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Abstract—In this study, a long-term forecasting model is

proposed to evaluate the probabilities of forthcoming M C 5.0

earthquakes on a 0.2� grid for an area including the Iranian plateau.

The model is built basically from smoothing the locations of pre-

ceding events, assuming a spatially heterogeneous and temporally

homogeneous Poisson point process for seismicity. In order to

calculate the expectations, the space distribution, from adaptively

smoothed seismicity, has been scaled in time and magnitude by

average number of events over a 5-year forecasting horizon and a

tapered magnitude distribution, respectively. The model has been

adjusted and applied considering two earthquake datasets: a

regional unified catalog (MB14) and a global catalog (ISC). Only

the events with M C 4.5 have been retained from the datasets,

based on preliminary completeness data analysis. A set of experi-

ments has been carried out, testing different options in the model

application, and the average probability gains for target earth-

quakes have been estimated. By optimizing the model parameters,

which leads to increase of the predictive power of the model, it is

shown that a declustered catalog has an advantage over a non-

declustered one, and a low-magnitude threshold of a learning cat-

alog can be preferred to a larger one. In order to examine the

significance of the model results at 95% confidence level, a set of

retrospective tests, namely, the L test, the N test, the R test, and the

error diagram test, has been performed considering 13 target time

windows. The error diagram test shows that the forecast results,

obtained for both the two input catalogs, mostly fall outside the 5%

critical region that is related to results from a random guess. The

L test and the N test could not reject the model for most of the time

intervals (i.e. *85 and *62% of times for the ISC and MB14

forecasts, respectively). Furthermore, after backwards extending

the time span of the learning catalogs and repeating the L test and

N test for the new dataset as well as the R test, it is observed that a

low-quality longer catalog does not essentially improve the pre-

dictive skill of the model than a high-quality shorter one. The

performed retrospective tests suggest that the model yields some

statistically acceptable efficiency for the studied area, at least with

respect to the spatially uniform reference model. Thus, the

considered model may provide useful information as a reference

for more refined time-independent models and also in combination

with long-term indications from seismic hazard maps; this is par-

ticularly relevant in areas characterized by a high level of predicted

ground shaking and high forecast rate.

Key words: Probabilistic forecasting, adaptively smoothed

seismicity, retrospective tests, seismic hazard, Iranian plateau.

1. Introduction

The Iranian plateau from time to time experiences

destructive earthquakes due to the convergence of

Arabian and Eurasian plates. These earthquakes

usually lead to a lot of property damage and human

casualties. Hazard assessment is one of the key ele-

ments, which may permit to reduce such kind of

earthquake effects. On the other hand, earthquake

forecasts can be considered as a part of the seismic

hazard studies (Panza et al. 2012; Zechar and Jordan

2010). Current approaches in operational earthquake

forecasting, as well as their practical relevance in

mitigating the impact from possible impending

earthquakes, are matter of active scientific discussion

(Jordan et al. 2014; Kossobokov et al. 2015; Peresan

et al. 2012).

Several earthquake forecasting methods have

been already applied to the Iranian plateau (e.g.,

Maybodian et al. 2014; Radan et al. 2013; Talebi

et al. 2015), most of them involving a set of predic-

tions with ‘‘Yes–No’’ responses. Another common

type of earthquake forecast, performed in different

parts of the world, is the long-term probabilistic

forecast of earthquakes (e.g., Helmstetter et al. 2007;

Helmstetter and Werner 2012; Kagan and Jackson

1994, 2000; Werner et al. 2010a, 2011). This type of

studies includes some of the methods evaluated in the
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framework of the Collaboratory for the Study of

Earthquake Predictability (CSEP) (Schorlemmer

et al. 2010; Werner et al. 2010b; Zechar et al.

2010b, 2013). Several of these researches are carried

out as part of regional earthquake risk studies and can

be factored in the global earthquake model (Zechar

and Jordan 2010).

In this study, a similar long-term probabilistic

forecasting model is presented for the Iranian pla-

teau. The forecast is based on spatial smoothing of

the earthquakes occurred in the study region. This

investigation is similar to those performed by

Helmstetter et al. (2007) and Werner et al. (2011)

for California and by Werner et al. (2010a) for Italy.

Several studies indicated that, according to selected

statistical tests, the model by Helmstetter et al.

(2007) outperforms other models; moreover, the

tests failed to reject the model during the period

under review. Thus, it is now being used in the

USGS seismic hazard model for California (Field

et al. 2014).

The present study is a kind of grid-based forecast

in which the study area is divided into several cells

and the expected number of earthquakes is deter-

mined for each cell. The possibility is explored to

choose the model parameters according to regional

data and following an optimization process. More-

over, in order to investigate the impacts of input data

and find the more robust features of seismicity, two

different earthquake datasets are implemented in the

present investigation.

In this study, we suggest that the proposed model

may show satisfactory performances in forecasting

target M C 5.0 earthquakes. Specifically, the model

is intended to provide an improved quantitative

description of the space distribution of seismicity

over a uniform model. Such an experiment can be

important for developing forecast techniques in Iran.

Given the important role that earthquake forecast

would play in combination with earthquake hazard

assessment, this investigation could be useful in

identifying areas of high seismic risk in the Iranian

plateau. Moreover, such kind of studies provides

valuable information about the utilization and vali-

dation of smoothed intensity forecast methods in

different seismotectonic zones.

2. Data

The studied area covers a region including the

Iranian plateau limited to the coordinate ranges

26–39�N and 45–61�E. In order to consider the effect

of seismicity outside the testing area on the seismicity

of its inside, the area for collecting data is addition-

ally extended by 3�. Earthquakes within this area can

possibly affect the hazard of Iran.

