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Abstract—The quantitative precipitation forecast (QPF) per-

formance for heavy rains is still a challenge, even for the most

advanced state-of-art high-resolution Numerical Weather Predic-

tion (NWP) modeling systems. This study aims to evaluate the

performance of UK Met Office Unified Model (UKMO) over India

for prediction of high rainfall amounts ([2 and[5 cm/day) during

the monsoon period (JJAS) from 2007 to 2015 in short range

forecast up to Day 3. Among the various modeling upgrades and

improvements in the parameterizations during this period, the

model horizontal resolution has seen an improvement from 40 km

in 2007 to 17 km in 2015. Skill of short range rainfall forecast has

improved in UKMO model in recent years mainly due to increased

horizontal and vertical resolution along with improved physics

schemes. Categorical verification carried out using the four veri-

fication metrics, namely, probability of detection (POD), false

alarm ratio (FAR), frequency bias (Bias) and Critical Success

Index, indicates that QPF has improved by[29 and[24% in case

of POD and FAR. Additionally, verification scores like EDS (Ex-

treme Dependency Score), EDI (Extremal Dependence Index) and

SEDI (Symmetric EDI) are used with special emphasis on verifi-

cation of extreme and rare rainfall events. These scores also show

an improvement by 60% (EDS) and[34% (EDI and SEDI) during

the period of study, suggesting an improved skill of predicting

heavy rains.

Key words: Unified model, categorical verification, extreme

rain, rainfall forecast, NWP.

1. Introduction

Heavy rainfall events over central India region

during southwest monsoon (June, July, August,

September, JJAS) are often related to the passage of

synoptic scale monsoon depressions. The Bay of

Bengal low-pressure systems (LPS) contribute sig-

nificantly to the seasonal rainfall. These LPS often

lead to incessant rainfall episodes and flooding over

parts of eastern and central India (Krishnamurthy and

Ajayamohan 2010; Mooley and Shukla 1987; Krish-

namurti et al. 1975; Sikka 1977, 2006). These heavy

rainfall events (i.e., those events which are associated

with the tail end of the precipitation probability dis-

tribution) are highly impactful and cause loss of life,

huge damage to property, and significant disruption

to local, regional, and national economies. In spite of

the recent advances in the observing systems, mod-

eling, data assimilation and NWP, accurate prediction

of heavy rainfall events (location, intensity, and

spatial extent) remains one of the most difficult

challenges in operational meteorology.

The Indian subcontinent is highly vulnerable to

the heavy rainfall events. The early warning systems

are not always reaching out to the people who are

affected by these heavy rainfall episodes and thus

people are hardly notified and evacuated when these

heavy rainfall events occur (World Bank-report No 2

2013). Most of the heavy rainfall events occur during

the southwest monsoon (JJAS) (Goswami et al. 2006;

Sharma et al. 2015). During the southwest monsoon

season, the west coast of India, north-east of India

and some parts of Central India are the most promi-

nent regions which receive heavy rainfall (Pattanaik

and Rajeevan 2010). The north-east and west coast of

India are the regions which are characterized by steep

orography and therefore the heavy rains occurred in

these areas are often result of forced ascent over the

mountains. Central India is the region where heavy

rainfall occurs generally due to the synoptic scale
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low-pressure systems that form over the Bay of

Bengal and move west-northwestward during JJAS

(Goswami et al. 2006; Sikka 2006; Ajayamohan et al.

2010; Krishnamurthy and Ajayamohan 2010). The

central India has been chosen for the study because of

the fact that this area is most affected by the rain

bearing systems which almost produce 50% of rain-

fall during the monsoon season every year (Yoon and

Chen 2005).

This paper focuses the verification of Unified

Model (UM) forecasts during the monsoon season of

2007–2015 for two rainfall thresholds of[2 cm/day

(hereafter category1: CAT1) and [5 cm/day (here-

after category2: CAT2) over central India. The

rationale for choosing these thresholds is discussed in

Sect. 4.

