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Abstract—Generalized inversion is one of the important steps

in the quantitative interpretation of gravity data. With appropriate

algorithm and parameters, it gives a view of the subsurface which

characterizes different geological bodies. However, generalized

inversion of gravity data is time consuming due to the large amount

of data points and model cells adopted. Incorporating of various

prior information as constraints deteriorates the above situation. In

the work discussed in this paper, a method for fast nonlinear

generalized inversion of gravity data is proposed. The fast multi-

pole method is employed for forward modelling. The inversion

objective function is established with weighted data misfit function

along with model objective function. The total objective function is

solved by a dataspace algorithm. Moreover, depth weighing factor

is used to improve depth resolution of the result, and bound con-

straint is incorporated by a transfer function to limit the model

parameters in a reliable range. The matrix inversion is accom-

plished by a preconditioned conjugate gradient method. With the

above algorithm, equivalent density vectors can be obtained, and

interpolation is performed to get the finally density model on the

fine mesh in the model domain. Testing on synthetic gravity data

demonstrated that the proposed method is faster than conventional

generalized inversion algorithm to produce an acceptable solution

for gravity inversion problem. The new developed inversion

method was also applied for inversion of the gravity data collected

over Sichuan basin, southwest China. The established density

structure in this study helps understanding the crustal structure of

Sichuan basin and provides reference for further oil and gas

exploration in this area.

Key words: Gravity data, generalized inversion, fast algo-

rithm, Sichuan basin.

1. Introduction

The gravity method has been playing an important

role in a wide range of geological and geophysical

tasks such as mineral and petroleum explorations,

studying of regional tectonics, finding water-bearing

stratums and many other engineering and environ-

mental applications (Bansal and Dimri 2001;

Battaglia and Segall 2004; Nabighian et al. 2005;

Chakavarthi and Sundararajan 2006; Liu et al. 2015;

Zhou et al. 2015; Zhou 2016). Rational processing

and interpretation of gravity data provide a view of

the subsurface that highlights geological bodies and

structures (Wolf et al. 2012; Wang et al.

2015a, b, 2017; Hou et al. 2016), among which

generalized inversion is an important quantitative

way. It is a mathematical technique that automati-

cally constructs the physical property distribution of

the subsurface from measured data by incorporating

some priori information. Recovered data by the

obtained physical model should predict the measured

data to a permissible precision (Rezaie et al. 2017).

For generalized inversion of gravity data, the sub-

surface is discretized into cells with constant

densities. A finite number of mathematical equations

are equationed to recover densities of these cells.

Generally, numerical calculation of gravity inversion

is ill-posed, which denotes that the inversion suffers

from inherent nonuniqueness and is unstable. The ill-

posedness mentioned above can be overcome by

applying regularization items (Tikhonov and Arsenin

1977). With regularization, different priori informa-

tion can be employed to limit the solution space and

stabilize the computation process (Last and Kubik

1983; Barbosa and Silva 1994; Meju 1994, 2009;

Pilkington 1997, 2009; Portniaguine and Zhdanov
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2002; Rezaie et al. 2017). Due to its important sig-

nificance for many practical applications, generalized

inversion of gravity data has always been a research

hotspot over the past decades, and various algorithms

have been developed with regularizations (Camacho

et al. 2000; Chakavarthi and Sundararajan 2006;

Berrino and Camacho 2008; Pilkington 2012; Wang

et al. 2015a, b; Rezaie et al. 2017; Zhang et al. 2017).

Along with the improvement of exploration

degree, high-resolution detecting has become the

developing tendency. This means denser datasets

over larger exploration regions are collected. More-

over, detailed inversion is also needed for higher

resolution exploration, which causes the increase of

model cells. Large amount of data points and model

cells adopted prompts the generalized inversion of

gravity data to be a computationally challenging

problem, which is very time consuming. Some efforts

have been made by different scholars to handle this

difficulty. For example, Oldenburg et al. (1993),

Mirzaei et al. (1996) and Yao et al. (2007) presented

the subspace methods for large-scale inverse prob-

lems. Pilkington (1997), Shin et al. (2006) and

Tontini et al. (2009) utilized the fast Fourier trans-

form (FFT) for fast forward modelling of potential

field data. Li and Oldenburg (2003), Chen (2003) and

Martin et al. (2013) adopted the wavelet transform to

compress kernel matrix of the gravity inversion

problem. Chen et al. (2012), Čuma et al. (2012) and

Zhang et al. (2015) applied the parallel computing for

fast modelling and inversion of gravity data. Foks

et al. (2014) and Wang et al. (2015a, b) employed the

adaptive down-sampling technique to reduce the

number of potential field data for forward modelling

and inversion. Some fast solver algorithms like con-

jugate gradient (CG) and Lanczos bidiagonalization

(LB) have also been applied for fast inversion

(Toushmalani and Saibi 2015; Qin et al. 2016; Meng

et al. 2016; Rezaie et al. 2017). Recently, the FMM

which was previously applied in the N-body simu-

lation has been applied for fast forward modelling of

potential field data (Dave and Matthew 2011; Case-

nave et al. 2016).

