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Abstract—Full-waveform inversion (FWI) reconstructs the

subsurface properties from acquired seismic data via minimization

of the misfit between observed and simulated data. However, FWI

suffers from considerable computational costs resulting from the

numerical solution of the wave equation for each source at each

iteration. To reduce the computational burden, constructing

supershots by combining several sources (aka source encoding)

allows mitigation of the number of simulations at each iteration,

but it gives rise to crosstalk artifacts because of interference

between the individual sources of the supershot. A modified

Gauss–Newton FWI (MGNFWI) approach showed that as long as

the difference between the initial and true models permits a sparse

representation, the ‘1-norm constrained model updates suppress

subsampling-related artifacts. However, the spectral-projected

gradient ‘1 (SPG‘1) algorithm employed by MGNFWI is rather

complicated that makes its implementation difficult. To facilitate

realistic applications, we adapt a linearized Bregman (LB) method

to sparsity-promoting FWI (SPFWI) because of the efficiency and

simplicity of LB in the framework of ‘1-norm constrained opti-

mization problem and compressive sensing. Numerical

experiments performed with the BP Salt model, the Marmousi

model and the BG Compass model verify the following points. The

FWI result with LB solving ‘1-norm sparsity-promoting problem

for the model update outperforms that generated by solving ‘2-

norm problem in terms of crosstalk elimination and high-fidelity

results. The simpler LB method performs comparably and even

superiorly to the complicated SPG‘1 method in terms of compu-

tational efficiency and model quality, making the LB method a

viable alternative for realistic implementations of SPFWI.

Key words: Full-waveform inversion, compressive sensing,

sparsity-promoting, linearized Bregman method.

1. Introduction

Full-waveform inversion (FWI) is a powerful tool

used for obtaining the properties (e.g., velocity,

density, quality factor Q) of the subsurface media

from collected seismic data. Due to progresses in

computer science and technology, FWI has been

ameliorated by many researchers over the past dec-

ades. FWI can be implemented either in the time

domain (e.g., Tarantola 1986; Mora 1987; Bunks

et al. 1995; Ren et al. 2014) or in the frequency

domain (e.g., Pratt et al. 1998; Pratt 1999; Sirgue and

Pratt 2004; Anagaw and Sacchi 2014). The reader is

recommended to Virieux and Operto (2009) for an

excellent overview of FWI. There are some methods

for solsving the nonlinear least-squares (LS) FWI

problem, e.g., the steepest-descent method, the con-

jugate gradient method, the Gauss–Newton (GN)

method (Li et al. 2012, 2016), the truncated Newton

method (Métivier et al. 2013; Castellanos et al.

2015), and the full-Newton method (Pan et al. 2016).

Designing a suitable optimization scheme for FWI is

still an area of active research. In this study, we will

assume that an accurate starting model is available

and the source wavelet is known. The central objec-

tive of this paper was to develop a new optimization

method for FWI that conciliates computational effi-

ciency and high-fidelity results.

In FWI, the forward modeling is carried out for

each single source. As a result, the computational

burden of FWI is roughly proportional to the number

of shots involved (Li et al. 2012). This is correct for

time domain FWI, but it is not fully correct for fre-

quency domain FWI. In the frequency domain, once

the LU decomposition of the forward matrix is done,

the solution by backward substitution for any given
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source is fast; however, the computational cost is still

roughly in proportion to the number of shots. The

computational cost of FWI is expensive, because

dense sources and receivers are utilized in modern

seismic acquisition (Herrmann et al. 2013). In the

case of massive 3D data composed of thousands of

shots, it results in an even greater computational

burden, even on today’s computing resources (Méti-

vier et al. 2014). Many geophysicists have proposed

reducing the computational burden by randomly

subsampling or source encoding (e.g., Romero et al.

2000; Krebs et al. 2009; Tang 2009; Choi and

Alkhalifah 2011; Ben-Hadj-Ali et al. 2011;

Moghaddam et al. 2013; Son et al. 2014; Castellanos

et al. 2015). However, as discussed in Schuster et al.

(2011), Herrmann and Li (2012) and Li et al. (2016),

an excessive data/source subsampling may weaken

subsurface illumination or generate subsampling-re-

lated artifacts.

The compressed sensing (CS) theory (Donoho

2006; Tsaig and Donoho 2006) has shown that if the

signals’ energy is concentrated in a few significant

coefficients, these signals can be recovered from

small subsets of data by solving sparsity-promoting

problems (Candès et al. 2006). CS has been pros-

pered for years ever since the works of Candès et al.

(2006) and Donoho (2006), who laid solid mathe-

matical foundations for sparsity-promoting

reconstruction. The assumption is that the signals

could be sparsely represented in some domains.

Herrmann et al. (2008) observed that curvelets lead

to sparsity of seismic images. With this observation

and that random subsampling-related artifacts are not

sparse in the curvelet domain, Li et al. (2012) modify

the Gauss–Newton subproblem of FWI by incorpo-

rating a curvelet operator on the model update and

obtain the model update by solving ‘1-norm con-

strained sparsity-promoting optimization problems

(named as the MGNFWI method). Li et al. (2016)

explained that in certain cases it could be beneficial to

promote sparsity on the Gauss–Newton updates

instead of directly promoting sparsity on the model

itself. Although constraining the ‘1-norm of the des-

cent directions of FWI does not alter the underlying

FWI objective, the constrained model updates remain

descent directions and eliminate subsampling-related

artifacts. Li et al. (2016) investigated and analyzed

this behavior, in which nonlinear inversions benefit

from sparsity-promoting constraints on the model

updates.