2. Data and Methodology

2.1. Observed Rainfall Data

The geographical domain with the distribution of

Indian Meteorological Department (IMD) rain gauges

over India during the monsoon is shown in Fig. 1.

The box represents the core monsoon zone (18–28N,

68–88E, Rajeevan et al. 2010) which is chosen as the

domain of the present study. Rainfall analysis based

on quality-controlled observations is critical for

verification of the NWP forecasts. The IMD’s gridded

daily rainfall data set for the period 2007–2011 is

used in the present study. The gridding method of

rainfall for the period 2007–2011 is based on Shepard

interpolation (1968) and is also discussed in Rajeevan

et al. (2006). For the years 2012–2015, NCMRWF-

IMD (National Centre for Medium Range Weather

Forecasting—Indian Meteorological Department)

merged satellite-gauge (NMSG; Mitra et al. 2009)

rainfall analyses have been used. The spatial resolu-

tion of the data is at 0.5� latitude 9 0.5� longitude.

NCMRWF-IMD rainfall data are the merged product

of near-real-time Tropical Rainfall Measuring Mis-

sion Multi-satellite Precipitation Analysis (TMPA)-

3B42 and rain gauge data from the India Meteoro-

logical Department (IMD) using an objective analysis

scheme. This merge data set captures Indian monsoon

rainfall more realistically and is superior to other

available rainfall data sets over the Indian monsoon

region because it uses additional local rain gauge

observations (Mitra et al. 2013). This analyzed

rainfall product, therefore, provides a better baseline

for NWP model validation and monsoon model

development. The entire observed rainfall data series

(2007–2015) will be referred as OBS hereafter.

2.2. Model Forecast Rainfall over India

The Met Office Unified Model (UM) is the

numerical modeling system developed and used at

the Met Office in the United Kingdom (UK) (Davies

et al. 2005). This study uses the rainfall forecasts

from the Met Office operational medium range global

model configuration. The Unified Model (UM) is

continually developed, taking advantage of improved

understanding of atmospheric processes and steadily

increasing computing power. The Met Office

upgrades its operational NWP configurations up to

four times per year. The atmospheric model uses non-

hydrostatic dynamics with semi-Lagrangian advec-

tion and semi-implicit time stepping. It is a grid point

model with the ability to run with a rotated pole and

variable horizontal grid. A number of sub-grid scale

processes are represented, including convection (Gre-

gory and Rowntree 1990; Gregory and Allen 1991;

Grant 2001), boundary layer turbulence (Brown et al.

2007), radiation (Edwards and Slingo 1996), cloud

microphysics and orographic drag (Webster et al.

2003). The model is initialized using a state-of-the-art

global four-dimensional variational (4DVAR; Rawl-

ins et al. 2007) data assimilation technique. During

2007–2015, the horizontal and vertical resolution of

the global configuration improved from about 40 km

and 50 levels in 2007 to about 17 km and 85 levels in

2015.

3. Verification Strategy

The forecast daily rainfall fields are verified using

standard categorical verification scores based on the

two by two contingency table elements. This

approach is frequently used by operational forecast-

ers. In this study, the metrics which are calculated
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and evaluated are frequency bias (Bias), probability

of detection (POD), false alarm ratio (FAR) and

Critical Success Index (CSI). These metrics are

simple and easily understood. However, these scores

are generally low for higher rainfall thresholds. High

rainfall amounts or heavy rain events are rare and

generally, occur with small sample size where stan-

dard scores asymptotically degenerate towards zero.

Apart from the standard categorical verification,

recent progress also has been made in the verification

of rare events (Casati et al. 2008; Ebert et al. 2013;

Ashrit et al. 2015). Extreme Dependency Score

(EDS; Stephenson et al. 2008; Ghelli and Primo

2009), extremal dependence Indices (EDIs; Ferro and

Stephenson 2011) and symmetric extremal depen-

dence index (SEDI; Ferro and Stephenson 2011) are

some of the new metrics which could be used to

verify the rare events. Instead of degenerating, these

scores converge to a meaningful limit for rare and

extreme events. In the present study, these metrics are

also used for the rainfall thresholds of CAT1 and

CAT2.