In this study, dates, locations, and magnitudes of

earthquakes are used. Instrumental seismicity of Iran

and adjacent regions are reported in several regional

and global catalogs. For all these catalogs three main

periods can be identified, which are characterized by

a different data accuracy, namely: 1900–1964,

1964–1996 (i.e. after the global-scale installation of

modern seismological instruments till 1996), and

after 1996 (i.e. after the development of seismic local

networks in Iran). Accordingly, the values of uncer-

tainties in the earthquake parameters decreased over

time.

As the quality of the most recent part of the cat-

alogs (i.e. from 1996 till now) is high compared to

that of the others, this part of the data has been used

as main part of our dataset. We have also extended

the time span of the data during retrospective con-

sistency tests; the advantage of this analysis is to see

if data from the longer period can provide more

predictive information or not.

Similar to data used for hazard analysis and most

of other forecasting methods (Peresan et al. 2011), the

data used for this study should be homogeneous in

terms of magnitude; i.e., the magnitudes should be

consistent over time as possible. In fact, the robust-

ness of the applied method can be assessed with

respect to uncertainties of randomly defective and

incomplete input data (e.g., Peresan et al. 2002). Still,

any sound method would fail (or it is expected to fail)

if the input data provide a systematically inconsistent

picture of reality, like in the case reported by Peresan

et al. (2000).

Based on the Gutenberg–Richter relation, May-

bodian et al. (2014) have discussed in detail the

homogeneity and variation of earthquake magnitudes

for seismicity of Iran. They studied two regional

catalogs that provided by the Iranian Seismological
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Center (IGUT) and the International Institute of

Earthquake Engineering and Seismology (IIEES), as

well as two global catalogs collected by the National

Earthquake Information Center (NEIC) and the

International Seismological Centre (ISC). Since the

global catalogs commonly provide several estimates

for an earthquake, based on different magnitude

scales, Maybodian et al. (2014) have chosen the lar-

gest magnitude among all of the reported values.

According to their study, the ISC catalog outper-

formed the others from the point of view of

magnitude completeness (Mc) and homogeneity.

Accordingly, the ISC catalog is used in the present

study by considering the maximum magnitude

reported for each earthquake. This criterion is also

employed by Kagan and Jackson (2010) to extract

data of the PDE catalog. For moderate size earth-

quakes, the maximum magnitude is often reported in

mb and Ms scales, while for large earthquakes the

biggest one is usually in Mw scale.

In addition to the data from global and regional

scientific centers, in recent years, some unified

earthquake catalogs have been compiled for the Ira-

nian plateau (e.g., Karimiparidari et al. 2013;

Mousavi-Bafrouei et al. 2014; Shahvar et al. 2013;

Zare et al. 2014). The catalog provided by Mousavi-

Bafrouei et al. (2014) is the most recent one, and the

period of its instrumental data, extending to early

2013, is longer than other data sets; therefore, it is

used as the second catalog in this investigation.

Mousavi-Bafrouei et al. (2014) have applied general

orthogonal regression (GOR) method to convert

magnitudes of Mb, Ms, Ml, and Mn type into Mw. In

the following, MB14 stands for the study of Mousavi-

Bafrouei et al. (2014).

Using the maximum curvature method (Wiemer

and Wyss 2000), we have estimated the completeness

level of the considered datasets as Mc = 4.5 over the

whole area. Figure 1a, b shows the accumulated

number of M C 4.5 earthquakes reported in the MB14

Figure 1
Temporal distributions of original and declustered seismicity with M C 4.5. a, b Display accumulated number of earthquakes in the MB14

and ISC catalogs, respectively. The dash lines separate the most recent part of the catalogs (i.e. from 1996 till now). c, d Seismicity rate per

4 months for the MB14 and ISC catalogs, respectively. The vertical solid lines indicate the times of occurrence of M[ 6.5 events and sharp

rises of seismicity. The curves show that the statistic trend of the seismicity is not subjected to change after *1980 and most of the dependent

seismicity causing the large fluctuations in time distribution has been eliminated in the declustered catalogs

Vol. 174, (2017) Long-Term Probabilistic Forecast for M C 5.0 Earthquakes in Iran 1563



and ISC catalogs, respectively. It appears that in both

the MB14 and the ISC catalogs the statistic trend of

seismicity is not subjected to change after 1996.

As we want to compare the results from the MB14

and ISC catalogs, and the period covered by the

MB14 catalog is up to 2013 only, we used the data of

the ISC catalog until the beginning of 2013 for

optimizing the model and carrying out the retro-

spective tests. However, in order to compute the final

forecast, the data between 2013 and 2015 in the ISC

catalog are considered too.

3. Declustering

In order to estimate the time-independent earth-

quake rate, we removed the dependent events (i.e. the

aftershocks), which are associated with large fluctu-

ations of seismic activity in space and time. For this

purpose the catalogs were declustered by Reasen-

berg’s algorithm (1985), as adapted by Helmstetter

et al. (2007), setting the depth and lateral error in the

earthquake location to 15 and 10 km, respectively.

Declustering process for the MB14 and ISC cat-

alogs identified, respectively, 20 and 28% of the

earthquakes as dependent ones. After declustering,

the MB14 catalog for the study area includes 1240

earthquakes with magnitude M C 4.5 (from 1996 to

2013), and the ISC catalog contains 1178 earthquakes

with magnitude M C 4.5 (from 1996 to 2015).

Figure 1c, d shows that the declustering process

could remove the sharp rises, which are associated

with the temporal clustering, in the seismicity rate.

The cumulative number curves related to the

declustered catalogs are also smoother than those of

the raw catalogs (Fig. 1a, b). In general, it can be

deduced that most of the foreshocks and aftershocks

causing the large fluctuations in time have been

removed from the final catalogs.