The FMM was first presented by Greengard and

Rokhlin (1987) for the rapid evaluation of the inter-

action force in a system involving large number of

particles. Generally, the work needed for the

computation of all the pairwise interactions for a

system with N particles is proportional to O(N2).

Nevertheless, the amount of work can be greatly

reduced using the FMM. Since proposed, the FMM

has found applications for large-scale problems

encountered in many subjects, such as plasma phy-

sics, molecular dynamics and celestial mechanics

(Greengard and Rokhlin 1987). For the original

FMM, analytic expansion of the kernel was needed,

which was sometimes difficult for specific kernel

functions. Hence, extensions have been made on the

original FMM to make it suitable for general kernels

without analytical expansion, as evidenced by kernel-

independent FMMs, such as the black-box FMM

(BBFMM) proposed by Fong and Darve (2009). With

BBFMM, the FMM process can be achieved by low-

rank approximation of the kernel function without

analytical expansion of it. Complete description of

the FMM refers to the founding article (Greengard

and Rokhlin 1987).

Taking advantage of the features of the FMM, the

work discussed in this paper presented a method for

fast nonlinear generalized inversion of gravity data.

For the method, the total inversion objective function

is established with weighted data misfit function

along with model objective function. The portion of

forward modelling is calculated with the FMM.

Several constraints are adopted to improve the

inversion result including the depth weighing factor,

the bound constraint and the focusing item. The total

objective function is solved by a dataspace algorithm

during which the preconditioned CG approach is

utilized to perform matrix inversion. The fast inver-

sion method was tested by using both synthetic

gravity data and real gravity data. Numerous tests

indicated that the new method is faster than con-

ventional generalized inversion algorithm to produce

an acceptable solution for gravity inverse problem.

This article starts by discussing the forward

modelling method with the FMM. Density model was

established to test its calculation accuracy and speed

compared with the conventional modelling method

based on integral equation. Then, the integrated fast

inversion method was described. Finally, the inver-

sion algorithm was tested on both the above synthetic

gravity data and real gravity data from Sichuan basin,

southwest China.
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2. Methodology and Synthetic Tests

2.1. Fast Forward Modelling of Gravity Data

and Synthetic Tests

For the convenience of establishing the general-

ized inversion algorithm in the following section, we

adopted two Cartesian systems of coordinates for

model and data domain. The model domain was

discretized into a set of hexahedral cells with constant

density. Here, the vertical axes were taken to be

positive downward and the other horizontal axes were

arranged into a right-handed system. According to Li

and Chouteau (1998), gravity data induced by a 3D

model with density q(n, g, f) at the evaluation point

(x, y, z) can be written as

gðx; y; zÞ ¼ �G

ZZZ
qðn; g; fÞ z� f

r3
dndgdf; ð1Þ

where G is the universal gravitational constant and r

denotes the distance between a density model and the

evaluation point. Letting {xi} denotes for the set of

evaluation points and {yj} for a set of source points

with densities given by {qj}. Traversing the entire

data domain and model domain, Eq. (1) can be

expressed as a simplified discrete summation form as

gðxiÞ ¼
XM
j¼1

qjKðxi; yjÞ i ¼ 1; . . .;N ð2Þ

where K(xi, yj) is the kernel matrix that builds the

interactions between different evaluation and source

points. With Eq. (2), forward modelling of gravity

data can be computed directly, and the computational

complexity of this operation is proportional to

O(MN). For small-scale modelling problem, calcula-

tion of Eq. (2) with direct particle to particle

algorithm is feasible. However, the particle to particle

algorithm is very time consuming when the mod-

elling problem is of great large scale. This issue is

magnified during the inversion process where the

forwarding modelling computation should be con-

ducted repeatedly. Here, the FMM was adopted for

fast forward modelling of gravity data.

