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Abstract—Determination of the frequency of large earthquakes

is of paramount importance for seismic risk assessment as large

events contribute to significant fraction of the total deformation and

these long return period events with low probability of occurrence

are not easily captured by classical distributions. Generally, with a

small catalogue these larger events follow different distribution

function from the smaller and intermediate events. It is thus of

special importance to use statistical methods that analyse as closely

as possible the range of its extreme values or the tail of the dis-

tributions in addition to the main distributions. The generalised

Pareto distribution family is widely used for modelling the events

which are crossing a specified threshold value. The Pareto, Trun-

cated Pareto, and Tapered Pareto are the special cases of the

generalised Pareto family. In this work, the probability of earth-

quake occurrence has been estimated using the Pareto, Truncated

Pareto, and Tapered Pareto distributions. As a case study, the

Himalayas whose orogeny lies in generation of large earthquakes

and which is one of the most active zones of the world, has been

considered. The whole Himalayan region has been divided into five

seismic source zones according to seismotectonic and clustering of

events. Estimated probabilities of occurrence of earthquakes have

also been compared with the modified Gutenberg–Richter distri-

bution and the characteristics recurrence distribution. The statistical

analysis reveals that the Tapered Pareto distribution better

describes seismicity for the seismic source zones in comparison to

other distributions considered in the present study.

Key words: Himalayas, large return periods, Tapered Pareto,

Truncated Pareto, Gutenberg–Richter (G–R) relation, maximum

likelihood.

1. Introduction

The frequency-size distribution of earthquakes

has attracted interest from many researchers starting

with its first discussion by Ishimoto and Iida (1939)

followed by Gutenberg and Richter (1944) which is

one of the most common magnitude–frequency

relations used in seismology. The Gutenberg–Richter

law is effective with high accuracy for small and

moderate magnitudes, but for small space–time vol-

umes provides highly uncertain and sometimes

unstable estimates because of the power-law charac-

ter of the earthquake size distribution and insufficient

instrumental and historical earthquake records for

relatively small seismic regions (McCaffrey 1997;

Holt et al. 2000). The law depends on the size of the

catalogue and reveals no information about maxi-

mum magnitude.

The largest earthquake in a region is an important

parameter in earthquake hazard assessment and dis-

aster management. These large events contribute

significantly to the total deformation, and the long

return period events with low probability of occur-

rence are not easily captured by the classical

distributions. The seismic hazard assessment exer-

cises may fail to capture the very long return period

events due to relatively short catalogue data available

and may fail to model the tail portion of the occur-

rence models, for example with a Poisson model. The

general methodologies to assess the largest magni-

tude are based on a seismotectonic modelling using

past earthquake data and tectonics of the region. The

absence of a well-documented earthquake cycle is a

considerable impediment to quantifying seismic risk

correctly. It is thus of special importance to develop

statistical methods that analyse as closely as possible

the range of its extreme values or the tail of the

distributions in addition to the whole of the distri-

butions. Several investigations (Bird and Kagan

2004; Cosentino et al. 1977; Kagan

1991, 1996, 1999, 2002a, b; Kijko and Sellevoll

1989, 1992; Knopoff et al. 1982; Main et al. 1999;

Ogata and Katsura 1993; Pisarenko and Sornette

2003, 2004; Utsu 1999; Wu 2000; Pisarenko and

Rodkin 2007) were conducted in the past for finding a
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suitable description of the tail of the magnitude fre-

quency distribution. For the large event distribution

Pacheco and Sykes (1992) suggested visual inspec-

tion, Sornette et al. (1996) pointed out Monte-Carlo

simulations, Kagan (1997, 1999) and Kagan and

Schoenberg (2001) suggested Maximum likelihood

estimation of the proposed Pareto distribution tapered

by an exponential distribution. Several parametric

families, such as Gamma distributions (Main and

Burton 1984; Kagan 1994, 1997), modified Pareto

distribution (Kagan and Schoenberg 2001) and Wei-

bull distributions (Laherrere and Sornette 1998) were

suggested for earthquake moment distributions

including the tail range, but none of these models

could be universally accepted. One of the best known

modifications of the G–R distribution (Kagan 1997;

Kagan and Schoenberg 2001; Bird and Kagan 2004)

was multiplication of the power law distribution of

seismic moments (which corresponds to the modified

G–R distribution of magnitudes) by an exponential

taper.