4. Methodology

4.1. Spatial Distribution

As the forecasting model used in this study is

described in detail by Helmstetter et al. (2007), here

we just present a summary of the method. This model

aims to predict the spatial distribution of seismicity.

The main assumption of the model is that a future

target earthquake is likely to occur in the vicinity of

epicenters of prior events. In other words, the

locations of past earthquakes provide important

information about locations of the forthcoming ones.

Earlier studies (e.g., Helmstetter et al. 2007) have

shown that information about small earthquakes may

increase the performance of the forecasting model.

In order to describe the spatial distribution of

seismicity in the gridded geographical region, we

estimated the seismicity rate in each cell of the grid,

after having applied a kernel method to smooth the

epicentral location of all earthquakes. Specifically, an

isotropic adaptive kernel, centered on each earthquake

epicenter, was applied for the spatial smoothing of the

location of an earthquake i as follows:

Kdi
r~� ri

!� �
¼ C dið Þ

�

r~� ri
!�� ��2þd2

i

� �1:5
: ð1Þ

This function is a power-law kernel, where jr~�
ri
!j is the horizontal distance between the ith earth-

quake epicenter location ri
! and an arbitrary point r~

(e.g., a node of the grid), di is the scale parameter or

bandwidth, and C(di) is a normalizing constant, such

that the integral of the kernel Kdi
r~� ri

!� �
over an

infinite area is equal to 1.

The scale parameter di is a function of the density

of events around the ith earthquake. We calculated

this parameter as the lateral distance between the ith

event and its kth nearest neighbor (Helmstetter et al.

2007). The parameter k, which is a single parameter

computed for the whole catalog, was adjusted at the

stage of regional model optimization, so that di was

small where the density of events was high and vice

versa. This thus can improve the resolution of the

forecast in places with higher density. The parameter

di has the lowest values of *3 km for the MB14

dataset and *2.5 km for the ISC dataset.

The density k at any point r~was then calculated

by summing the contributions of all N past earth-

quakes, included in each learning catalog, as follows:

kðr~Þ ¼
XN

i¼1

Kdi
r~� ri

!� �
: ð2Þ
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However, the forecast provides an expected

number of events within each cell. Hence, Eq. (2)

was then integrated over each cell to obtain the

seismicity rate in this cell.

4.2. Model Optimization

A powerful tool to assess the adaptation of real

and predicted model is the likelihood function. The

optimal value for the parameter k for each model was

obtained by a criterion of the maximum likelihood

estimation. To do this, several sets of non-overlap-

ping catalogs, i.e. pairs of a learning catalog and a

testing catalog, were extracted, so that earthquakes

used to calculate the seismicity rate were not used to

evaluate the results. To build each pair of learning

and testing catalogs, we considered the same input

catalog but with different start times, end times, and

magnitude thresholds.

For each cell, the rate k was computed and

normalized according to Helmstetter et al. (2007).

Assuming spatiotemporal independency of earth-

quakes, the log-likelihoods of the models (L) were

calculated by the Poisson distribution (Schorlemmer

et al. 2007, Appendix A). Finally, the best models

were selected by calculating the differential proba-

bility gain per target earthquake (G) for each model

as follows:

G ¼ exp
L � Lunif

Nt

� 	
; ð3Þ

where Nt is the number of target earthquakes at each

testing catalog, and Lunif is the log-likelihood of a

spatially uniform reference model, which assumes

that earthquake epicenters are distributed uniformly

in space (i.e. over a regular grid, the number of epi-

centers is the same within each cell).

4.3. Magnitude Distribution

For the magnitude distribution, we assume a

tapered Gutenberg–Richter distribution, proposed by

Helmstetter et al. (2007) as

P mð Þ¼ 10�b m�mminð Þ exp 101:5 mmin�mcð Þ �101:5 m�mcð Þ
� �

;

ð4Þ

where b is the b value parameter, mmin is the mini-

mum magnitude of target earthquakes and mc is the

upper corner magnitude. For Iran, we have used

mc = 7.56 as suggested by Bird and Kagan (2004) for

the type of active continent; this estimate is com-

patible with records from historical and instrumental

catalogs of Iran, where earthquakes with magnitude

around 7.5 are reported in Zagros, Alborz, Kopet-

dagh, and Makran regions. Using maximum likeli-

hood algorithm as implemented in seismic tool

ZMAP 6.0 (Wiemer 2001), we estimated the b value

as 1.14 ± 0.02 for both the ISC and the MB14

catalogs.

Figure 2 depicts the cumulative frequency-mag-

nitude distributions of M C 4.5 events, as reported in

the ISC and MB14 declustered catalogs, and the line

fitted by Eq. (4). It can be observed that the

difference between the two distributions is low for

small and moderate earthquakes, up to M = 6.0. The

fitted line, which is applied for estimating the space-

magnitude rate, fits the rate of M B 6 events fairly

well, whereas it tends to underestimate the rate for

the largest target magnitudes. However, since the

earthquakes with 5 B M B 6 naturally make the most

part of the target catalogs, the influence of such

b value estimate on the obtained results is negligible.

Figure 2
Cumulative frequency–magnitude distribution of M C 4.5 events,

reported in the MB14 and ISC declustered catalogs since 1996. The

dashed line is fitted according to Eq. (5) with b = 1.14 ± 0.02.