In the FMM, the model domain is hierarchically

decomposed into various clusters. For the gravity

case, these clusters are rectangle boxes in two-

dimensional (2D) case and rectangle cubes in three-

dimensional (3D) case, which are managed by the

tree structure. The quadtree and octree structure are

utilized for the hierarchical space decomposition in

2D and 3D cases, respectively. These clusters can

also be considered as containers to include the initial

model cells which are divided by the inversion

algorithm rather than the FMM. Figure 1 illustrates

such a hierarchical space decomposition for the 1D

case. In Fig. 1, different partials denote for the

density sources for the gravity case. The multipole

expansions (MEs) represent the condensed particles

in the upper level of the tree. With FMM, influence of

a cluster which contains many particles is approxi-

mately by the fixed center point of this cluster. The

hierarchical space decomposition allows pairs of

subdomains to be grouped into ‘near’ and ‘far’, with

far interactions treated approximately. For the con-

venience of establishing the inversion algorithm, the

model domain in this study was wholly considered as

far-away with the evaluation points. With the FMM

algorithm, kernel matrix in Eq. (2) should be

expressed as

Kðxi; yjÞ �
Xn
l¼1

ulðxiÞvlðyjÞ; ð3Þ

where function u(x) denotes a function which has the

variable x and function v(y) denotes a function which

has the variable y. The forms of u(x) and v(y) depend

on the form of the kernel function and the decom-

position method.

Then, gravity data in Eq. (2) hold

gðxiÞ ¼
Xn
l¼1

ulðxiÞ
XM
j¼1

qjvlðyjÞ i ¼ 1; . . .;N: ð4Þ

Equation (4) can be written in a much simpler

form as

g ¼ Ax½ � By

� �
: ð5Þ

It can be seen from Eq. (5) that the first and

second quantities are independent of each other.

Different parts in this equation can be precomputed

and reused many times. This kind of factorization

leads to the reduction of computational complexity of

Eq. (2). And the execution time can be reduced

greatly for the forward modelling as well as the

inversion process.
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For application of the FMM, the kernel matrix

should be decomposed into the form of Eq. (3) to

obtain the separation of different variables. This is

difficult for the gravity kernel which has high-order

items in its denominator. In our study, the kernel-

independent BBFMM algorithm based on interpola-

tion was employed for calculation. The basic idea of

an interpolation-based FMM is the low-rank approx-

imation of the kernel matrix as follows:

Kðxi; yjÞ �
X
l

X
m

Kðxl; ymÞwlðxiÞwmðyjÞ; ð6Þ

where wl(xi) and wm(yj) are the interpolating functions

corresponding to the nodes xi and yj, respectively.

Using this scheme, different variables in Eq. (6) are

separated, except for the small amount of interpola-

tion nodes. In this way, Eq. (2) can be rewritten as

gðxiÞ �
XM
j¼1

X
l

X
m

Kðxl; ymÞwlðxiÞwmðyjÞ
" #

qj

¼
X
l

wlðxiÞ
X
m

Kðxl; ymÞ
XM
j¼1

qjwmðyjÞ: ð7Þ

It can be noted from the above analysis that

forward modelling of gravity data with Eq. (7) shares

the similar mathematical expressions as the FMM-

based Eq. (4), which can also be performed in a more

efficient way. If the above interpolation is only

conducted in the model domain, Eq. (7) is then

changed to the form as

gðxiÞ �
X
m

Kðxi; ymÞ
XM
j¼1

qjwmðyjÞ: ð8Þ

In this case, the FMM procedure described in the

former paragraphs is something similar to the equiv-

alent density sources method.

Theoretically, any interpolation scheme can be

utilized for the interpolation-based low-rank approxima-

tion. We tested the Lagrange interpolation and the

Chebyshev interpolation for gravity data along a profile

induced by a 2D rectangle density model. Figure 2 is the

obtained 10 nodes interpolation results with Lagrange

interpolation and Chebyshev interpolation, respectively.

It can be seen that boundary of the data cannot be

reconstructed precisely for the Lagrange interpolation,

whereas the Chebyshev interpolation gives a more

satisfying approximation in this case. The oscillation at

the edges of the data namely is the Runge’s phenomenon

which occurs when using polynomial interpolation with

polynomials of high degree over a set of equispaced

interpolation nodes (Epperson 1987). Hence, the Cheby-

shev interpolation was served as the interpolation basis

along with their roots as the interpolation nodes in the

following study. The first-kind Chebyshev polynomial

with order n is defined as (Scraton 1969; Dette 1995)

Figure 1
Sketch map showing a hierarchical space decomposition for one-dimensional case. Particle denotes for a smallest cell. ME denotes for the

convergent points of the particles
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TnðxÞ ¼ cosðn � arccos xÞ: ð9Þ

The roots of Eq. (9) are

�xm ¼ cos
ð2m� 1Þp

2n

� �
m ¼ 1; . . .; n ð10Þ

which will be treated as the interpolation nodes. An

n-point Chebyshev interpolation that approximates

function k(x) has the following form (Marson 1996;