In the MGNFWI scheme, Li et al. (2012, 2016)

solve the ‘1-norm constrained sparsity-promotion

subproblem relying on a spectral-gradient method

(i.e., SPG‘1), which is an open-source MATLAB

solver for ‘1-norm regularized least-squares problem

(van den Berg and Friedlander 2008). Nevertheless,

SPG‘1 is rather complicated so that it is difficult to

implement MGNFWI with SPG‘1 on realistic prob-

lems (Herrmann et al. 2015). The complexity of

SPG‘1 is represented, in part, by a multitude of

parameters involved (see Table 1), many subfunc-

tions inset, and hundreds of lines of the codes (which

are not preferred for the expensive FWI). To make

this paper self-contained, Appendix 1 provides a brief

introduction of SPG‘1 based on the work of van den

Berg and Friedlander (2008).

To facilitate realistic applications, we adapt a

relatively simple and effective linearized Bregman

(LB) method (Cai et al. 2009c, b; Yin 2010; Lorenz

et al. 2014a, b) to solve the large-scale sparsity-pro-

moting GNFWI subproblem. The LB method

recently has attracted a lot of attention because of its

efficiency and simplicity in solving ‘1-constrained

Table 1

Comparison of the main options between SPG‘1 and linearized

Bregman (LB)

SPG ‘1 options Description

tau Target ‘1-norm of the sparse model

sigma Target ‘2-norm of the data misfit

iterations Max number of iterations

nPrevVals Number of previous function values for line-

search

bpTol Tolerance for identifying a basis pursuit solution

lsTol Least-squares optimality tolerance

optTol Optimality tolerance

decTol Required relative change in primal objective

function for Newton; Larger ‘‘decTol’’ means

more frequent Newton updates

stepMin Minimum spectral step

stepMax Maximum spectral step

rootMethod Root finding method: 1 = linear, 2 = quadratic

maxLineErrors Maximum number of line-search failures

pivTol Threshold for significant Newton step

LB options Description

iterations Max number of iterations

l Threshold used for the soft-thresholding operation
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problems in CS (e.g., Herrmann et al. 2015; Chai

et al. 2017b). Lorenz et al. (2014b) stated that the LB

method is useful for inverse problems in which the

linear measurements are expensive and slow to

obtain. Using the LB method, Herrmann et al. (2015)

presented a fast online least-squares migration (LSM)

and concluded that the LB method converges to a

mixed one-two-norm penalized solution while

working on small subsets of data, making it particu-

larly suitable for large-scale and parallel industrial

implementations.

The rest of the paper is organized as follows:

First, the fundamental theory for the forward and

inverse problems of FWI is described in brief. We

then detail the theory and methodology of the lin-

earized Bregman method and its adaptation to a

frugal FWI with compressive sensing and sparsity-

promoting. Numerical experiments demonstrate the

performance of the proposed method. After dis-

cussing the technical aspects, limitations and

extensions of this approach, we summarize our

conclusions.

2. Theory and Methodology

2.1. FWI Forward Problem

The FWI theory is well-documented by many

researchers; however, for better elaboration of the

method proposed here, we transcribe some key

formulaes of FWI below, considering the technical

nature of this paper. We refer the reader to Virieux

and Operto (2009) for an excellent overview of FWI

in exploration geophysics. The forward modeling

problem takes up a vital role in FWI, and the majority

of the running time is spent on modeling of wave

propagation. Success of FWI strongly relies on the

accuracy, efficiency, and the level of physics

included in the modelling stencil. The reader is

referred to Carcione et al. (2002), Robertsson et al.

(2007), Ren and Liu (2015) for a series of publica-

tions on seismic modeling methods. We use the

matrix notations to denote the partial-differential

operators of the wave equation. In the time domain,

the wave equation can be written compactly as

(Marfurt 1984)

KuðtÞ �M
o2uðtÞ
ot2

¼ �sðtÞ; ð1Þ

where K is the stiffness matrix, the spatial coordi-

nates (x, y, z) are omitted for avoiding notational

clutter, u is the discretized wavefield arranged as a

column vector, t denotes the time, M is the mass

matrix, and s is the source term, also arranged as a

column vector. The stiffness and mass matrices are

computed by forming a discrete representation of the

underlying spatial partial-differential-equations

(PDEs) and the parameters.

Taking the temporal Fourier transform of Eq. 1

yields the frequency domain equation (aka the

Helmholtz equation)

HðxÞuðxÞ ¼ sðxÞ; ð2Þ

where H is the sparse complex-valued impedance

matrix, which is not perfectly symmetric because of

absorbing boundary conditions (Hustedt et al. 2004).

The most popular method for discretizing the wave

equations is the finite-difference method (Plessix and

Mulder 2004; Operto et al. 2007; Pan et al. 2012;

Ren and Liu 2015; Chen et al. 2017), although more

sophisticated approaches (e.g., finite-element

method) can be considered (Marfurt 1984).