The fit appropriately describes the rate of M B 6 earthquakes,

whereas it tends to underestimate it for larger magnitudes
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4.4. Space–Time–Magnitude Distribution

The expectation (E) for each coupled bin of space

(ix, iy), and magnitude (im) is estimated by

E ix; iy; im
� �

¼ k
0

ix; iy
� �

NhP imð Þ; ð5Þ

where k
0
is the normalized spatial density k, such that

the sum of k
0
over all the cells is equal to 1, and Nh is

measured as the average number of target earth-

quakes in the whole region over a time span

corresponding to the forecast horizon h. In order to

estimate the parameter Nh for each catalog, the total

number of observed target events is divided by the

catalog duration, and then it is multiplied by the

duration of the forecast horizon. Using the declus-

tered catalogs, we estimated this parameter

as *67.53 and *81.01 earthquakes of M C 5.0 per

5 years for the ISC and MB14 datasets, respectively.

P imð Þ is the cumulative probability of a target earth-

quake occurring within the magnitude bin im and is

calculated from Eq. (4).

5. Results

Table 1 reports the results of the model opti-

mization for a number of model variants. Based on

these results we investigate some of the factors

affecting the differential probability gain of a fore-

cast, which leads to choose the model parameters.

Having varied the smoothing parameter k between 1

and 50, we selected the value of k that corresponds to

the maximum log-likelihood score of the model. In

fact, higher gain values indicate relatively higher

model efficiency, with the gain of the reference

homogeneous model corresponding to 1.0.

Figure 3a, b illustrates how the results change

depending on the size (large or small) of the cells

used for gridding the study territory, considering two

different 5-year target periods (2003–2007,

2008–2012) with target magnitudes M C 5.

In general, for these two time periods the average

curves of the differential probability gain display

larger values for models with smaller cell sizes, for

all the learning magnitude thresholds of 4.5, 5.0, 5.5,

and 6.0. As expected, when only the largest

earthquakes (above the target magnitude) are used to

train the model, the results get very poor.

In similar studies, carried out in the framework of

RELM (Regional Earthquake Likelihood Models test

of earthquake forecasts in California) (Schorlemmer

and Gerstenberger 2007), the distance between grid

points was set to 0.1�.
Although the location error for earthquakes of the

Iranian plateau is greater than that of California (e.g.,

Engdahl et al. 2006; Richards-Dinger and Shearer

2000), our results show that the models of cell size

0.1� 9 0.1� could be appropriate also for the Iranian

region. The reason may be the fact that the smoothing

technique has smoothed the impacts of errors in the

earthquake location too. Indeed, the obtained results

indicate an almost negligible difference between the

values related to the cell sizes of 0.1� 9 0.1� and

0.2� 9 0.2�. In this study, however, we prefer using

the cell size 0.2� 9 0.2�, which better copes with the

error of earthquake location and finite earthquake

source dimensions. On the other hand, earthquakes

are not points and 0.1� 9 0.1� cell size is even less

than the approximate source size for the largest target

earthquakes (e.g., M C 5.0); accordingly, the fault of

a real target earthquake may exceed the cell size.

In order to determine the effects of the declus-

tering process, we have studied the results of a model

with cell size 0.2� 9 0.2� using events from the non-

declustered and declustered catalogs. For the two

previously mentioned target time periods, the gain

values have been calculated for target magnitudes

M C 5. Figure 3c, d shows the average results

obtained for each magnitude threshold of the learning

catalogs.

For both the ISC and the MB14 catalogs, models

based on the declustered catalogs provide higher

gains than those obtained from the raw catalogs.

These results indicate that non-declustered data are

too localized in space for application in a time-in-

dependent long-term forecasting model. Without the

declustering procedure, more complicated models are

possibly required (Werner et al. 2010a). Thus, in

what follows, we have selected the declustered cat-

alogs as reference database.

We have also studied the effects of using different

magnitude thresholds of the learning catalogs on the

1566 M. Talebi et al. Pure Appl. Geophys.



Table 1

Results from the model optimization analysis, obtained using the MB14 and ISC catalogs

Model Learning catalog Target catalog Result

No Cell size (�) Catalog t1 t2 m N t1 t2 m N L G k bw (km)