To look into the behaviour of large events the

Himalaya region has been taken as a case study. The

Himalayan tectonic zone, where Indian plate drives

under the Eurasian plate, rapidly releases strain over

large areas generating great earthquakes with long

intervals. The Himalayan arc extends over a distance

of about 2900 km and has experienced five great

earthquakes (1505, 1803, 1897, 1934 and 2015) with

magnitudes exceeding 8 (Mw) and numerous magni-

tudes 7 (Mw). In the present study, theoretical

distributions of earthquake size, especially dealing

with large return periods of earthquakes, have been

considered for testing various distributions.

1.1. Seismic Hazard Assessment Approaches

The distribution of earthquake magnitude in a

given period of time can be described by a recurrence

low. The following section describes the classical

approach using the G–R distribution along with three

of the probability distributions being used in the

present study namely: Pareto, Truncated Pareto, and

Tapered Pareto distributions.

1.2. Classical Approach

The classical approach relates the cumulative

occurrence rate of earthquakes. Usually the G–R

distribution indicated a linear relationship on a log

linear plot between earthquake magnitude M and

the total number of events N(M) greater than equal

to M. The completeness is considered with bounded

G–R distribution. If the catalogue completeness

threshold is constant in time, we can analyse two

distributions a temporal sequence of earthquake

numbers and earthquake size. Usually the temporal

distribution of the number of events follows

memoryless distribution, i.e., all events are inde-

pendent of other events (Molchan and

Podgaetskaya 1973; Kijko and Graham 1998).

The density function, n(M), defining the occurrence

rate of earthquakes per unit magnitude at magni-

tude M can be defined as

nðMÞ ¼ � dNðMÞ
dM

¼ NðMminÞ � b � e�b M�Mminð Þ;

ð1Þ

where Mmin is lower threshold magnitude and

N(Mmin) is the cumulative rate of occurrence of

earthquakes with magnitude M C Mmin and

b = b 9 ln 10 where b is the seismicity constant in

the G–R distribution. In reality, the earthquake

magnitude for a seismic source has to be charac-

terised by an upper bound. Thus, a truncation of the

density function of Eq. (1) is necessary in practical

hazard analysis applications. The corresponding

density function n(M) becomes

nðMÞ ¼ NðMminÞ � b � e�b M�Mminð ÞH Mmax �Mð Þ;
ð2Þ

where H(�) is the Heaviside step function. To have

correct number of earthquakes with magnitude

greater than or equal to Mmin, this needs to be nor-

malised by ð1� e�bðMmax�MminÞÞ

nðMÞ ¼ NðMminÞ � b � e�bðM�MminÞH Mmax �Mð Þ
1� e�bðMmax�MminÞ

:

ð3Þ

The corresponding cumulative distribution function is

obtained as
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NðMÞ ¼ NðMminÞ
e�b � M � e�b � Mmax

e�b � Mmin � e�b � Mmax
HðMmax

�MÞ:
ð4Þ

In the relationship given by Eq. (4), the occurrence

rate N(M) reduces exponentially to zero as M ap-

proaches Mmax, but the total number N(Mmin) of

earthquakes with magnitudes greater than or equal

to the threshold magnitude Mmin remains unaltered.

This model is therefore termed as the modified

Gutenberg–Richter or exponential recurrence

model.

Some seismic sources are seen to produce more

frequent earthquakes in a narrow range of magni-

tude around Mmax than that described by the

exponentially decaying model of Eqs. (3) and (4).

For such cases, characteristic recurrence model

described by Aki (1983) and Schwartz and Cop-

persmith (1984) may be considered as more

appropriate. Youngs and Coppersmith (1985) pro-

posed the characteristic earthquake model for

certain faults which experience the large earth-

quakes. The density function for the characteristics

recurrence model can be defined as

n Mð Þ ¼ N Mminð Þbe�b M�Mminð Þ; Mmin �M�Mch

nc ¼ N Mminð Þbe�b M0�Mminð Þ; Mch\M�Mmax

�
;

ð5Þ

where Mch ¼ Mmax � 1 and M0 ¼ Mch � 0:5: The

corresponding cumulative distribution function can

be written as

N Mð Þ

¼ N Mminð Þ e�b M�Mminð Þ � e�b Mch�Mminð Þ� �
þ nc Mmin �M�Mch

nc � Mmax �Mð Þ; Mch\M�Mmax

(
:

ð6Þ

The characteristic recurrence model is supported

theoretically as well as by observations by Swan et al.

