microseismic

data denoising using a 3C group sparsity constrained time-fre-

quency transform. Geophysics, 77, V21–V29.

Verdon, J. (2011). Microseismic monitoring and geomechanical

modeling of storage in subsurface reservoirs. Geophysics, 76(5),

Z102–Z103.

Wang, J., Tilmann, F., White, R. S., & Bordoni, P. (2009).

Application of frequency-dependent multichannel Wiener filters

to detect events in 2D three-component seismometer arrays.

Geophysics, 74(6), V133–V141.

Wang, J., Tilmann, F., White, R. S., Soosalu, H., & Bordoni, P.

(2008). Application of multichannel Wiener filters to the sup-

pression of ambient seismic noise in passive seismic arrays. The

Leading Edge, 27(2), 232–238.

(Received July 11, 2017, revised December 6, 2017, accepted January 8, 2018, Published online January 25, 2018)

Vol. 175, (2018) Observation-Driven Method Based on IIR Wiener Filter for Microseismic Data Denoising 2075


	Observation-Driven Method Based on IIR Wiener Filter for Microseismic Data Denoising
	Abstract
	Introduction
	IIR Wiener Filter Design for Microseismic Denoising
	Filter Derivation
	Signal-to-Noise Ratio

	Estimation of the z-Transform of the Observation (Noisy Trace)
	Estimation of z-Transform of Noise
	Initial Power Spectrum Estimation of Noisy Data
	Tracking the Minimum of the Noisy Data
	Microseismic Event Detection Probability
	Calculation of the Smoothing Factor
	Updating the Estimation of the Noise Spectrum

	Summary of the Denoising Method
	Proposed Denoising Method
	Proposed Enhancement Method

	Results
	Synthetic Data Set
	Comparison of Denoising Methods
	Semi-synthetic Data Set
	Field Data Set

	Discussion
	Conclusion
	Acknowledgements
	References