1 0.1 MB14 1996 2007 4.5 655 2008 2012 5 111 -601.8 2.4 3 40.8

2 0.1 MB14 1996 2002 4.5 347 2003 2007 5 62 -386.5 1.9 3 53.6

3 0.1 MB14 1996 2007 5 164 2008 2012 5 111 -605.0 2.3 2 64.1

4 0.1 MB14 1996 2002 5 102 2003 2007 5 62 -386.1 1.9 4 146.2

5 0.1 MB14 1996 2007 5.5 31 2008 2012 5 111 -660.5 1.4 3 265.4

6 0.1 MB14 1996 2002 5.5 17 2003 2007 5 62 -413.3 1.2 2 290.0

7 0.1 MB14 1996 2007 6 12 2008 2012 5 111 -680.6 1.2 4 486.7

8 0.1 MB14 1996 2002 6 7 2003 2007 5 62 -421.8 1.1 3 716.1

9 0.2 MB14 1996 2007 4.5 655 2008 2012 5 111 -458.0 2.3 3 40.8

10 0.2 MB14 1996 2002 4.5 347 2003 2007 5 62 -306.6 1.9 3 53.6

11 0.2 MB14 1996 2007 5 164 2008 2012 5 111 -459.5 2.3 2 64.1

12 0.2 MB14 1996 2002 5 102 2003 2007 5 62 -307.2 1.9 4 146.2

13 0.2 MB14 1996 2007 5.5 31 2008 2012 5 111 -514.5 1.4 3 265.4

14 0.2 MB14 1996 2002 5.5 17 2003 2007 5 62 -335.5 1.2 2 290.0

15 0.2 MB14 1996 2007 6 12 2008 2012 5 111 -533.8 1.2 4 486.7

16 0.2 MB14 1996 2002 6 7 2003 2007 5 62 -343.4 1.1 3 716.1

17 0.5 MB14 1996 2007 4.5 655 2008 2012 5 111 -296.6 1.8 3 40.8

18 0.5 MB14 1996 2002 4.5 347 2003 2007 5 62 -203.9 1.9 4 66.0

19 0.5 MB14 1996 2007 5 164 2008 2012 5 111 -292.1 1.9 2 64.1

20 0.5 MB14 1996 2002 5 102 2003 2007 5 62 -207.2 1.8 4 146.2

21 0.5 MB14 1996 2007 5.5 31 2008 2012 5 111 -331.6 1.3 2 218.2

22 0.5 MB14 1996 2002 5.5 17 2003 2007 5 62 -234.3 1.2 2 290.0

23 0.5 MB14 1996 2007 6 12 2008 2012 5 111 -350.6 1.1 4 486.7

24 0.5 MB14 1996 2002 6 7 2003 2007 5 62 -241.4 1.1 3 716.1

25 1 MB14 1996 2007 4.5 655 2008 2012 5 111 -202.1 1.6 13 103.6

26 1 MB14 1996 2002 4.5 347 2003 2007 5 62 -135.5 1.8 2 41.2

27 1 MB14 1996 2007 5 164 2008 2012 5 111 -199.4 1.6 2 64.1

28 1 MB14 1996 2002 5 102 2003 2007 5 62 -142.5 1.6 4 146.2

29 1 MB14 1996 2007 5.5 31 2008 2012 5 111 -226.8 1.3 5 381.2

30 1 MB14 1996 2002 5.5 17 2003 2007 5 62 -166.8 1.1 3 388.2

31 1 MB14 1996 2007 6 12 2008 2012 5 111 -241.8 1.1 6 738.9

32 1 MB14 1996 2002 6 7 2003 2007 5 62 -168.5 1.0 3 716.1

33 0.1 ISC 1996 2007 4.5 563 2008 2012 5 75 -427.5 2.7 2 33.1

34 0.1 ISC 1996 2002 4.5 301 2003 2007 5 70 -424.1 2.0 3 62.8

35 0.1 ISC 1996 2007 5 154 2008 2012 5 75 -432.3 2.6 2 65.0

36 0.1 ISC 1996 2002 5 84 2003 2007 5 70 -431.3 1.8 2 90.6

37 0.1 ISC 1996 2007 5.5 36 2008 2012 5 75 -468.8 1.6 2 190.6

38 0.1 ISC 1996 2002 5.5 20 2003 2007 5 70 -461.5 1.2 2 261.4

39 0.1 ISC 1996 2007 6 16 2008 2012 5 75 -479.7 1.4 4 439.3

40 0.1 ISC 1996 2002 6 7 2003 2007 5 70 -471.3 1.0 3 714.4

41 0.2 ISC 1996 2007 4.5 563 2008 2012 5 75 -332.0 2.6 2 33.1

42 0.2 ISC 1996 2002 4.5 301 2003 2007 5 70 -331.9 2.0 3 62.8

43 0.2 ISC 1996 2007 5 154 2008 2012 5 75 -337.1 2.5 2 65.0

44 0.2 ISC 1996 2002 5 84 2003 2007 5 70 -338.4 1.9 2 90.6

45 0.2 ISC 1996 2007 5.5 36 2008 2012 5 75 -369.4 1.6 2 190.6

46 0.2 ISC 1996 2002 5.5 20 2003 2007 5 70 -371.2 1.2 2 261.4

47 0.2 ISC 1996 2007 6 16 2008 2012 5 75 -381.4 1.4 4 439.3

48 0.2 ISC 1996 2002 6 7 2003 2007 5 70 -380.8 1.0 3 714.4

49 0.5 ISC 1996 2007 4.5 563 2008 2012 5 75 -225.2 2.1 2 33.1

50 0.5 ISC 1996 2002 4.5 301 2003 2007 5 70 -216.0 2.1 3 62.8

51 0.5 ISC 1996 2007 5 154 2008 2012 5 75 -226.5 2.1 2 65.0

52 0.5 ISC 1996 2002 5 84 2003 2007 5 70 -221.6 1.9 2 90.6

53 0.5 ISC 1996 2007 5.5 36 2008 2012 5 75 -247.6 1.5 2 190.6
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predictive power of the model. The diagrams in

Fig. 3e show that the gain reduces gradually by

increasing the magnitude threshold of the learning

catalogs, although this is less evident for the MB14

catalog. These results are in agreement with the

results of other studies, such as Helmstetter et al.

(2007) and Werner et al. (2011) for California, and

show that the information carried by earthquakes with

small magnitudes can lead to increase the model

resolution; this could be eventually due to the

increased number of data used to compute the fore-

casting model. As discussed in Maybodian et al.

(2014), the magnitude completeness of the Iranian

regional catalogs may well be lower in recent years,

i.e. Mc & 2.5 since 2006, although a much longer

time span is needed for the purposes of intermediate-

or long-term forecasting algorithms, which require a

preliminary calibration or learning stage.

In contrast to the similar study on CPTI catalog of

Italy by Werner et al. (2010a), the current results do

not display large fluctuations and turn out fairly

stable, which could be explained by the sufficient

number of target events reported in the catalogs (on

average about 74 earthquakes of M C 5.0 per

5 years).

In Fig. 3e, the average curves of the differential

probability gains obtained for the two target periods

(2003–2007 and 2008–2012) are shown for both the

ISC and the MB14 catalogs. The results indicate a

slight difference between the values. However, the

ISC catalog obtained higher gain values than the

MB14 catalog, for all the learning magnitude

thresholds of 4.5, 5.0, 5.5, and 6.0. Thus, the adequate

number of target events and the robustness of the

method apparently preserve similarity of results, in

spite of the differences between these catalogs.