(1980), Papageorgiou and Aki (1983) and others.

1.3. Pareto Distribution

The classical approach of Gutenberg and

Richter (1944) shows a power-law decay of mag-

nitude size. The Pareto distribution is used to

describe a phenomenon which exhibit power-law

decay of sizes above a minimum threshold size.

The Pareto distribution (Coles 2001) is useful to

study the tail of the distribution of the earthquake

events with magnitude above a predefined thresh-

old. The Pareto distribution allows fitting

efficiently the seismic moment–frequency distribu-

tion only in the tail portion which contains reliable

moment and occurrence times of the extreme

largest events. Therefore, even an incomplete

seismicity containing reliable seismic moment and

times of the largest events becomes useful to

estimate seismic hazard parameters together with

the Pareto distribution (Kagan 1993).

Statistical tests of whether a Pareto or some other

distribution best describes the tail of a given empir-

ical distribution are discussed by Kagan (2002a) and

Clauset et al. (2009). The earthquake magnitude is

related to the scalar seismic moment M0 as (Hanks

and Kanamori 1979)

M ¼ 2

3

� �
log10 M0 � 10:7; ð7Þ

where M0 ¼ ald expressed in dyne-cm units (where

l is an average shear elastic coefficient of the crust, d

is the average slip of the earthquake over a surface d

of rupture). The G–R distribution translated from

magnitude to seismic moment using Eq. (7) and the

number N M0ð Þ of earthquakes with seismic moment

above M0 becomes

N M0ð Þ�M
�b
0 ; ð8Þ

where b = 2/3 9 b is the index parameter of the

distribution. Introducing the appropriate threshold

seismic moment M0t, one obtains the complementary

of the distribution function of Pareto for seismic

moments:

�F M0ð Þ ¼ M0

M0t

� ��b

; M0t �M0: ð9Þ

The Tails function �F M0ð Þ as having power-law

tails. This description is especially useful when

describing and modelling processes with large

deviations, a situation where one is primarily inter-

ested in the largest possible observations. In
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seismology, the Pareto distribution describes the

distribution of the seismic moment released in

earthquakes as a power-law.

1.4. Truncated Pareto distribution

The Pareto distribution is unbounded; however,

each seismic source zone can release only limited

energy, implicating that the Pareto distribution must

be modified for large seismic moments. This problem

is solved by introducing an additional parameter

called the maximum moment M0U into the distribu-

tion. Anderson and Luco (1983) proposed a

truncation from above at M0U of either the cumula-

tive distribution, or its density distribution.

For the Pareto distribution with truncation at both

ends, the probability density is

f M0ð Þ ¼ M
b
0UM

b
0t

M
b
0U �M

b
0t

M
�1�b
0 ; M0t �M0 �M0U ;

ð10Þ

and the Tail function is

�F M0ð Þ ¼
M0t=M0

� �b� M0t=M0U

� �b
1� M0t=M0U

	 
b ; M0t �M0 �M0U :

ð11Þ

Similar considerations led to the use of the Tapered

Pareto distribution by Jackson and Kagan (1999), Vere-

Jones et al. (2001) and Kagan and Schoenberg (2001).

1.5. Tapered Pareto distribution

The Tapered distribution has an exponential taper

applied to the cumulative number of events with

seismic moment larger than M0. The corresponding

Tail function becomes

�F M0ð Þ ¼ M0t=M0

	 
b
exp

M0t �M0

M0x

� �
; M0t �M0\M0x:

ð12Þ

The corresponding probability density function is

f M0ð Þ ¼ b
M00

þ 1

M0x

� �
M0t=M0

	 
b
exp

M0t �M0

M0x

� �
;

ð13Þ

where M0x is the seismic moment for the largest

earthquake event. Some researchers (Jackson and

Kagan 1999; Vere-Jones et al. 2001; Kagan and

Schoenberg 2001) have proposed that earthquake

sizes may be well described by a Tapered Pareto

distribution which has small exponential tails but is

otherwise similar to the Pareto distribution.