The subsurface properties that we aim to obtain

are embedded in the coefficients of matrices K, M, H

of Eqs. 1–2. The relationship between the wavefield

and the subsurface parameters is nonlinear and can be

written compactly through an operator G, i.e.,

u ¼ GðmÞ. The model m represents some physical

parameters of the subsurface discretized over the

computational domain. The data modeled dmod can be

related to the wavefield u by a detection operator D,

which extracts the values of the wavefields computed

in the full computational domain at the receiver

positions for each source, i.e.,

dmod ¼ Du ¼ DGðmÞ ¼ F ðmÞ, where F is the

wrapped wave-equation-based nonlinear forward

modeling operator.

2.2. FWI Inverse Problem

FWI is based on minimization of the data residual

between the observed data dobs and the modeled data

dmod. Because of the size of problems we are dealing
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with and the computational cost involved, it is mostly

infeasible to consider a global optimization approach.

Therefore, the local optimization methods are com-

monly adopted to solve the nonlinear FWI problem.

Defining the misfit vector dd as the differences at the

receiver positions between dobs and dmod for each

source-receiver pair gives

ddj ¼ dobsj
� dmodj

; j ¼ ð1; 2; . . .;NÞ, where the sub-

scripted quantities ddj, dobsj
, and dmodj

are the

individual elements of dd, dobs and dmod. A norm

/ðmÞ of this misfit vector dd is referred to as the

objective function. As is common in many inverse

problems, we concentrate below on the ‘2-norm, i.e.,

/ðmÞ ¼ 1

2
ddk k22¼

1

2
dd�dd; ð3Þ

where the asterisk denotes the adjoint (transpose

conjugate), ensuring the objective function /ðmÞ is
real-valued for complex-valued data.

Letting the model m be represented as the

summation of an initial model m0 and a perturbation

model dm, the minimum of /ðmÞ is sought in the

vicinity of m0. The model variation vector dm is

given by

dm ¼ � o2/ðm0Þ
om2

� ��1
o/ðm0Þ
om

: ð4Þ

The perturbation model is searched in the opposite

direction of the steepest ascent (i.e., the gradient) of

the misfit function at m0. The second-order derivative

of the misfit function is the Hessian H, where

Hl;j ¼ o2/ðm0Þ
omlomj

. Detailed derivations of the first- and

second-order derivatives of the LS misfit function

with respect to the model parameter (i.e.,
o/ðmÞ
om and

o2/ðmÞ
om2 ) can be found in Virieux and Operto (2009).

The gradient in FWI, i.e.,
o/ðm0Þ
om ¼ �J�ðm0Þdd, is

equivalent to a reverse time migration (RTM) image

constructed using a cross-correlation imaging condi-

tion (Li et al. 2012). J is the Fréchet derivative matrix

(aka the Jacobian matrix), which is the matrix of all

first-order partial derivatives of a vector-valued

function. The elements of J are given by

Jij ¼
odmodi

omj
; ði ¼ 1; 2; . . .;NÞ; ðj ¼ 1; 2; . . .;MÞ. And

H ¼ o2/ðm0Þ
om2

¼ J�ðm0ÞJðm0Þ

� oJ�ðm0Þ
om1

dd
oJ�ðm0Þ
om2

dd � � � oJ
�ðm0Þ
omM

dd

� �
:

ð5Þ

Equation 5 can be rewritten as a sum of a first-order

term Ha and a second-order term R, i.e.,

H ¼ Ha þ R, where Ha ¼ J�ðm0ÞJðm0Þ and

R ¼ � oJ�ðm0Þ
om1

dd oJ�ðm0Þ
om2

dd � � � oJ
�ðm0Þ
omM

dd
h i

. Ha is

referred to as the approximate Hessian (Pratt et al.

1998). The elements in R are computed by cross-

correlating second-order partial derivatives with the

data residuals (Pan et al. 2016). The role of the term

R in the framework of FWI is correcting the gradient

for double-scattering effects. Inserting the gradient

and the Hessian into Eq. 4 yields

dm ¼ J�ðm0ÞJðm0Þ þ R½ ��1J�ðm0Þdd: ð6Þ

The method solving Eq. 6 is referred to as the Newton

method, whereas the method solving Eq. 6 when only

Ha is computed, i.e.,

dm ¼ J�ðm0ÞJðm0Þ½ ��1J�ðm0Þdd; ð7Þ

is referred to as the Gauss–Newton method (Pratt

et al. 1998). The first-order term Ha is relatively

convenient to calculate, whereas the second-order

term R is difficult to deal with. Thus, it is mostly

ignored (Pan et al. 2015). Although advances in

computer science and technology are impressive, due

to the huge amounts of memory and computation

required, the explicit calculations of H and H�1 are

still beyond current computational capability (Méti-

vier et al. 2013). To avoid expensive cost of

computing and inverting large Hessian matrices, we

concentrate on the Gauss–Newton method.