Figure 4 shows the differential probability gain

versus the average optimized bandwidth of the

smoothing kernel. It can be seen that increasing the

bandwidth generally leads to decreasing the gain

value, so that it is going to converge to 1.0. A reason

for this phenomenon is that increasing bandwidth

makes the forecasting model go to a spatially uniform

model.

It is found that the optimal value of the parameter

k for the territory of Iran does not vary exceedingly in

all the models, and ranges from 2 to 13. Its average

value, used for the final forecasts, is equal to 3 for

both the ISC and the MB14 catalogs. According to

Werner et al. (2010a), the smoothing parameter k for

the CPTI catalog of Italy varied in a much wider

range, from 1 to 35. The difference in the value of the

parameter k for Iran and Italy can be explained

mainly by the different number of target events; in

Italy the small number of target earthquakes makes

the forecast model quite unstable. However, the low

variability of the smoothing parameter might also

reflect the influence of seismotectonic conditions on a

Table 1 continued

Model Learning catalog Target catalog Result

No Cell size (�) Catalog t1 t2 m N t1 t2 m N L G k bw (km)

54 0.5 ISC 1996 2002 5.5 20 2003 2007 5 70 -257.4 1.1 2 261.4

55 0.5 ISC 1996 2007 6 16 2008 2012 5 75 -258.7 1.3 4 439.3

56 0.5 ISC 1996 2002 6 7 2003 2007 5 70 -266.2 1.0 3 714.4

57 1 ISC 1996 2007 4.5 563 2008 2012 5 75 -156.7 1.7 9 86.7

58 1 ISC 1996 2002 4.5 301 2003 2007 5 70 -141.5 1.8 4 74.6

59 1 ISC 1996 2007 5 154 2008 2012 5 75 -158.9 1.7 7 163.4

60 1 ISC 1996 2002 5 84 2003 2007 5 70 -146.0 1.7 2 90.6

61 1 ISC 1996 2007 5.5 36 2008 2012 5 75 -174.5 1.4 2 190.6

62 1 ISC 1996 2002 5.5 20 2003 2007 5 70 -179.3 1.1 2 261.4

63 1 ISC 1996 2007 6 16 2008 2012 5 75 -179.9 1.3 4 439.3

64 1 ISC 1996 2002 6 7 2003 2007 5 70 -184.1 1.0 3 714.4

t1 and t2 are first year and last year used to select the data, respectively; m and N are the minimum magnitude threshold and the corresponding

number of events in the catalog, respectively; G is the differential probability gain per earthquake (Eq. 3); bw represent the average adaptive

bandwidth. Having varied the smoothing parameter k between 1 and 50, we selected the one, which corresponds to the maximum log-

likelihood score (L)
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smoothed intensity earthquake forecast; in fact, when

the target events occur within formerly active areas

(i.e. tend to repeat in the same locations), the value of

the parameter k is generally small (Werner et al.

2010a)_ENREF_34. This suggests that the assump-

tions of the smoothed intensity forecast method are

more compatible with seismotectonic setting of Iran,

than with that of Italy, which is very heterogeneous

(e.g., Radan et al. 2013).

Figures 5 and 6 present the final 5-year earth-

quake forecasts for the target M C 5.0 earthquakes,

as obtained from ISC and MB14 catalogs, respec-

tively. For both the maps, the higher seismicity rates

of moderate earthquakes are predicted in the Zagros

zone, extended in the western and southern parts of

Iran. By a visual assessment, it seems that the maps

are approximately similar, and most of the observed

target events that occurred after the learning time

period, i.e. from 1 January 2013 to 2016 (white

squares), are consistent with the space forecast.

6. Discussion

6.1. Retrospective Tests

In order to check the consistency of observational

data with the forecasts, the models have been

evaluated by different types of retrospective tests,

namely, the L test, the N test, the R test (Schorlemmer

et al. 2007; Werner et al. 2011; Zechar 2010; Zechar

et al. 2010a), and the error diagram test (Molchan

Figure 3
Differential probability gain per earthquake against magnitude threshold of the learning catalogs for two different 5-year target periods

(2003–2007, 2008–2012) with target magnitudes M C 5.0. a, b Depict the effects of selecting small and big cell sizes on the results for the

ISC and MB14 catalogs, respectively. The effects of declustering in estimation of the differential probability gain are shown in c for the ISC

catalog and in d for the MB14 catalog. e Displays the effects of using each learning magnitude threshold on the predictive power of the model

for the catalogs. Bold curves in e as well as ones in a, b, c, and d present the average values of the differential probability gains obtained for

the target periods
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1991; Molchan and Kagan 1992). It is worth noting

that in order to build the forecasts examined in this

section, the events of target periods have been

excluded from learning catalogs.

In the L test, the observed joint log-likelihood

(that is the likelihood of observing the target events

given the forecast, i.e. the joint likelihood of each

bin’s observation given each bin’s forecast) is

calculated, and the consistency of forecasts is exam-

ined. In order to assess how well the observed catalog

matches the forecasts, about 10,000 simulated cata-

logs consistent with each forecast were generated,

and then the observed joint log-likelihood was

compared with the distribution of the simulated joint

log-likelihoods. In these simulated catalogs, locations

and number of earthquakes were randomly assigned,

using a Poisson distribution; the procedure for

generating the synthetic catalogs is discussed in

detail in Zechar et al. (2010a) and Zechar (2010).

Similarly, in the N test, the consistency of the number

of observed earthquakes with the number of those

forecasted is examined.