2. Parameter estimation of distributions

In the present study, the parameters b and

N(Mmin) of Eq. (4) are estimated using available data

on past earthquakes. The parameter b for a part of the

catalogue with the minimum magnitude of com-

pleteness Mc can then be evaluated using the

maximum likelihood method (Aki 1965; Utsu 1965)

as �M �Mcð Þ�1
where �M is the average of all the

available magnitudes greater than or equal to MC

during the period of completeness. Kijko and Smit

(2012) have extended the Aki-Utsu b value estimator

for magnitude grouped data. If M1
C; M2

C; . . .;M
S
C are

the minimum magnitudes of completeness for periods

t1; t2; . . .; tS with number of events in various inter-

vals as n1; n2; . . .; nS, respectively, then the

generalised Aki-Utsu b-value estimator is given by

b ¼ r1

b1
þ r2

b2
þ � � � þ rS

bS

� ��1

; ð14Þ

where ri ¼ ni=N with N as the total number of events

in all the intervals of completeness and bi is the

classic Aki-Utsu estimator for ith interval. Kijko and

Smit (2012) have given an expression for the maxi-

mum likelihood estimator of occurrence rate,

NðMminÞ of events with magnitude equal to or greater

than Mmin as

NðMminÞ ¼ NPS
i¼1 ti exp �bðMi

C �MminÞ
� � : ð15Þ

If Mmin is the minimum magnitude of complete-

ness for the entire duration of the catalogue, then

there is only one interval with M1
l ¼ Mmin and t1 = T

for which the relation of Eq. (15) gives

NðMminÞ ¼ N=T , as expected.

Pareto distribution has one parameter b for esti-

mation and the maximum likelihood estimator

4316 C. Chaudhary and M. L. Sharma Pure Appl. Geophys.



method has been used to estimate b. For Pareto dis-

tribution the log-likelihood function for n

observations of the seismic moment is

lo ¼ n b log M0tð Þ þ log b½ � � 1� bð Þ
Xn
i

logM0t:

ð16Þ

The maximum likelihood equation of b (Deemer

and Votaw 1955; Aki 1965; Kagan 2002a) is

b̂ ¼ nPn
i log

M0i

M0t

	 
 ; ð17Þ

with standard error rb ¼ b̂ffiffi
n

p The Pareto distribution

has no upper limit of seismic moment and incorpo-

rates the maximum moment M0u in Truncated Pareto

distribution. For the Truncated Pareto distribution the

log-likelihood function for n observations of the

seismic moment is

lo ¼ nb logM0t þ n log b� ð1þ bÞ logM0i

� log 1� M0t

M0u

� �b
 !

: ð18Þ

The maximum likelihood equation of b̂ for Truncated

Pareto distribution (Kagan 2002a) is

1

b̂
� log M0u=M0tð Þ

M0u=M0tð Þb̂�1
� 1

n

Xn
i¼1

log
M0i

M0t

� �
¼ 0: ð19Þ

b value is estimated by solving it iteratively. The

standard error of b̂ equation is

rb ¼
1� M0t=M0uð Þbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n 1� M0t=M0uð Þb
	 
2

b̂�2 � M0t=M0uð Þb log M0u=M0tð Þð Þ2
� �s :

ð20Þ

To estimate M0u, Pisarenko (1991) and Kijko and

Graham (1998) proposed a method based on statis-

tical moment of Truncated Pareto distribution which

is

M̂0u ¼ M0n 1þ 1

nb
M0n=M0tð Þb�1

h i� �
: ð21Þ

The log likelihood equation of Tapered Pareto

distribution is

lo ¼ nb logM0t þ
I

M0x

nM0t �
Xn
i¼1

M0i

 !

� b
Xn
i¼1

logM0i þ
Xn
i¼1

log
b
M0i

þ 1

M0x

� �
: ð22Þ

Maximum likelihood equations of M0x and b for

Tapered Pareto distribution are

Xn
i¼1

1

b þ hM0i
þ
Xn
i¼1

log
M0t

M0i

� �
¼ 0; ð23Þ

Xn
i¼1

M0i

bþ hM0i
þ
Xn
i¼1

M0i �M0t ¼ 0; ð24Þ

where h ¼ 1
M0x

. For both Tapered and Truncated

Pareto distribution, the maximum likelihood equation

of b is determined by the Eqs. (23) and (24) by

iteration. To look into the behaviour of large events

using the above said distributions, their application

has been tested by taking the Himalaya region as case

study.