Figure 1
Geographical domain over India used for rainfall verification showing terrain elevation (km) and typical distribution of the rain gauge network

on any day during the monsoon season
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3.1. Verification Metrics

Most commonly used verification scores focus on

the correspondence between the forecast and observed

events (Murphy 1993). However, these scores are

inadequate for verification of rare and extreme events

(Stephenson et al. 2008). In the present study,

occurrence of rainfall equal to or exceeding a specified

threshold during last 24 h is considered an event. We

consider an event as a hit (a) when prediction of an

event matches with the observation on a grid point. On

the other hand, an event on a grid point predicted but it

is not observed, we denote it as a false alarm (b). A

miss (c) occurs when an event is not predicted but it is

actually observed. Finally, correct rejection (d) is

when an event does not occur and model does not

predict. These four variables are called as the compo-

nent of the 2 9 2 contingency table.

Various categorical scores are computed from the

components of the contingency table. POD, also

known as hit rate, is defined as the ratio of the number

of correct forecasts (number of hits: a) to the number

of observed events (a ? c) and the FAR is the ratio of

the number of false alarms (b) to the number of

forecasts made (a ? b). The CSI, also known as threat

score, is the ratio of number of hits (a) to all events

either forecast or observed (a ? b ? c). All three

scores range from 0 to 1, with 1 being a perfect score

in case of POD as well as CSI and 0 for perfect FAR.

It is important to note that a perfect forecast system

would produce only hits and correct rejections with no

false alarm and no missed events.

Frequency Bias (Bias) is used to understand the

overforecast–underforecast of precipitation. Bias is

calculated as the ratio of the number of predicted events

(a ? b) to the observed events (a ? c) exceeding a

given threshold. The Bias ranges from 0 to infinity with

1 being a perfect forecast. Bias can help in identifying

whether the forecast system has a tendency to under-

forecast (BIAS\1) or overforecast (BIAS[1) events.

The detail discussions on the above verification

scores are presented in earlier studies (Mason 1989;

Sukovich et al. 2014; Ashrit et al. 2015). Stephenson

et al. (2008) proposed a newverificationmeasureknown

as extreme dependency scores (EDS). EDS is a useful

candidate to quantify the performance of deterministic

modeling system for rare binary events. For rare events,

it converges to a meaningful values rather than degen-

erating. This new verification measure summarizes the

performance of deterministic forecasts of rare binary

events. EDS converges to a meaningful limit for rare

events instead of degenerating. Following Coles et al.

(1999), the EDS is defined as:

EDS ¼
2log aþc

total

� �

log a

total

� �� 1 ¼ ln p � lnH

ln p þ lnH
;

where H is hit rate and p = (a ? c)/total is the base

rate, the relative frequency with which the event was

observed to occur. Rare events, therefore, correspond

to low base rates.

EDS has few disadvantage like it is sensitive to

hedging and base rate dependent and ignores informa-

tion about false alarms and correct rejections. Therefore,

EDS is non-informative about forecast bias, and a

forecasting system with a good EDS could be very

biased.Therefore, one shouldpresentEDS togetherwith

the frequency bias as a function of threshold to provide a

complete summary of forecast performance. To over-

come the shortcomings of EDS, Ferro and Stephenson

(2011) has proposed two new measures known as

Extremal Dependence Index (EDI) and Symmetric EDI

(SEDI). EDI and SEDI are defined as:

EDI ¼ lnF � lnH

lnF þ lnH

SEDI ¼ lnF � lnH þ ln 1� Hð Þ � lnð1� FÞ
lnF þ lnH þ ln 1� Hð Þ þ lnð1� FÞ

where F = b/(b ? d) is false alarm rate and is

defined as the number as the number of false alarms

(b) divided by the number of times the event did not

happen, or the fraction of nonevents that were

incorrectly forecast. EDI and SEDI are base rate

independent, insensitive to hedging and have non-

degenerate limits.