In Fig. 7, the results of the L and N tests are

shown for a set of 5-year target periods, partially

overlapping and shifted by 1 year, beginning from

1996. For each model, rejected and passed forecasts

are, respectively, shown by squares and circles. The

95% confidence limits from the Poisson distribution

of the results are also presented with bars.

Figure 4
Differential probability gain per earthquake versus the mean kernel

bandwidth, over the two target periods 2003–2007 and 2008–2012.

Increasing the bandwidth generally leads to decreasing the gain

value, so that it is going to converge to 1.0

Figure 5
Expected seismicity rate of the target M C 5.0 earthquakes over a

5-year forecast horizon from 2013 to 2017, based on the MB14

catalog. White squares are M C 5.0 declustered events that

happened from 1 January 2013 to 2016, as reported in the available

ISC catalog. We may observe that the locations of observed

M C 5.0 earthquakes well correlate with the hotspots in the

forecasted map

Figure 6
Expected seismicity rate of the target M C 5.0 earthquakes over a

5-year forecast horizon from 2015 to 2019, based on the ISC

catalog. White squares are M C 5.0 declustered events that

happened from 1 January 2015 to 2016, based on the ISC catalog
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The L test is a one-sided test and rejects a forecast

when the observed log-likelihood locates at the lower

limits of distribution of the simulated log-likelihoods.

Accordingly, the models based on the MB14 and ISC

catalogs have been rejected 1 and 2 times among 13

periods, respectively (Fig. 7a, c).

The N test is a two-sided test and rejects a forecast

if the number of earthquakes observed in the target

period locates either in the lower or upper limits of

the distribution of the number of events in the

simulated catalogs. According to Fig. 7b, d, this test

did not reject any of the forecasts related to the ISC

catalog, whereas for the MB14 catalog the model

results have been rejected 5 times.

Figure 7 shows that an increased number of target

earthquakes results in a reduced log-likelihood score;

in other words, they are correlated, with opposite

trend. Since the expected likelihood score decreases

when the expected number of events increases, and

given that the L test is a one-sided test, a model that

over-predicts the number of earthquakes might pass

the L test trivially. A remedy for this issue is to

perform the conditional L test (Werner et al. 2011),

which conditions the likelihood range expected under

the model to the number of observed earthquakes. As

shown in Fig. 7, the corresponding confidence limits

of the conditional L test, illustrated by bold bars, are

narrower than those of the unconditional/original

L test; still, the conditional L test does not reject any

of the models during any of the periods.

We observed that in a number of periods the

unconditional L test (hereafter, the L test) and the

N test provided an opposite response, namely the

L test did not reject the model, while the N test

rejected it and vice versa. Only in one target period,

i.e. 2008–2012, the model based on the MB14 catalog

was rejected by both the tests. Compared with

Werner et al. (2011), these tests seem to provide

some additional information about the computed

models. In other words, the N test cannot reject the

models based on the ISC data, whereas the L test

appears more stringent than the N test. On the

contrary, the N test is more effective than the L test in

discarding the models based on the MB14 data.

The same tests just described have been also

performed after extending backward the duration of

the learning catalogs, which increases the number of

events and eventually decreases the statistical vari-

ability of results. For this purpose, we included in the

datasets the events which occurred in the time

interval from 1980 to 1996, as the occurrence rate

Figure 7
Results from the retrospective tests (unconditional L test, condi-

tional L test, and N test) for a set of 5-year target periods, partially

overlapping and shifted by 1 year, starting on 1996. a, b Display

the results for the forecasts based on the MB14 catalog. c, d Depict

the results for the forecasts based on the ISC catalog. The 95%

confidence limits from the Poisson distribution of the correspond-

ing results of the unconditional L test and N test are presented with

thin bars, and the associated bounds for the expected conditional

likelihood score are shown with bold bars (panels a and c). For

each model, symbols denote the values of observed log-likelihoods

and the number of observed events; a black circle is used for a

passed forecast, while a red square is applied for a rejected

forecast, i.e. when the model is inconsistent with the observations

within the considered time period
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of events is approximately constant since *1980

(Fig. 1). The results obtained based on the longer

datasets show that the outcomes of the tests based on

the extended MB14 catalog (Table 2; Fig. 8a, b)

remain very similar to those from the shorter one,

while the number of rejected forecasts increased for

the longer ISC catalog (Table 2; Fig. 8c, d).

In order to quantitatively cross-compare the

relative forecast skill of each of the models, which

were built based on the longer and shorter catalogs,

respectively, the R test has been used (Schorlemmer

et al. 2007). Under a null hypothesis that model A is

correct, the quantile score aAB returns the portion of

synthetic likelihood ratios, given the model A, that is

less than the observed likelihood ratio for the

forecasts A and B. Large values of aAB support the

model A over the model B. The same procedure leads

to provide aBA, assuming a null hypothesis that the

model B is correct.

Table 2 shows the numbers of the target periods,

out of the 13 considered ones, in which the models

are rejected by the tests. For the R test, the results

present the number of periods when the model B (in

rows) should be rejected compared to the model A (in

columns), using the critical significant level of 0.05.

The models based on the longer and shorter catalogs

are denoted by ‘‘-m80’’ and ‘‘-m96’’ prefixes,

respectively, and the periods in which the preferred

models have been rejected by the L test or N test have

been excluded for the evaluations by the R test. The

results show that there is not a strong evidence to

make a conclusion about improving the predictive

skill of the models by a longer learning period, as

there are approximately the same number of periods

that corresponding models of the longer and shorter

catalogs were not rejected. Comparing the corre-

sponding forecasts obtained from the MB14 and ISC

catalogs, the ISC-based models can be favored over

the models based on the MB14 catalog.