3. The Himalayas: A Case Study

The Himalayan front is seismically one of the

most active regions of the world and has experienced

both great to moderate earthquakes in the recent past.

The Himalayan tectonic zone, being a collision plate

boundary, is manifested with a number of north-

dipping thrusts that are exposed at the surface. During

the past few decades the Himalayan region has been

studied fairly extensively in terms of present defor-

mation and the seismicity is mostly attributed to the

continent–continent collision where the Indian plate

is underthrusting the Eurassian plate. India has been

thrusting underneath Tibet since *55 Ma (Besse and

Courtillot 1988; Dewey et al. 1989). India’s conver-

gence into Asia is approximately 18 mm/years

(Wang et al. 2001). Out of 36 mm/year (SSE) India–

Sunda plate motion, about *16 mm/year motion is

accommodated in Indo-Burmese Fold and Thrust

Belt, both as normal convergence (*6 mm/year) and

active slip (*7–11 mm/year) in this region (Barman

et al. 2017). A global GPS measurement was done

and published in http://gsrm2.unavco.org/model/

velocities/GEM_GSRM_VelocityViewer.html where
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it is shown that the convergence rate across the

Himalaya is well estimated with 13–16 mm/year.

This is significantly lower than that claimed by many

authors (Bilham et al. 1997; Kundu et al. 2014; Ader

et al. 2012). The accumulated strain energy is being

released in the form of major earthquakes. The cat-

alogue on the occurrence of earthquakes from

Himalayan region has been compiled for its use in the

proposed modelling to estimate the various proba-

bilities of occurrence.

4. Data and Resources

The published earthquake information has been

used to compile earthquake catalogue for the present

study. In addition to the catalogue compiled by I.

D. Gupta (personal communication) for the period

1255–2015, the main sources of non-instrumental and

historical data considered for periods prior to 1890

are Baird-Smith (Baird Smith 1843a, b), Oldham

(1883), Milne (1911), Lee et al. (1976), and Quitt-

meyer and Jacob (1979). For the consideration of

early instrumental data for the period from 1890 to

1964 Gutenberg and Richter (1954), Gutenberg

(1956) and Rothe (1969) are considered. Some data

have also been added from improved publications

also namely Abe (1981), Abe and Noguchi

(1983a, b), Pacheco and Sykes (1992), Engdahl and

Villaseñor (2002), Ambraseys (2000), Ambraseys

and Douglas (2004), and Martin and Szeliga (2010).

The instrumental data for 1964–2015 have been

collected from the website of International Seismo-

logical Centre (ISC) http://www.isc.ac.uk/of UK,

National Earthquake Information Centre (NEIC) of

USGS http://earthquake.usgs.gov/earthquake/search/

and additional data have been taken from Indian

Meteorological Department (IMD).

The compiled catalogue is available in local

magnitude Richter’s scale ML, surface wave magni-

tude Ms, Body wave magnitude mb, and moment

magnitude Mw. For the homogenization, all magni-

tudes of pre instrumental data are converted into

moment magnitude Mw, by using empirical conver-

sion relations (Gutenberg 1956; Chung and

Bernreuter 1981; Hanks and Kanamori 1979). For

instrumental data the Scordilis (2006) conversion

relation has been used. Scordilis (2006) has devel-

oped the conversion relations from new MS and mb to

MW using a very large worldwide database from ISC,

NEIC and CMT catalogues for the period 1965–2003.

The window method is used for removing fore-

shocks and aftershock proposed by the Uhrhammer

(1986). Initially 9050 earthquake events were present

in the catalogue and after declustering the catalogue

we had 5220 independent earthquake events. The

seismicity thus obtained was plotted along with the

tectonic of the Himalaya region.

The division of the study area into seismotectonic

segments which are homogeneous parts of the seis-

mic source zones is one of the basic requirements for

the application of the estimation procedure for seis-

mic hazard parameters. The Himalaya region (26�–
38�N and 68�–98�E) is seismically very active and

highly complicated from a seismotectonic point of

view. The entire Himalayas has been divided into five

seismic source zones based on seismotectonic, seis-

micity distribution, topography variations, and

various constraints that were considered in previous

studies (Sharma 2003; Sharma and Lindholm 2012;

Shanker and Sharma 1997; Sharma and Arora 2005).