Fong and Darve 2009):

pn�1ðxÞ ¼
Xn
l¼1

kð�xlÞSnð�xl; xÞ; ð11Þ

where

Snð�xl; xÞ ¼
1

n
þ 2

n

Xn�1

k¼1

Tkð�xlÞTkðxÞ ð12Þ

�xl are the interpolation nodes and pn-1(x) is a (n-1)-

degree approximation of the function k(x). Using this

kind of interpolation scheme, Eq. (7) can be modified

as

gðxiÞ ¼
Xn
l¼1

Snð�xl; xiÞ
Xn
m¼1

Kð�xl; �ymÞ
XM
j¼1

qjSnð�ym; yjÞ: ð13Þ

Equation (13) is the formula for a fast gravity

forward modelling based on the FMM. If the

interpolation is merely performed in the model

domain, Eq. (13) can then be changed to the form as

gðxiÞ ¼
Xn
m¼1

Kðxi; �ymÞ
XM
j¼1

qjSnð�ym; yjÞ: ð14Þ

Referring to the founding article of the BBFMM

(Fong and Darve 2009), the above formals are also

appropriate for high-dimension problems by taking a

tensor product of the interpolating functions. Our

work aims to establish a method for fast generalized

nonlinear 3D inversion of gravity data. In this case,

Eq. (14) can be changed to

gðxÞ ¼
Xn
m¼1

Kðx; �ymÞ
XM
j¼1

qjSnð�ym; yjÞ; ð15Þ

where the interpolation function in model domain is

the product of the interpolations in three different

directions, which has a form as

Snð�ym; yjÞ ¼ Snð�ym1; yj1ÞSnð�ym2; yj2ÞSnð�ym3; yj3Þ: ð16Þ

For modelling and inversion of gravity data with

the FMM, there exists two kinds of subdivisions in

the model domain. One of these is the subdivision

from the inversion algorithm. The divided cells

would be considered as different particles for the

FMM. The subsurface is approximated by these cells.

The other subdivision originates from the FMM,

which can be accomplished by the tree structure. This

subdivision provides an efficient approach for man-

agement of the cells obtained from the inversion

algorithm.

To evaluate effectiveness of the forward mod-

elling algorithm described above, a combined

synthetic density model was established for mod-

elling and will also be utilized for inversion in the

next section. The density model consists of two

different bodies embedded at different depths beneath

the surface, and the density of uniform background is

zero. Table 1 shows its geometric and physical

parameters. Figure 3a is a perspective view of this

model. For forward modelling, the observation sur-

face is set above the model domain over a grid of

1000 9 1000 m with sample spacing of 5 m, so there

are 40,000 data points in total. The forward mod-

elling was calculated with FMM-based fast algorithm

as well as the conventional integral equation method

for testing the fast algorithm’s accuracy and compar-

ing their efficiency.

Figure 2
Interpolation results with Lagrange interpolation (blue dotted line)

and Chebyshev interpolation (green dotted line), black solid line

denotes the initial data
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The model domain in this study was wholly

considered as far-away from the evaluation points.

The model domain was firstly divided into a mesh

with 100 9 100 9 100 cubes which were considered

as the partials with different density values. For the

FMM, the model domain was decomposed into 23n

rectangle cubes, where n denotes height of the octree.

The ‘density partials’ are contained in these rectangle

cubes. Figure 3b–d shows the structures of these

octrees in the horizontal plane. To evaluate the

computation accuracy, the reference gravity data

were computed by the conventional integral equation

method as displayed in Eq. (1). The correlation

coefficient between the data calculated by the fast

algorithm and the reference data are utilized for

quantitative evaluation of the calculation accuracy,

which is defined as (Wang et al. 2014)

rmFMM;mref
¼

PM
i¼1

PN
j¼1mFMMðxi;yjÞmrefðxi;yjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1

PN
j¼1m

2
FMMðxi;yjÞ

PM
i¼1

PN
j¼1m

2
refðxi;yjÞ

q ;

ð17Þ

where mFMM is the gravity data calculated with fast

algorithm, mref is the reference gravity data, param-

eters M and N denote for the number of data points in

the north and east directions, respectively.

The main parameters that affect the calculation

accuracy and speed include the height of the tree

structure and the number of Chebyshev node. First,

different octree heights were used to test their

effects on the calculation accuracy and speed. In

this test, the number of Chebyshev node was set as

4. The left vertical axis and the solid line in Fig. 4a

show the calculated correlation coefficients for

different octree heights, which grow gradually with

the octree height. When the height is large enough,

the correlation coefficient is very close to 1

indicating the high accuracy of the fast modelling

method. The right vertical axis and the dashed line

in Fig. 4a show the execution time for the

modelling problems with different octree heights.