4. Results of Rainfall Forecast Verification

4.1. Evaluation of Forecast Rain Occurrence During

2007–2015

The mean seasonal rainfall over the Indian

monsoon region for 2007–2015 is shown in Fig. 2
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from observed rainfall and UKMO model forecasts.

Rainfall is chosen for Day 1, Day 2, and Day 3 for

evaluation. As discussed in the introduction, fore-

casting of rainfall over India and tropics, in general,

is a challenge for the NWP models. While the models

generally capture large scale features of the monsoon

rainfall distribution, they fail to reproduce the

regional peculiarities. This is evident even in the

observed and forecasts seasonal mean rainfall over

India. The box in the observed rain plot (Fig. 2a)

represents our area of study for categorical verifica-

tion. The forecasts successfully capture the gross

features of mean monsoon rainfall in terms of higher

rainfall amounts (1.5–2.5 cm/day) along the west

coast and reducing rainfall amounts (\0.6 cm/day)

eastwards over the peninsula. Similarly, the model

captures high rainfall amounts (1.5–2.5 cm/day) over

northeast India and reducing rainfall amounts west-

wards over northwest India. The model shows large

biases in rainfall over northern India adjoining the

Himalayas. This feature is typical and can be seen

during each of the monsoon seasons up to 2013

(Iyengar et al. 2011). The low-level winds (850 hPa;

not shown) over the Gangetic plains typically show

strong easterly bias (Iyengar et al. 2011) which partly

explains the rainfall bias over that region. During the

Figure 2
Observed (upper left) and Forecast (Day 1, Day 2, and Day 3) mean rainfall (cm/day) over India during JJAS 2007–2015
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monsoon season of 2014 and 2015 (figure not

shown), this easterly biases have been reduced and

subsequently, rainfall associated with easterly biases

has also decreased in recent monsoon seasons of 2014

and 2015. Improvement in the skill of UKMO model

forecast may be attributed to the increased horizontal

resolution (*17 km), a new dynamical core (END-

Game) and a revised physics package (GA6.1) (Rakhi

et al. 2016; Prakash et al. 2016).

4.2. Frequency of Rainfall Events

The average (2007–2015) number of rainy day

counts ([0.1 cm/day, shaded) over CMZ during the

monsoon season is presented in Fig. 3. The top

panels (observed) show frequency for CAT1 (left)

and CAT2 events (right) displayed in contours,

respectively. Similarly, the bottom panels show

frequencies for UKMO Day-3 forecast. It can be

seen from the observations (Fig. 3a, b) that count of

rainy days (shaded) is high over the eastern part of

the domain and it is decreasing from east to west.

However, in the forecasts (bottom panels, Fig. 3c,

d), the count of rainy days (shaded) is high over a

large part of domain except for north-west. The

contribution of CAT1 and CAT2 events (contours)

constitute a small fraction of observations and in the

forecast, as seen from the four panels. It is evident

that model has a higher average number of rainy

days than in the observations. On the other hand, the

average numbers of CAT1 and CAT2 events are

almost similar in observations and forecasts. It

means that the wet bias in the model is mainly

due to light rain.

The frequency of rainfall occurrence in excess of

different thresholds is shown in Fig. 4 for the

observed data sets during 2007–2015. This rainfall

frequency graph shown here is over CMZ. It can be

seen that frequency of occurrence of rainfall for

CAT1 and CAT2 events is less than 15 and 10%,

respectively. Thus, to focus on extreme and rare

events for verification of NWP rainfall forecast,

CAT1 and CAT2 have been chosen to represent

extreme and rare events.