The five seismic source zones along the tectonic

feature of area are as follows:

Seismic Source Zone I 30.92�–36.13�N and

73.71�–79.91�E
Seismic Source Zone II 27.85�–33.09�N and

77.44�–84.39�E
Seismic Source Zone III 26.27�–30.71�N and

82.17�–87.76�E
Seismic Source Zone IV 26.06�–29.94�N and

87.12�–91.09�E
Seismic Source Zone V 26.94�–30.92�N and

91.09�–96.63�E
The seismic source zones SSZ I to SSZ V are

shown in Fig. 1 which also shows the main regional

features and epicentres of Mw C4.0 that have occur-

red during the period 1255–2015.

The number of observed events for all seismic

source zones along with the cumulative number of

events in each seismic source zone is shown in Fig. 2.

Further, the magnitude of completeness estimated

for the five seismic source zones using Woessner and

Wiemer (2005) methods is shown in Fig. 2. The

magnitudes of completeness for the five seismic
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source zones are presented in Table 1. This has been

used for further estimation of parameters. The periods

of completeness for different magnitude ranges has

been estimated by the Stepp (1972) Method.

5. Application of Probability Distributions

As a practical consideration, we simply used five

statistical probability models for illustrating the of

earthquake occurrence. In the present study, the Tail

distribution functions of the Pareto, the Truncated

Pareto and the Tapered Pareto distributions are

expressed by Eqs. (9), (11), and (12), respectively.

For the purpose of comparison with the modified G-R

distribution and the characteristics recurrence distri-

bution, Eqs. (4) and (6) have been normalised by

NðMmin �M\MmaxÞ, which gives the complemen-

tary of the distribution function of the magnitude.

Then the complementary of the distribution function

or tail function for modified G–R may be written as

F Mð Þ ¼ e�b � M � e�b �Mmax

e�b � Mmin � e�b � Mmax
H Mmax �Mð Þ; ð25Þ

and for the characteristic recurrence distribution as

�F Mð Þ

¼
e�b M�Mminð Þ �e�b Mch�Mminð Þ� �

þbe�b M0�Mminð Þ Mmin�M�Mch

be�b M0�Mminð Þ � Mmax�Mð Þ; Mch\M�Mmax

(
:

ð26Þ

These probabilistic distributions have been con-

sidered for five seismogenic sources to revisit the

return periods of large earthquakes for each seismic

source zone.

In the present study the Chi Square test has been

used to distinguish between the probability distribu-

tions. The Pareto, Truncated Pareto, and Tapered

Pareto distribution are applied to describe the prob-

ability of occurrence of seismic moment for each

seismic source zone. Then the results are compared

with the modified G–R and the Characteristic earth-

quake recurrence models.

Figure 1
Characterization of 5 seismic source zones in the Himalaya regions on the basis of seismicity and tectonics. The epicentral distribution of

independent earthquakes ofMW C 5.0 that occurred during the period 1255–2015 are also shown in the figure along with seismic source zones
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Figure 2
Distribution of number of events with respect to magnitude in each seismic source zone and magnitude of completeness estimated for all

seismic source zones as defined in Fig. 1
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The modified G–R distribution uses two parame-

ters: b and NðMminÞ for estimating the probability of

earthquake occurrence. To estimate the values of b
and NðMminÞ for each seismic source zone, the

maximum likelihood method has been applied and

the values of parameters of the G–R distribution are

presented in Table 1. The highest and the lowest

values of NðMminÞ have been observed for SSZ V and

SSZ II, respectively, which clearly indicates the

seismic source zones having the most and least

seismic activity within the study area.

Further, the CDF has been estimated using

Eqs. (4) and (6) for the modified G–R and the char-

acteristics recurrence models, respectively. While the

modified G–R model decays smoothly (say after

magnitude 7), the characteristic model shows differ-

ent behaviour for higher magnitude as shown in

Fig. 3. Figure 3 shows that, for each seismic source

zone, the modified G–R distribution yields the lowest

probability of occurrence of earthquake events while

the characteristic distribution estimates the highest

for large earthquakes events.