2.3. Gauss–Newton FWI with Compressive Sensing

and Sparsity-promoting

The GN method utilizes the pseudo-inverse of the

reduced Hessian, given by the combined action of the

Jacobian operator Jðm0Þ and its adjoint J�ðm0Þ. From
Eq. 7, we obtain

1088 X. Chai et al. Pure Appl. Geophys.



J�ðm0ÞJðm0Þdm ¼ J�ðm0Þdd; ð8Þ

which is equivalent to the least square solution of the

following equation

Jðm0Þdm ¼ dd: ð9Þ

We refer to the problem of solving Eq. 9 as the

GNFWI subproblem. Specifically, we focus on the

frequency-domain FWI in this paper. In the fre-

quency domain, each iteration for the GNFWI

subproblem requires 4K PDEs to be solved: two to

compute the action of Jðm0Þ and two for the action of

its adjoint J�ðm0Þ, where K ¼ nf ns, with nf and ns

being the number of frequencies and sources (Her-

rmann and Li 2012). To reduce the number of PDEs

to be solved, researchers proposed to assemble the

sources and the observed data into a smaller volume

via source-encoding and frequency subsampling. In

source-encoded FWI (e.g., Moghaddam et al. 2013),

FWI is performed on a linear combination of all

shots, called a supershot, rather than on each single

shot separately. Each individual shot contributes to

the supershot with a random weight that changes for

each iteration during the optimization. Then we solve

Jðm0Þdm ¼ dd: ð10Þ

We denote these randomly subsampled (or source-

encoded) quantities with the underbar. However, as

discussed in Schuster et al. (2011) and Herrmann and

Li (2012), an excessive subsampling will introduce

source crosstalks into the result.

The CS theory shows that compressible signals

can be restored from severely sub-Nyquist sampling

rates of incomplete and inaccurate measurements via

solving a sparsity-promoting problem (Aldawood

et al. 2014). To maximally exploit the sparsity, one

can employ some transforms (e.g., curvelet) that

afford a sparse representation of the target solution.

With the CS theory, we solve the following basis

pursuit denoising (BPDN) problem:

minfdm k
fdmk1 subject to

1

2
kJðm0ÞS�fdm � ddk22� r2;

ð11Þ

where S� denotes the adjoint of the sparsifying

transform operator S, determining dm ¼ S�fdm, with

fdm a vector of transform coefficients of dm. We refer

to problem 11 as the sparsity-promoting GNFWI

subproblem. To facilitate further formulation, we cast

problem 11 in a canonical form of

min
x
kxk1 subject to

1

2
kAx� bk22� r2; ð12Þ

where A ¼ Jðm0ÞS, x ¼ fdm, b ¼ dd. The more

sparse of x, the better of the solution.

Herrmann et al. (2008) showed that curvelets give

rise to sparsity of seismic images. Figure 1 depicts a

comparison between the decay of coefficients in the

physical domain and the curvelet domain. We can

speculate that the BP Salt model is a good example to

promote sparsity in the curvelet domain because it is

Figure 1
Transform coefficients of the model update dm, sorted from large

to small, normalized and plotted in percent of the number of the

transform coefficients. Gray line — physical domain (i.e., no

transform is applied). Black line — Curvelet domain. a For dm of

the BP Salt model. b For dm of the Marmousi2 model (Martin

et al. 2006). c For dm of the BG Compass model

Vol. 175, (2018) Linearized Bregman Method for FWI 1089



made of nearly homogeneous layers delineated by

sharp contrasts (see Figs. 1a and 3). A significantly

faster decay of the curvelet coefficients is evident,

which indicates that the curvelet domain offers a

better sparse representation of the model update dm
than the physical domain. Computing curvelet trans-

forms on the search directions does not introduce

serious computational overhead with respect to the

cost of the PDEs to be solved. The MGNFWI method

developed by Li et al. (2012, 2016) solves problem

12 with SPG‘1, which is rather complicated so that it

is difficult to apply it on realstic problems. We,

therefore, adapt a linearized Bregman (LB) method

(Cai et al. 2009b; Lorenz et al. 2014a, b) for solving

the large-scale sparsity-promoting Gauss–Newton

FWI subproblem.

2.4. The linearized Bregman Method for FWI

with CS and Sparsity-promoting

The LB method was introduced by Yin et al.

(2008) and analyzed by Yin (2010), Cai et al.

(2009b), and Osher et al. (2010) to approximately

solve the basis pursuit (BP) problem in CS. It is

proved by Cai et al. (2009a) that the LB method

converges to a solution of

min
x

lkxk1 þ
1

2
kxk22 subject to

1

2
Ax� bk k22� r2;

ð13Þ

where l[ 0. Algorithm 1 gives the pseudo-code of

the LB method for solving the linear equation system

Ax ¼ b. The simplicity and efficiency serve as the

main flavor of the LB method, making it attractive

relative to other Gauss–Newton optimizations. For

completeness, Appendix 1 provides a brief introduc-

tion of the theory of the Bregman method based on

the works of Yin (2010) and Lorenz et al. (2014a).

The dynamic step-size tl is defined as (Lorenz

et al. 2014a)

tl ¼ Axl � bk k22= A�PrðAxl � bÞk k22: ð14Þ

The projection function PrðAx� bÞ is designed to

handle the presence of noise, which involves

orthogonal projection onto the ‘2-norm ball and is

given by (Lorenz et al. 2014a)

PrðAx� bÞ ¼ max 0; 1� r= Ax� bk k2
� �

ðAx� bÞ:
ð15Þ

The component-wise soft shrinkage function

shrinkðx; lÞ is given by

shrinkðx; lÞ ¼ maxð xj j � l; 0ÞsignðxÞ; ð16Þ

where maxð�Þ obtains the maximum value, j � j gets
the absolute value, l is the threshold, and signð�Þ
extracts the sign of a real number x. The shrinkage

operator makes a vector sparse (and denoises). From

algorithm 1 we can see that the inversion of matrices

is not required.