Figure 3
Observed (upper panels a, b) and UKMO Day-3 Forecast (lower panels c, d) number of rainy days (rainfall[0.1 cm/day in shaded). Contours

shows the number of rainy days (rainfall[2 cm/day: left panel, rainfall[5 cm/day: right panel) during JJAS 2007–2015
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4.3. Rainfall Forecast Verification Using Standard

Scores

Categorical verification scores of four metrics of

interest for two precipitation thresholds of CAT1 and

CAT2 during monsoon season 2007–2015 over the

core monsoon Zone are displayed in Fig. 5. The

evaluation has been carried out for Day 1, Day 2, and

Day 3. We have tested our results using 95%

bootstrap estimation (figures not shown; please see

supplementary Figure S1) but the results are so much

robust that they hardly changed. The verification

metrics used in the study are Bias POD, FAR and

CSI. It is evident from the Fig. 5 that the overall

performance of the model has been improved from

2007 to 2015 except in 2010 for both the rainfall

threshold of CAT1 and CAT2, although the seasonal

CSI values have been decreased with increased

rainfall threshold in all Day-1, Day-2 and Day-3

Forecasts (Fig. 5j–l). During the monsoon season of

2010, 10 low-pressure systems and 2 well-marked

low-pressure systems formed over the Bay of Bengal

which produced a widespread rainfall over the

Eastern coast and Central India (Sharma et al.

2015). The overall performance of monsoon during

2010 was normal despite no formation of monsoon

depression or depression over the Bay of Bengal. It is

found that model has an excessive occurrence of light

rain which in turn reflects that contribution of heavy

rainfall events is very less. This may be the possible

reason of CSI to be dipped down during the monsoon

season 2010 in all Day-1, Day-2 and Day-3 forecasts.

It can be seen from the Fig. 5d–f that POD has

improved for both rainfall thresholds of CAT1 and

CAT2 in all lead times of Day 1 to Day 3 from 2007

to 2015 (except in 2010). It means that hit rate has

increased for each of rainfall threshold. While an

increased hit rate can be because of more events

being correctly forecast, it is independent of false

alarms (Sukovich et al. 2014). However, examination

of FAR from Day 1 to Day 3 (Fig. 5g–i) shows a

decrease, which indicates that the improvement in

POD is a result of a more accurate forecast, rather

than just more forecast being made. This implies that

the improvement in the overall skill of the model over

Figure 4
Observed rainfall frequency distribution over the domain (18–28N,

68–88E) during monsoon seasons of 2007–2015

Figure 5
Bias (a–c), probability of detection (POD; d–f), false alarm ratio

(FAR; g–i) and Critical Success Index (CSI; j–l) computed for

Day-1 Day-2 and Day-3 forecasts for CAT1 and CAT2 rainfall

thresholds during JJAS 2007–2015

Vol. 174, (2017) Skill of Predicting Heavy Rainfall Over India 4247



the nine monsoon seasons is real and not an artifact of

more forecast being issued or the verification metric

chosen.

Further, we examine Frequency Bias during the

monsoon season of 2007–2015 for CAT1 and CAT2

rainfall threshold for Day-1 to Day-3 forecast shown

in Fig. 5a–c. It can be seen in Fig. 5a–c, the model

under-predicts the forecast for each threshold of

CAT1 and CAT2 in all seasons. For CAT1 rainfall

threshold, relatively small bias (fewer underesti-

mates) is seen in all forecasts from Day-1 to Day-3,

and near to perfect score 1 except 2010 while the

events belong to CAT-2 rainfall threshold deviates

more to the perfect score up to 2012.

5. Rainfall Forecast Verification Using Extreme

Scores

Categorical scores (like CSI, POD, etc.) are less

skillful for higher thresholds (Ashrit et al. 2015).

These scores could be used to monitor the forecast

improvements and model performance. Although

categorical scores improve from 2007 to 2015, yet

these scores deteriorate in higher lead times.

Recent progress has been made to overcome such

issues. Verification metrics proposed by Ferro and

Stephenson (2011) to verify the rarely occurring

events are Extreme Dependency Score (EDS),

Extremal Dependence Index (EDI) and Symmetric

EDI (SEDI). These scores measure the association

between the observed and forecast rare events. These

scores range from -1 to 1 with 0 meaning no skill

and 1 indicating the perfect score. Alhough EDS does

not diminish to 0, it has several undesirable properties

like it is base rate dependent, sensitive to hedging,

and varies from -1 to 1 etc. EDI and SEDI overcome

most of the drawbacks since they have a non-de-

generative limit, and are base rate independent,

insensitive to hedging (Ferro and Stephenson 2011).