It can be noted that the execution time also has a

positive correlation with the octrees heights. In

short, the larger the octree height is, the higher the

calculation precision, and the more the execution

time. Moreover, different numbers of Chebyshev

node were used to test their effects on the

calculation accuracy and speed. In this test, the

octree height was set as 6. The solid line and

dashed line in Fig. 4b show the correlation coef-

ficients and the execution time obtained with

different numbers of Chebyshev node, respectively.

It can be seen that both the correlation coefficients

and the execution time grow gradually with the

numbers of Chebyshev node. However, the growth

rates of the curves in Fig. 4b are not as rapid as

those in Fig. 4a. It indicates that the accuracy of

the fast modelling method is not so sensitive to the

numbers of Chebyshev node compared with the

heights of the octree. For a fast computation with

high accuracy, one should balance the optimal

parameters. Figure 5a shows the reference gravity

data computed by the conventional integral equa-

tion method. To make it consistent with the

inversion process, the model domain was divided

into a mesh posing 100 9 100 9 100 cubes. And

the density model is simulated by the combination

of these smaller cubes. For such a large-scale

forward modelling problem, it consumed about

2000s which is much greater than the fast mod-

elling method. Figure 5b is the gravity data

calculated by the fast forward modelling method

with 4 Chebyshev nodes and the octree height

being 6. The similarity of these two datasets is

evaluated by the correlation coefficient between

them, which is very close to 1. This model test

verifies the effectiveness of the FMM-based fast

forward modelling method.

2.2. Fast Generalized Inversion Method

and Synthetic Tests

In this section, the former introduced fast forward

modelling scheme was employed to establish a fast

inversion algorithm. The forward problem can be

expressed as the matrix form as

Table 1

Parameters of the synthetic density model

Model

number

x 9 y 9 z dimensions

(m)

Depth to

top (m)

Density contrast

(9103 kg/m3)

A 150 9 150 9 100 50 1.0

B 150 9 150 9 150 50 1.0

4106 J. Wang et al. Pure Appl. Geophys.



d ¼ Gm; ð18Þ

where G is the forward operator (namely kernel

matrix) that maps the physical parameters space into

the data domain, m is the vector of model parameters

to be determined and d is the data vector. Using the

approximation shown in Eqs. (15) and (18) can be

expressed as

d ¼ Gfmf; ð19Þ

where Gf denotes the modified kernel matrix whose

entries depend on the relative position between the

multipole expansion points (interpolation points) and

the evaluation points, mf is the equivalent model

parameters and the equivalent density models can be

calculated with an interpolation process as shown by

the second quadrature item at the right of Eq. (15).

With iterative hierarchy division shown in Fig. 6a,

the number of model cells whose densities to be

determined can be greatly reduced. This operation

improves the computing efficiency of the inversion,

leading to a fast generalized nonlinear inversion

method for gravity data.

Then, the inverse problem is equationed by

minimization of the penalized least-squares Tikhonov

parametric functional as

mf ¼ argmin /d þ a/mf g
¼ argmin WdðGfmf � dobsÞk k22þa Wmmfk k22

n o
;

ð20Þ

where /d = kWd(Gmf - dobs)k22 is the weighted

data misfit function, /m = kWmmfk22 is the

model objective function, Wd = diag(1/1r1�r1,

Figure 3
a Three-Dimensional perspective view of the synthetic density model; b tree structure subdivision of the horizontal plane with height 3; c tree

structure subdivision of the horizontal plane with height 4; d tree structure subdivision of the horizontal plane with height 5
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1/1r2�r2, …, 1/1rn�rn) is the diagonal data weighting
matrix, ri stands for the standard deviation of the

noise in the ith observation data, Wm is the regular-

ization matrix consisting of the depth-weighting

function and a chosen model norm term, a is the

regularization parameter that controls the relative

balance between the data misfit function and the

model objective function. Equation (20) can also be

written as

mf ¼ argmin /d þ a/mf g
¼ argmin ðGfmf � dobsÞTD�1ðGfmf � dobsÞ

�
þ aðmf �m0ÞTW�1ðmf �m0Þ

�
;

ð21Þ

where D = (Wd
TWd)

-1 is the data weighting matrix

consisting of the estimated data-error variances,

W = (Wm
TWm)

-1 is the model weighting matrix

Figure 4
Black dotted lines denote correlation coefficients between the anomaly calculated by the fast algorithm and the reference gravity anomaly,

black solid lines denote the execution time, a Chebyshev node is 4 and octree height varies from 3 to 7; b octree height is 6 and Chebyshev

node varies from 3 to 7

Figure 5
a Reference gravity anomaly computed by the conventional integral equation method; b gravity anomaly calculated by the FMM-based fast

algorithm with Chebyshev nodes 4 and octree height 6. The black rectangles denote the real position of the synthetic model