1090 X. Chai et al. Pure Appl. Geophys.



Algorithm 2 provides the pseudo-code of adapting

the LB method to FWI. Lines 9–10 denote the LB

iterations. The frequency-domain FWI is disintegrated

into successive inversions of frequency batches with a

limited overlap. Each group consists of a limited

number of discrete frequencies that significantly

reduces the intrinsic redundancy of the data inverted

(Anagaw and Sacchi 2014). The high-frequency

component increases from one frequency batch to

the next, in consequence defining a multi-scale FWI

approach, which is helpful tomitigate the non-linearity

of FWI (Bunks et al. 1995; Sirgue and Pratt 2004).

The outer (multiscale) loop in line 3 moves from

one frequency group to the next. The data vector dobs
changes accordingly. The current stopping criterion

of the iterations of the nonlinear iteration loop (line 5)

and the linear iteration loop (line 7) is a crude one.

However, one can use a criterion based on model

quality or data fit. This would have provided a more

comprehensive assessment of the convergence rate

and computational efficiency (see, Castellanos et al.

2015). We regenerate the random codes/weights on

top of the linear loop (line 8), but not on top of the

nonlinear one (line 6). In algorithm 2 line 8, we then

subsample over source experiments (i.e., implement

source encoding) by randomized source superimpo-

sitions via the action of a source-encoding matrix

E 2 Rns�nsubs , which has randomized Gaussian-dis-

tributed entries. nsub
s is the number of the supershots,

where nsub
s � ns. The source encoding strategy

implemented here is consistent with that introduced

by Li et al. (2012, 2016).

For the stopping criteria in algorithm 2 line 3, it

will stop when it has visited all the frequency batches.

For the threshold l, we generally sort the transform

coefficients in the descending order and set l to be

Vol. 175, (2018) Linearized Bregman Method for FWI 1091



the value corresponding to a user-specified percent-

age of the total number of the transform coefficients.

We can also set l as a fraction of the maximum value

of the solution calculated at the first iteration.

3. Numerical Experiments on Sparse Recovery

Problems

One goal here is to provide a justification of the

superiority of the ‘1-norm regularized sparsity-pro-

motion for sparse recovery compared with the ‘2-

norm. Another goal is to show that the much simpler

LB method outperforms the rather complicated

SPG‘1 advocated by MGNFWI (Li et al. 2016). We

conducted a series of experiments on an underdeter-

mined sparse recovery problem. Figure 2a shows the

true model with 50 nonzero entries. There are 500

unknowns and 350 measurements in this experiment

(see Fig. 2a, b). For simulating noisy data, noises

were randomly generated as a percent (e.g., 100% in

this experiment) of the ‘2-norm of the noise-free data

and then added to the noise-free data. To obtain a ‘2-

norm solution, we use the LSQR algorithm imple-

mented in MATLAB to optimize

Figure 2
a Randomly generated sparse signal. The gray and black lines in panel b show the noise-free and noisy measurements, respectively. The

solutions for noise-free and noisy measurements produced by LSQR (c, d), SPG‘1 (e, f), LB (g, h) are separately displayed. The SNR, RLSE,

and elapsed time for the algorithms are correspondingly shown on the top of the panels

1092 X. Chai et al. Pure Appl. Geophys.



min
x

1

2
xk k22 subject to

1

2
Ax� bk k22� r2: ð17Þ

With the true model mtrue and the inverted model

minv, we use two strategies, the relative least-squares

error (RLSE) and the signal-to-noise ratio (SNR), to

evaluate the quality of the model inverted. The RLSE

is defined as (Moghaddam et al. 2013)

RLSE ¼ minv �mtruek k22= mtruek k22: ð18Þ

The smaller the RLSE, the better the inversion

results. SNR is computed by

SNRðdBÞ ¼ �20 log10
mtrue �minvk k2

mtruek k2
: ð19Þ

Figure 2 shows the performances of LSQR, SPG‘1,

and LB. The same number of iterations (10) is used.

The parameter s of SPG‘1 is set to be zero as sug-

gested by its authors (van den Berg and Friedlander

2008). The noise-factor r is set as zero for both noise-

free and noisy data, since we do not have an optimal

r value for field seismic data. There are many arti-

facts in the results produced by LSQR, i.e., ‘2-norm

constrained optimization for sparse recovery (see

Fig. 2c, d). Both SPG‘1 and LB produce high-accu-

racy results with correct amplitude for noise-free

data. Comparison of Fig. 2c, e, and g verifies the

superiority of sparsity-promoting via ‘1-norm. For the

noisy case, in comparison to the relatively low SNR

(almost zero, see Fig. 2b) of the observed data (100%

random noise added), the sparse recovery results

produced by LB (Fig. 2h) are acceptable relative to

that generated by SPG‘1 (Fig. 2f). Comparison of

Fig. 2e–h shows that the simpler LB method does a

better job (e.g., higher SNR and lower RLSE) than

SPG‘1. In addition, the elapsed time of LB is shorter

than that of SPG‘1. We further investigate this sim-

ple, efficient, and effective method, which has

potential applications in academic and industrial

fields.