The Pareto distribution has only one parameter b ,

which has been estimated using maximum likelihood

method along with its standard error rb for all seis-

mic source zones using Eq. (17). The b values thus

estimated are given in Table 2. The Truncated Pareto

uses two parameters: b and M0U for estimation of

probability of occurrence of earthquake events. The

maximum likelihood estimates of the values of b and

M0U for truncated Pareto distribution for each seismic

source zones have been estimated using Eqs. (19) and

(21) and the same are also reported in Table 2. The

Tapered Pareto distribution also uses two parameters:

b and M0x, and these two can be estimated by solving

maximum likelihood equations of b and M0x as given

in Eqs. (23) and (24), respectively. The values of

different parameters used in Pareto, Truncated Pareto,

and Tapered Pareto distributions are shown in

Table II for all seismic source zones.

The b estimation for the Pareto distribution

resulted in relatively higher values than the Truncated

and Tapered Pareto distribution for most of the

seismic source zones. Table 2 shows that the b
parameter of the Pareto distribution is highest for SSZ

V and the estimated upper seismic moment using the

Truncated Pareto is larger than the Tapered Pareto for

all five seismic source zones.

The probability of occurrence of seismic events or

the Tail functions of the Pareto, the Truncated Pareto,

and the Tapered Pareto Distributions have been

estimated using Eqs. (9), (11), and (12), respectively,

for all seismic source zones and are shown in Fig. 4.

Figure 4 reveals that the modified G–R yields the

lowest probabilities of occurrence while the Charac-

teristic distribution estimates are on the higher side.

One of the conspicuous interpretations made from

Fig. 4 is the linearity of Pareto distribution on log–

log scale showing that it is not capturing the beha-

viour of other distributions at higher magnitudes as

shown in the Fig. 4.

The performance of Chi Square test on five dis-

tributions for all the seismic source zones has been

carried out, and permitted acceptance of all consid-

ered probabilistic distributions for further use.

The probability of occurrence of large earthquake

events, i.e., 6, 7 and 8 (Mw) as defined by their

seismic moments was estimated in different seismic

source zones using the Pareto, Truncated Pareto, and

Tapered Pareto distributions. The probabilities are

comparable for the three distributions at magnitude 6,

but it differs for magnitude 8 viz. while the Pareto

gives 0.0013, 0.0024, 0.035, 0.000112, and 0.00052,

respectively, for seismic source zone SSZ I to SSZ V,

the Tapered Pareto gives 0.000563, 0.0013, 0.0012,

0.0.000131, and 0.000397, respectively, for seismic

source zone SSZ I to SSZ V and Truncated Pareto

gives values in between. The results are given in

Table 3.

One of the conspicuous conclusions obtained is

that due to the high seismicity in SSZ V, there is a

continuous release of strain energy and hence, the

Table 1

Parameters of G–R distribution for all seismic source zones

SSZ MC b a b N(MC)

I 4.3 2.00 4.611 0.88 6.54

II 4.4 1.90 4.248 0.85 3.16

III 4.4 1.79 4.010 0.78 3.78

IV 4.0 2.00 4.216 0.88 4.90

V 4.0 1.80 4.356 0.81 12.88

See text for definitions
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Figure 3
Cumulative rate of occurrence using the modified G–R and the charecteristics recurrence models for each seismic source zone. Observed data

is also plotted for each seismic source zone
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probability of occurrence of a large event is the least

here. On the other hand, SSZ III possesses the highest

susceptibility of occurrence of a large event. How-

ever, the results tend to vary when a different set of

distributions has been applied.

For seismic source zone SSZ I, the result shows

that the Pareto distribution yields higher probability

of occurrence at seismic moment 2E?26 dyne-cm

(6.8 M). However, for more than 2E?26 dyne-cm

(6.8 Mw) the characteristics model shows higher

probability (see Fig. 4). The large earthquakes are of

magnitude 8.5 and 8 which occurred in 1555 (Kash-

mir) and 1905 (Kangra), respectively. The seismicity

includes activity along the Herat fault north of Kabul,

the Chaman fault, and the mountain range in the

Pamir Knot with thrust type of faulting. Seismic

source zone SSZ II includes the MBT, and the Indus

Suture zone and the probability of occurrence for all

earthquake events is the highest when estimated using

the Pareto Distribution and the lowest for the modi-

fied G–R distribution (Fig. 4). The observed largest

magnitude is 8.2, which occurred in 1505.