4108 J. Wang et al. Pure Appl. Geophys.



consisting of depth-weighting function and a model

norm term. Here, the utilized depth-weighting func-

tion has a form as

Z ðmfÞi
	 


¼ 1
�
z2i
; ð22Þ

where zi is the depth for a special compressed

equivalent source. And the model norm term is the

Cauchy norm as

PðmfÞ ¼
Xn
i¼1

lnð1þ ðmfÞ2i =b
2Þ; ð23Þ

where b is a parameter which controls the smoothness

of the obtained solution.

The least-squares solutions of Eq. (21) can be

obtained by using various optimization algorithms.

As introduced by Tarantola (1987), the dimensional-

ity of the above problem can be reduced effectively

using a well-known matrix identity. This feature has

been adopted by Pilkington (2009) to form a datas-

pace method for the inversion of magnetic data. Here

in this study, the efficient dataspace method was

exploited to solve the total objective function.

Differentiating Eq. (21) with respect to the model

parameters yields the iterative form of the solution as

mfð Þk¼ mfð Þ0þD mfð Þk; ð24Þ

where D(mf)k is the model correction at iteration k

which can be written as

D mfð Þk ¼ cQkS
T
kG

T
f GfSkQkS

T
kG

T
f þ D

� �1

� Gf mfð Þk�dobs þGfSk mfð Þk� mfð Þ0
� �	 


:

ð25Þ

In this equation, Qk is a diagonal matrix with

elements

Qkð Þii¼
� � �

z2i ð1þ ðmfÞ2i =b
2Þ

� � �

0
@

1
A ð26Þ

and Sk is a diagonal matrix utilized to impose the

bound restrictions. In this study, a generic transform

function was used to accomplish this, which can be

written as (Commer 2011)

x0 ¼ aþ c expðhxÞ
1þ expðhxÞ ; ð27Þ

where x is the initial model parameter and x
0
is the

transformed one, a and c are the specified lower and

upper limits, h controls how fast the transform from

Figure 6
a Sketch map showing the interpolation process in the model domain; b sketch map showing the interpolation process in the model domain
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a to c is. Sk can be obtained by differentiating the

above transform function with respect to the model

parameters as

Skð Þii¼
� � �

ðc� aÞh expððmfÞiÞ
	 
.

1þ expðhðmfÞiÞ
� �2

� � �

0
B@

1
CA:

ð28Þ

For simplicity, Eq. (25) can be expressed in a

compact form as

D mfð Þk¼ cQkS
T
kG

T
f bk; ð29Þ

where

bk ¼ GfSkQkS
T
kG

T
f þ D

� �1

� Gf mfð Þk�dobs þGfSk mfð Þk� mfð Þ0
� �	 


:

ð30Þ

Calculation of the inverse matrix for the first item

in Eq. (30) is the most difficult part for getting the

model correction shown in Eq. (29). For small-scale

problem, this can be accomplished by the truncated

singular value decomposition (TSVD) method. How-

ever, the TSVD is not suitable for large-scale

problem. In our study, the preconditioned CG method

is adopted. The optimal preconditioner is the inverse

matrix calculation in Eq. (30). As what is described

by Vogel (2002), using the diagonal element of a

matrix to approximate the initial matrix for calculat-

ing its inverse is possible. The number of CG

iterations is set as 50 which is enough for most

cases. With the above inversion method, the equiv-

alent density vector can be obtained, which is located

at the nodes of Chebyshev interpolation in each level

of the octree. To achieve the finally density model on

the fine mesh in the model domain, an interpolation

should be performed.

Figure 7
a Predicted gravity anomaly with different inversion algorithms along profile PA; b predicted gravity anomaly with different inversion

algorithms along profile PB; c inversion result obtained from conventional model space algorithm along profile PA; d inversion result

obtained from conventional model space algorithm along profile PB; e inversion result obtained from the proposed fast inversion algorithm

along profile PA; f inversion result obtained from the proposed fast inversion algorithm along profile PB
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Gravity data induced by the density model

described above were utilized to evaluate the fast

inversion method. The data were gathered over a grid

of 1000 9 1000 m with sample spacing of 5 m, so

there are 40,000 data points in total. Meanwhile,

random noise with amplitude equal to 6% of the

maximum data amplitude has been introduced to test

the stability of the inversion method. The subsurface

was discretized into 50 9 50 9 50 rectangular

prisms. The inverse problem has been solved by the

algorithm described in the preceding section in which

height of the octree is 4 and the number of Chebyshev

node is 3. For comparison, the objective function has

a similar form as Eq. (20) with the original model

parameters been solved via a standard least-square

method leading to a model space method.