Figure 6 shows EDS, SEDI and EDI scores (col-

lectively called as EDS family of scores) for nine

monsoon seasons. The scores shown in Fig. 6 are

higher in magnitude compared to the categorical

scores (CSI, POD and FAR) shown in Fig. 5. Further,

we note that EDS family of scores consistently shows

increasing trend in recent years. Interestingly, unlike

in Fig. 5, the magnitude of scores in Fig. 6 (EDS,

EDI, and SEDI) for CAT1 and CAT2 is not too dif-

ferent. This indicates that the model performance in

predicting CAT1 and CAT2 rainfall events is equally

good. The improvement in the skill of predicting

CAT1 and CAT2 rainfall events in recent years is

also strikingly similar. This suggested that the model

improvements due to resolution, physics, and

dynamics have yielded improved skill in predicting

CAT1 ([2 cm/day) and CAT2 ([5 cm/day) rainfall

events.

6. Summary

Rainfall over India during the monsoon season

features immense variability in space, time and

intensity, posing a great challenge to accurate

Figure 6
Extreme Dependence Score (EDS; a–c), Extremal Dependence

Index (EDI; d–f) and Symmetric EDI (SEDI; g–i) computed for

Day-1 Day-2 and Day-3 forecasts for CAT1 and CAT2 rainfall

thresholds during JJAS 2007–2015
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prediction of rainfall events in the NWP models. As

discussed early in this paper (Fig. 3), the high-in-

tensity rainfall events (CAT2) constitute a small

(large) fraction of the total number of rainy days over

eastern (western) parts of CMZ yet these events cause

significant impact over central and western India.

This study evaluates the performance of UKMO

model rainfall forecasts for CAT1 and CAT2 events

in short range forecast up to Day 3. The verification is

carried out for nine monsoon seasons (2007–2015).

The conclusions are:

• The forecasts successfully capture the observed

features of mean monsoon rainfall. The high

rainfall amounts along the west coast and reducing

rainfall amounts eastwards over the peninsula are

correctly predicted. Also, the model captures high

rainfall amounts over northeast India and reducing

rainfall amounts westwards. However, the fore-

casts show large biases (wet bias) over northern

India adjoining Himalayas.

• The wet biases reflected in the excessive number of

rainy days ([0.1 cm/day) over eastern India and

adjoining Himalayas.

• While CAT1 ([2 cm/day) accounts for a large

fraction of rainy days, CAT2 events constitute a

small fraction (yet significant) particularly over

central and western part of CMZ. Both these

aspects of CAT1 and CAT2 events are reasonably

brought out in the forecasts.

• Standard verification metrics (CSI, POD and FAR)

show the overall improvement (by[29,[24, and

[24%, respectively) in performance for CAT1

during from 2007 to 2015. The improvement is

particularly impressive for CAT2 where[89% in

case of CSI and POD while[19% in FAR.

• Verification metrics for extreme and rare events

(EDS, EDI and SEDI) also show consistent

improvement by 60% (EDS) and[34% (EDI and

SEDI) for CAT2 rainfall events.

Although heavy rain events beyond CAT2 rainfall

threshold cause severe flooding every season, a

meaningful and statistically significant evaluation is

still a challenge because of diminishing sample size

for higher thresholds. Forecasting and verification of

such heavy rain events need very high-resolution

models (Mesoscale models, cloud resolving models,

etc.) and observations (Doppler radar-derived rain-

fall). Additionally, a long record of such high-

resolution observations and forecasts are critical for

evaluating model performance in predicting heavy

rain events. The current study is based on forecast

and observations during recent years which highlights

the evaluation strategy for heavy rain events for

example CAT2 events. This study can form a

benchmark for evaluating high-resolution model

rainfall forecasts in India in coming years.
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