4. Numerical Experiments on FWI

We then conducted experiments on LB adapted to

FWI. The tests were performed in the 2D frequency

domain using the acoustic modeling of the wave

propagation. The density was assumed to be constant.

The perfectly matched layer (PML) absorbing

boundary conditions (Berenger 1994) were imple-

mented along all of the edges of the model (including

the surface) to avoid edge reflections; therefore the

surface-related multiples were not taken into account

in this study. We use an optimal nine-point finite-

difference scheme for the Helmholtz equation with

PML (Chen et al. 2013). We used a well-documented

strategy in FWI that is inverting the data starting from

low frequencies and gradually moving toward higher

frequencies, which is beneficial to mitigate some of

the issues with local minima. When using source

encoding and frequency subsampling, the same

number of supershots, frequencies, and iterations

were used for all optimization methods involved. The

source was a band-passed wavelet and no energy

existed below 3 Hz.

4.1. Portion of the BP Salt model

This model contains low- and high-velocity

anomalies, and the size of the model (Fig. 3a) is

151� 601 with a grid spacing of dx = dz = 20 m. We

used a Ricker wavelet with a 12-Hz peak frequency

and a 0-s phase shift. A total number of 41

frequencies in the frequency range [3 23] Hz were

modeled. All simulations were carried out with 301

shot and 601 receiver positions sampled at 40 m and

20 m intervals, respectively. We began with a smooth

model (Fig. 3b) and worked with small batches of

frequency data at a time, each using 8 frequencies

and 30 randomly formulated simultaneous shots in

Algorithm 2 line 8, moving from low to high

frequencies in overlapping batches of 4. We used

10 GN outer iterations for each frequency group and

took the end result as initial guess for the next

frequency band. For each GN subproblem, we carried

out 20 inner iterations with the LB method. Figure 3c

shows the inverted velocity model, which illustrates

that the main characteristics of the true model are

precisely recovered, validating the feasibility of the

proposed approach.
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4.2. Marmousi2 Model

The grid size of the model shown in Fig. 4 is

281� 601 with a grid spacing of dx = dz = 12.5 m.

We used a Ricker wavelet with a peak frequency of

10 Hz and a phase shift of 0.1 s. A total number of 21

frequencies in the frequency range [3 13] Hz were

generated. All simulations were carried out with 301

shot and 601 receiver positions correspondingly

sampled at 25 m and 12.5 m intervals. We started

with a smooth model shown in Fig. 4b using 6

frequencies and 10 randomly formulated simultane-

ous shots and moving from low toward high

frequencies in overlapping batches of 3. We used

10 GN outer iterations for each frequency group and

20 inner iterations of LSQR and LB for each GN

subproblem.

The final velocity model for noise-free data

produced by LB (Fig. 4d) is close to the true model.

Except at the edges of the model where the illumi-

nation is incomplete, the full complexity of the 2D

feature is reconstructed with high-fidelity. The veloc-

ity model for noise-free data generated by LSQR

(Fig. 4c) is evidently worse than that obtained by LB.

The deep parts seem to be badly dealt with by LSQR.

In the presence of noise, the ill-posedness of FWI

increases. In order to invert the noise-contaminated

data, we added 20% random noise to the noise-free

data. The FWI result generated by LB (Fig. 4f) shows

that the noise slightly corrupts the model, but the

result still yields an accurate identification of the

model. The agreement with the true velocity profile is

satisfactory, considering the crudeness of the noise-

corrupted data. The results produced by LSQR

become more noisy than by LB. This test for data

with the presence of noise indicates the stability of

the proposed approach for imperfect data. Figure 4

demonstrates that the FWI result with the LB method

solving the ‘1-norm sparsity-promoting problem is

better than the FWI result with LSQR solving the ‘2-

norm LS problem. This is due to the benefits of

sparsity-promotion and the fact that utilizing the ‘1-

norm as a measurement of sparsity is better than

using the ‘2-norm (Herrmann and Li 2012; Chai et al.

2014, 2016, 2017a).

4.3. BG Compass Model

The experiment on a sedimentary part of the BG

Compass model aims to convince the readers that the

simple LB method can compete with and even

outperforms the complicated SPG‘1, and thus can

be an alternative option for MGNFWI (Li et al.

2016). We used the same data set and inversion

parameters as Li et al. (2012). Specifically, the

synthetic BG North Sea Compass model (Fig. 5a)

with a large degree of variability constrained by well

log data was used to generate the observed data with

a 12-Hz Ricker wavelet. A smooth starting model

without any lateral information (Fig. 5b) was used for

Figure 3
a Portion of the BP velocity model used for the numerical test of

the method proposed. b Initial model for the inversion. c Model

inverted
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FWI. This velocity model was designed to evaluate

the potential ability of FWI to resolve fine reservoir-

scale variations in the velocities, which makes it ideal

for SPFWI because this model can be well

approximated by only 5% of the largest curvelet

coefficients (see Fig. 1c) (Li et al. 2016). The model

size is 205� 701 with a grid spacing of dx = dz = 10

m. A total number of 58 frequencies in the frequency

Figure 4
FWI results for a down-sampled Marmousi2 model dataset. a True velocity model. b Starting velocity model. c, d show the FWI results

inverted with LSQR and LB for the noise-free data, respectively. e, f correspondingly display the results generated by LSQR and LB for the

noisy data. The SNR and RLSE of the corresponding FWI results are listed out in Table 2
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range [3 22.5] Hz were generated. All simulations

were carried out with 351 shot and 701 receiver

positions sampled at 20-m and 10-m intervals,

respectively, yielding a maximum offset of 7 km.