The recovered density models using different

inversion algorithms are displayed in Fig. 7 with two

vertical sections along profile PA and PB (white

dashed lines in Fig. 5a). Figure 7a, b shows the

predicted gravity data by different recovered density

models along PA and PB, which all fit the original

gravity data well. Figure 7c, d shows the inversion

results obtained from the conventional model space

method, and Fig. 7e, f shows the inversion results

obtained from the proposed fast inversion method. It

can be seen that all of the recovered bodies match

with real location of the synthetic density bodies

adequately. Owing to the sparseness introduced by

the Cauchy norm, the inversion result given by the

fast method is much compact compared with the

conventional one. This synthetic test indicated that

the fast inversion method can establish acceptable re-

construction of the synthetic multisource bodies at

different depth levels below the surface.

The above tests were performed on a computer

with 24 GB RAM, 3.60 GHz processor. For an

inverse problem of such scale, the running time of

the conventional model space method is about

1135 s. While for the fast method, it consumes

approximate 595 s. The inversion result obtained by

the fast method is similar to that of the conventional

method, while it is about 47% faster. Therefore, the

proposed fast generalized inversion method is more

computationally efficient. Moreover, the same gravity

data with different model domain divisions were

inverted to further compare their efficiencies.

Figure 8 shows the execution time of the above two

inversion methods for different scale inversion prob-

lems. For inversions with relatively large scale, the

proposed fast method shows a huge advantage on

computational efficiency.

3. Inversion for 3D Crustal Density Structure

of the Sichuan Basin

In this section, the proposed fast inversion method

was applied for the 3D crustal density structure of the

Sichuan basin. The Sichuan basin locates at the

intersection area of the Qinghai–Tibet Block, the

South China Block and the North China Block and is

surrounded by a series of active thrust and strike-slip

fault systems, such as the Longmenshan Fault Zone,

the Qinling Orogenic Belt, the Sanjiang Orogen and

the Songpan–Ganzi Orogen (Fig. 9) (Allen et al.

1991; Burchfiel et al. 1995; Wen et al. 2008; Wang

et al. 2016). During the past few decades, many

earthquakes with high magnitudes have occurred in

the Sichuan basin and its adjacent area, such as the

2008 Mw 7.9 Wenchuan earthquake (Wang et al.

2016). All of these earthquakes produced enormous

economic losses and brought great damages. Hence,

studying of the crustal structure of the Sichuan basin

and its adjacent area is of great significances for

improving seismic hazard assessment. Many geo-

physical methods are effective for studying the

crustal structure, one of which is the gravity method.

Figure 8
Execution time of the conventional model space algorithm and the

proposed fast inversion algorithm for inversion problems with

different scales
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However, few published literature has established the

3D density structure of the entire Sichuan basin.

Gravity inversion of such a large area with dense

mesh is very time consuming. In this study, the for-

mer introduced fast inversion method was conducted

on the gravity data of this area, hoping to obtain the

fine crustal density structure of the Sichuan basin and

its adjacent area. This density structure provides

reference for follow-up studies.

The utilized gravity data were extracted from the

world gravity database WGM2012 (Balmino et al.

2012). With gridding, we obtained the gridded Bouguer

gravity anomalies for the broader area of Sichuan

basin, which covers the region from 33�N to 27�N and

102�E to 110�E (Fig. 10a). The WGM2012 gravity

model is derived from the available earth global gravity

models and it also includes 10 9 10 resolution terrain

correction derived from elevation model ETOPO1

which considers the contribution of most surface

masses (air, lands, oceans, lakes, glacial lids and ice

shelves) (Amante and Eakins 2009). The gravity data

have been computed by means of a spherical harmonic

approach using theoretical developments carried out to

achieve accurate computations at global scale. Before

inversion, effects generated by the deep sources should

be separated from the Bouguer gravity anomaly to get

the residual gravity anomaly owing to the density

inhomogeneity of the crust. In this study, the forward

stripping method was employed. Depth of the Moho

interface in the research area was extracted from Guo

et al. (2012), shown in Fig. 10b, which was inverted

with constraints from deep seismic detections. The

effects generated by the Moho interface was calculated

by the fast forward method in frequency domain which

was proposed by Parker (1973). For computation, the

average density of the lower crust above the Moho

interface was set as 2.67 9 103 kg/m3, and the average

density of upper mantle was set as 3.3 9 103 kg/m3.