In the seismic source zone SSZ III the largest

event was the Nepal–Bihar Earthquake (magnitude

8.1) which occurred in 1934. Recently, a large

earthquake of magnitude 7.8 occurred on 25th April

2015 in Nepal. The probability of occurrence esti-

mated by the Pareto Distribution is observed to be

higher for all magnitude ranges, and the modified G–

R distribution yields the lowest value of the same

(Fig. 4). For seismic source zone SSZ IV, the largest

event of magnitude 6.8 occurred in 1951. The prob-

ability of occurrence estimated by the characteristic

distribution is the highest while the modified G–R

distribution shows the lowest value of probability of

occurrence for entire seismic moment range (Fig. 4).

The seismic source zone SSZ V is the most

seismically active region in the Himalayan belt and

includes the junction of three plates, namely the

Indian plate, Eurasian plate, and Burmese plate. This

has experienced great earthquakes of magnitude Mw

8.1 in 1897 (Assam), and the probability of occur-

rence estimated by Characteristic distribution is on

the higher side as compared to other distributions for

large seismic moment values. The modified G–R

distribution shows the lowest value of probability of

occurrence for same values (Fig. 4). The modified G–

R distribution and the Tapered Pareto distribution

show comparable probability of occurrence for all

events. The Chi Square test shows the Tapered Pareto

distribution is most appropriate one for all seismic

source zones viz., SSZ I to SSZ V.

6. Conclusion

There are several statistical distribution models

which are used to describe earthquake occurrence.

Due to short catalogues it is difficult to select any

particular distribution which follows realistic trends

as per the size and the return periods, especially in

case of large earthquakes. Himalayas are one of the

cases where multiple collisions and existence of

great earthquakes with large return periods impli-

cates testing of such statistical distributions which

considers the large return periods. It is thus of

special importance to use statistical methods that

analyse as closely as possible the range of its

Table 2

Parameters of Pareto, Truncated Pareto and Tapered Pareto distribution for all seismic source zones

SSZ PD Truncated PD Tapered PD

b b M0U (dyne-cm) b M0x (dyne-cm)

I 0.52 ± 0.020 0.58 ± 0.020 1.96E?28 0.57 ± 0.020 8.08E?27

II 0.48 ± 0.025 0.50 ± 0.020 3.30E?28 0.47 ± 0.026 1.44E?28

III 0.45 ± 0.030 0.46 ± 0.028 3.37E?28 0.44 ± 0.025 1.86E?28

IV 0.50 ± 0.026 0.477 ± 0.025 5.79E?26 0.458 ± 0.02 1.11E?26

V 0.54 ± 0.017 0.54 ± 0.017 5.51E?29 0.53 ± 0.015 3.59E?28

See text for definitions
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Figure 4
Probability of occurrence with respect to seismic moment for SSZ1, SSZ2, SSZ3, SSZ4, and SSZ5 using various distributions

4324 C. Chaudhary and M. L. Sharma Pure Appl. Geophys.



extreme values or the tail of the distributions rather

than the whole of the distributions. In the present

study, an attempt has been made to compare dif-

ferent distribution of seismic moment for

earthquakes in Himalayan region. The whole

Himalaya region has been divided into five seismic

source zones. The probability of occurrence in

Himalaya region has been estimated using the

Pareto, the Truncated Pareto, and the Tapered

Pareto, and compared with the modified G–R, and

the characteristic recurrence distribution using an

updated and reliable earthquake catalogue for the

period 1255–2015. For each seismic source zone,

Chi Square test performed to set the selection cri-

teria of the best fit distribution. The results show

that the Tapered Pareto distribution better describes

seismicity for each of the seismic source zones.

The earthquake occurrence is a complex phe-

nomenon in itself and interaction of sources during

pre and post-earthquake along with the assumption

that each event considered is an independent event

are some of the factors which necessarily implicate

fitting of different distributions. The distribution for

estimating the probability of occurrence in all

seismic source zones considered using various

distribution models is informative and useful from

engineering point of view. The differences in the

probabilities estimated using the different distri-

butions will have bearing on the ultimate results of

seismic hazard assessment exercises and hence it is

recommended to use different statistical models

which fit best in the individual seismic source

zones in Himalayas.
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