The inversions were carried out sequentially in 10

overlapping frequency batches, each using 7 different

randomly selected simultaneous shots and 10 selected

frequencies. Therefore, a single evaluation of the

misfit was 50 times cheaper than an evaluation of the

full misfit. We used 10 GN iterations for each

frequency group. For each GN subproblem, we used

20 inner iterations of SPG‘1 and LB. No changes

were made to the codes and results of Li et al. (2012).

The FWI results (shown in Fig. 5c, d) were

calculated using the same computing resources (1

node, 11 workers). The running time of FWI with LB

was substantially less than that with SPG‘1, where the

reduction was approximately 1
3
of the original time.

Comparison of Fig. 5c, d reveals that both are

Figure 5
BG Compass model. a True velocity model. b Starting velocity model. c Inverted velocity model with the method developed in Li et al.

(2012), for which SPG‘1 is used to solve the ‘1 sparsity-promoting problems to get the model updates, and SNR = 26.2944 (dB), RLSE =

0.0023. d Inverted velocity model with the linearized Bregman method, where SNR = 26.9938 (dB), RLSE = 0.0020

Table 2

SNR and RLSE of the FWI results generated by the LSQR and LB

methods for the noise-free and noisy Marmousi data

Data Criterion LSQR LB

Noise-free SNR (dB) 17.5233 18.8012

RLSE 0.0177 0.0132

Noisy SNR (dB) 17.2728 18.3811

RLSE 0.0187 0.0145
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comparable to the true model. Furthermore, the

structures and amplitudes produced by LB are more

clear and closer to the true model than those

generated by SPG‘1. Therefore, the much simpler

LB method does an excellent job compared to SPG‘1
in this case. Figure 6 shows two representative

velocity profiles within the model, from which it may

be concluded that not only were the features accu-

rately inverted, but also that the magnitudes of the

velocity perturbations were precisely imaged.

5. Discussion

The computational cost is an important factor for

realstic applications of FWI. The computational time

for producing a gradient accounts for the majority of

the cost, which is also in proportion to the total itera-

tion number. The computational time for the curvelet

transform and for the solution of dm ¼ S�x is almost

negligible with respect to the cost of the PDEs to be

solved. For the test examples of FWI, the number of

outer (nonlinear) and inner (linear) iterations is

empirically set to be 10 and 20, respectively. The

number of inner (linear) iterations should be designed

according to the LB algorithm (generally less than 30,

especially for the expensive and local optimization

FWI problems). How to optimally design these two

iteration levels is still an open issue. For all the FWI

test examples, we sort the transform coefficients of dm
in the descending order and set l to be the value cor-

responding to 5% of the total number of the transform

coefficients, as suggested by Fig. 1.

This study is based on CS theory, and the hidden

assumption is that the model variation at each itera-

tion dm could be sparsely represented with the

curvelet-transform. When the initial model is close to

the true model, the model difference dm contains

mostly small scale structures. Probably, the curvelet-

transformed dm could easily cluster into a few

coefficients. If the initial model is not sufficiently

close to the true model, the performance of the

Figure 6
Well data comparison at 2 km for methods SPG‘1 (a) and LB (b), respectively
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assessed method will be reduced. The FWI

scheme proposed here or MGNFWI is essentially a

migration-based FWI method, which employs a LSM

step to obtain the model perturbation. Overall, this

paper considers two methodological ingredients:

source encoding and ‘1-norm regularization with

linearized Bregman optimization. The first-order

motivation of the paper is to promote the use of the

linearized Bregman optimization in a general FWI

context, rather than to optimize the performance of

source encoding. The ‘1-norm regularization with

Bregman optimization is also beneficial without

source encoding. We recommend the reader to Chai

et al. (2017b) for examples on the imaging results

obtained with and without source encoding when the

‘1-norm regularization with LB optimization is used.

Like most FWI schemes, we assume having an

appropriate starting model that is close to the global

solution allowing successive relinearizations. Such

models can be obtained by reflection tomography,

velocity analysis, and first-arrival traveltime analysis

(Woodward et al. 2008; Taillandier et al. 2009), etc.

The objective function in Eq. 3 ignores incorporation

of a priori information on the data or on the model.

More realistic prior information can be exploited for

numerical stability. The implementation in this paper

is 2-D isotropic acoustic frequency domain FWI.

However, the LB method can be straightforwardly

applied to 2D/3D time/frequency domain FWI/

migration.