Figure 10c is the calculated gravity anomaly owing to

undulation of the Moho interface. By subtracting this

effect from the original Bouguer gravity anomaly, we

got the residual gravity anomaly of the research area

(Fig. 10d). Following generalized inversion would be

Figure 9
Regional tectonic position of the Sichuan Basin, base map of this figure is the topography data at 30 arc seconds resolution extracted from the

dataset introduced in Becker et al. (2009)
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performed on these data to get the 3D crustal density

structure of the Sichuan basin.

For inversion, there were about 200,000 data

points, and the subsurface was discretized into

200 9 200 9 40 rectangular prisms. The inverse

problem has been solved by the algorithm described

in the preceding section in which height of the octree

is 4 and the number of Chebyshev node is 3. For such

a large-scale problem, the inversion process can be

accomplished in less than 40000 s. Figure 11 shows

different horizontal density slices extracted from the

3D crustal density structure of the Sichuan basin at

different depths (from 2 to 35 km). It can be seen that

the density is characterized by lateral and vertical

heterogeneity in the crust. Above the depth of 5 km,

the major density inhomogeneity exists in the Long-

menshan (LMS) fault zone which is located at the

west margin of the Sichuan basin. For the area of

LMS fault, the density inhomogeneity extends to the

lower crust. It indicates that the LMS fault is a deep

fracture which cuts through the crust. In the middle-

lower crust, characteristics of the density distribution

indicate that the Sichuan basin can be divided into six

different regions, as shown in Fig. 11 (marked as I–

VI). Boundaries of these regions show good accor-

dance with major faults in Sichuan basin. For

instance, the common boundary among region I,

region V, region VI, region IV and region III is the

Figure 10
a Bouguer gravity anomaly of the research area, which covers the region from 33�N to 27�N and 102�E to 110�E; b depth of the Moho

interface in the research area; c calculated gravity anomaly owing to undulation of the Moho interface; d residual gravity anomaly of the

research area
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Figure 11
Horizontal density slices extracted from the three-Dimensional crustal density structure of the Sichuan basin at different depths, a 2 km;

b 5 km; c 10 km; d 15 km; e 25 km; f 35 km
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Huayingshan fault. The common boundary among

region II, region V and region VI is the Longquan-

shan fault. The common boundary among region V,

region III, region VI and region VI is the Chengdu–

Lezhi fault. The east margin of region III and region

IV is the Qiyaoshan fault. The west margin of region

II is the LMS fault. The south margin of region VI

and region IV is the Ya’an–Yibin fault. The north

margin of region III is the Dabashan fault. Moreover,

scales of these faults can also be noted from this 3D

density structure. Outlines of different regional

structures can roughly be recognized.

According to the inversion result, the middle and

lower crusts of Sichuan basin have the characteristic

of isolated distribution. These blocks may correspond

to the several continental cores beneath Sichuan basin

with different basement materials, and this interpre-

tation is similar to the description in Xiong et al.

(2015). Also, these blocks are completely preserved,

which indicates that the major faults which existed in

Sichuan Basin are the boundaries of these blocks as

described above. These faults have obvious ore-con-

trolling effects for detection. The density structure

presented in this study helps understanding the

basement structure and division of tectonic units in

Sichuan basin and provides reference for further

studies in this area.

4. Conclusions and Discussions

In this study, a novel inversion framework for fast

generalized nonlinear inversion of gravity data was

developed. The FMM technique was employed for

fast forward modelling. The inversion objective

function was established with weighted data misfit

function along with model objective function. A fast

dataspace inversion algorithm was utilized for solv-

ing the total inversion function. A combined density

model was established to test the fast forward mod-

elling method, and the synthetic gravity data induced

by this model were utilized to test the inversion

method. Inversion of noise-contaminated synthetic

data showed that the new method is a more efficient

method than the conventional model space inversion

method to produce an acceptable solution in gener-

alized inversion of gravity data. Furthermore, the

introduced fast inversion method was applied to

establish the 3D crustal density structure of Sichuan

basin, southwest China. Inferring from the obtained

density model, the middle and lower crusts in

Sichuan basin have the characteristics of isolated

distribution with several obvious regions whose

boundaries are consistent enough with the available

major faults that existed in Sichuan Basin.

Though the presented method can improve the

computational efficiency of the gravity inversion prob-

lem. For great large-scale inversion problem, it is still

very time consuming. Therefore, it is suggested that a

data sampling technique is used with the fast inversion

method, which can reduce the dimension of the datas-

pace greatly. Also, the program of the fast inversion

method can be parallelizedwithGPUorMPI techniques

to make it even more efficient for large-scale problems.
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