6. Conclusions

This study presents an implementation of a rela-

tively simple linearized Bregman method to solve the

large-scale sparsity-promoting Gauss–Newton FWI

subproblem. The assessed optimization algorithm relies

on compressive sensing implemented with a ‘1-norm

regularization in the curvelet domain applied to the

model update rather than the model itself and a lin-

earized Bregman optimization scheme. From the

inverted velocity model (and the representative

velocity profiles within the model), not only are the

main structures correctly inverted, but also that most of

the magnitudes of the velocity are accurately recov-

ered. The FWI result with the linearized Bregman

method solving the ‘1-norm sparsity-promoting prob-

lems is better than the FWI result with LSQR solving

the ‘2-norm LS problems, in terms of crosstalk elim-

ination andmodel resolution. This is due to the benefits

of sparsity-promotion. The much simpler LB method

does a comparable and even superior job compared to

the complicated SPG‘1 in terms of computational

efficiency and model quality, making the LB method a

viable alternative for realstic applications of FWI with

compressive sensing and sparsity-promoting.
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Appendix A

Deriving a Sparse Solution with SPG‘1

To solve the BPDN problem 12, SPG‘1 solves a

series of the ‘1-constrained LS problems, aka the
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LASSO problems, abbreviated for ‘‘Least Absolute

Shrinkage and Selection Operator’’:

min
x
kAx� bk2 subject tokxk1� s; ð20Þ

where s is a sparsity constraint on the solution x. For

proper parameter selections of r and s, the solutions

of BPDN and LASSO are consistent, and problems

12 and 20 are to some degree equivalent, which are

closely related by the Pareto curve defining the trade-

off between the ‘2-norm of the data residual (i.e., the

LASSO objective function) and the ‘1-norm of the

unknown vector x (i.e., the BPDN objective function)

(van den Berg and Friedlander 2008).

SPG‘1 uses a Newton-based root-finding algorithm

on the Pareto curve to obtain the value of s given an

estimate of the noise-level r and solves a sequence of

LASSO problems for gradually increasing s. The

solution for the current LASSO problem serves as an

initial candidate for the next LASSO problem. Solving

each LASSO problem itself utilizing the SPG method

involves some gradient updates. The SPG procedure

relies on the capability to project iterates onto the

feasible set xjkxk1� s
� �

. This is achieved by an

operator PsðcÞ :¼
argminx kc� xk2 subject tokxk1� s

� �
giving the

projection of a vector c onto the ‘1-norm ball with

radius s. Each iteration of the SPG algorithm searches

the projected gradient path Psðxl � aglÞ, where a is the
step length and gl is the current gradient for the

function kAx� bk22 (van den Berg and Friedlander

2008).

Let xs denotes a LASSO solution, and the single-

parameter function /ðsÞ ¼ kAxs � bk2 gives the ‘2-

norm of the data residual for each s	 0. Each

iteration of the root-finding algorithm requires the

evaluation of / and its derivative /0 at some s, and
thus the minimization of the LASSO problem. This is

an expensive subproblem potentially, and the validity

of SPG‘1 rests with the ability to solve this subprob-

lem. The implementation of SPG‘1 is structured

around major and inner iterations. Each major

iteration is responsible for determining the next

element of the sequence skf g and for activating the

SPG method to determine approximate values of

/ skð Þ and /0 skð Þ (van den Berg and Friedlander

2008).

Appendix B

The Bregman Distance and the Bregman Method

The Bregman and LB methods are based on

Bregman distance (Bregman 1967). Let Jð�Þ denotes
a convex function. Bregman distance with respect to

J between points x and y is defined as (Yin 2010)

D
p
J ðx; yÞ :¼ JðyÞ � JðxÞ � p; y� xh i; ð21Þ

where p 2 oJðxÞ is some subgradient in the subdif-

ferential of J at x, and a; bh i gives an inner product of
vectors a and b. If JðxÞ ¼ 1

2
kxk22, D

p
J ðx; yÞ ¼ 1

2
kx�

yk22 (Lorenz et al. 2014a). Note that D
p
J ðx; yÞ is not a

distance in the usual (metric) sense, because it is in

general neither necessarily symmetric, i.e.,

D
p
J ðx; yÞ 6¼ D

p
J ðy; xÞ, nor positive definite and does

not have to obey a (quasi-) triangle inequality (Lor-

enz et al. 2014a). Nevertheless, it does measure the

closeness between x and y in the sense that

D
p
J ðx; yÞ > 0 and D

p
J ðx; yÞ > D

p
J ðz; yÞ for all points z

on the line segment connecting x and y (Yin 2010;

Osher et al. 2010).

The original Bregman approach solves a series of

convex problems in an iterative scheme

xkþ1  min
x

D
pk

J ðx; xkÞ þ 1

2
Ax� bk k22; ð22Þ

for k ¼ 0; 1; � � �, starting from x0 ¼ 0 and p0 ¼ 0. In

expression 22, each pkþ1 is obtained based on the

optimality condition (Yin 2010)

0 2 oJðxkþ1Þ � pk þ A�ðAxkþ1 � bÞ; ð23Þ

yielding pkþ1 :¼ pk � A� Axkþ1 � b
� �

. To improve

the performance of Bregman iteration, the LB itera-

tion was invented, the idea of which is to approximate

the last term in expression 22 by its Taylor expansion

around xk (Yin 2010). Specifically, LB is obtained by

linearizing the last term in 22 into A� Axk � b
� �

; x
� 	

and adding the ‘2-proximity term x� xk


 

2

2
.
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