However, the L test measures a combined score of

rate and space components of a forecast, and the

N test only considers impacts of the rate forecast

(Zechar 2010). In order to focus on the space

component of the forecasts, the results have been

evaluated also by the error diagram analysis (Mol-

chan 1991).

As this method tests basically alarm-based fore-

casts, firstly the water level method (Kossobokov

2006; Zechar and Jordan 2008) has been used to

obtain alarm-based outputs of the models, assuming a

uniform spatial density distribution of seismicity. In

practice, having set some thresholds on the expecta-

tion E, for each threshold we calculated the space

volume T of alarms by summing up the numbers of

alarmed cells in which the expectation was higher

than this threshold. Accordingly, the space rate of

alarms is simply given by the number of alarmed

cells versus the total number of analyzed cells. The

miss rate m was also computed as the number of target

events that happened outside the alarmed cells.

Figure 9a, b presents the average error diagrams

(the percentage of T versus the percentage of m) of
the forecasts based on the MB14 and ISC catalogs in

two non-overlapping periods (2003–2007 and

2008–2012). The diagonal line displays the long-

term trend of the efficiency of random predictions

(i.e. the set of results which can be obtained by a

random guess). The curve corresponding to a

Table 2

Summary results of the retrospective tests (R test, N test, and unconditional L test)

R test N test L test

A = MB14-m80 A = MB14-m96 A = ISC-m80 A = ISC-m96

B = MB14-m80 – 4 7 7 5 1

B = MB14-m96 4 – 7 7 5 1

B = ISC-m80 3 3 – 5 2 3

B = ISC-m96 3 3 6 – 0 2

In each row, the numbers of the target periods, out of the 13 considered periods, in which the model B is rejected by the tests is reported. In the

case of the R test, a null hypothesis that model A (in columns) is correct is assumed. The prefixes ‘‘-m80’’ and ‘‘-m96’’ indicate the models

based on the longer and shorter catalogs, respectively
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confidence level of 95% (Molchan 1991; Zechar and

Jordan 2008) is also provided in the diagram to show

the statistical significance of the results. Each confi-

dence bound is calculated based on the corresponding

average number of target earthquakes occurred within

the considered time periods. It is seen that the models

cannot be rejected by this test, as the points do not

exceed the 95% confidence bound.

However, the assumption of a uniform spatial

density distribution of seismicity provides a simplis-

tic reference model for the test. In order to supply a

more conservative estimation of T, the empty cells,

namely non-active cells with no M C 4.5 earth-

quakes, were excluded from the analysis

(Kossobokov and Carlson 1995). Indeed, in this

way we have made a reference model of past

seismicity, which grossly permits to account for the

non-uniform density distribution of earthquake epi-

centers. Accordingly, the results (black open circles

in Fig. 9) indicate that the model cannot be rejected

by this test, at least at 95% confidence level. Only

part of the results, corresponding to large values of T,

falls in the critical region of the diagram, between the

curve of confidence bound and the diagonal line of

random guessing. However, given the reference

model of past seismicity, the efficiency of the

forecasting model is evidently lower than that

estimated considering a spatially uniform reference

model of seismicity. This suggests that the forecast-

ing model provides rather limited additional

information, with respect to the location of past

earthquakes, and might need more complexities to

outperform stricter reference models.

In order to make a quantitative assessment of the

results, we used two scalar quantities, namely the S-

value (S = T ? m) and the probability gain or

predictive ratio value (Pr = [1 - m]/ T) (Kagan and

Jackson 2006; Kagan and Knopoff 1977; Kossobokov

2006). Higher S-values and lower Pr-values relate to

lower forecast efficiency and vice versa. In the case

of the reference model of a uniform spatial density

distribution, the model based on the ISC data has the

lowest S-value of 46% and the highest Pr-value of

14.6 (Fig. 10).

It is worth mentioning that while the forecasting

model is compared to a spatially uniform model of

seismicity, the difference between the maximum

probability gain value based on Eq. 3 (G = 2.6 in

Table 1) and that from error diagram (Pr = 14.6)

arose due to the different definitions of the gain score

by these two approaches. In fact, by setting thresholds

Figure 8
Results from retrospective tests (unconditional L test, conditional

L test, and N test) for a set of 5-year target periods, partially

overlapping and shifted by 1 year, starting on 1996. a, b Display

the results for the forecasts based on the MB14 catalog (from 1980

onwards). c, d Depict the results for the forecasts based on the ISC

catalog (from 1980 onwards). The 95% confidence limits from the

Poisson distribution of the corresponding results of the uncondi-

tional L test and N test are presented with thin bars, and the

associated bounds for the expected conditional likelihood score are

shown with bold bars (panels a and c). For each model, symbols

denote the values of observed log-likelihoods and the number of

observed events; a black circle is used for a passed forecast, while a

red square is applied for a rejected forecast, i.e. when the model is

inconsistent with the observations within the considered time

period
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on the expectation E, we eventually reduce the space

volume T of alarms. When the parameter T is close

to zero, the probability gain defined by error diagram

(Pr) accounts only for the cells with high rates and

gives its maximum value. In this point of view,

however, the differential probability gain defined by

the likelihood approach (G) gives the same weight to

all the cells, i.e. it accounts for all the cells with high

and low rates; in this condition, positive scores at

high rates and negative scores at low rates cancel

each other out (Shebalin et al. 2014). Although it

seems that the values of the probability gain obtained

by these different techniques may not be compared

directly, their difference may show that good fore-

casts for low seismicity rates are not as important as

for high rates.

When considering the second reference model,

i.e. the model of past seismicity, the results sum up to

S = 82% and Pr = 3.9. In terms of forecast strategy

(Molchan 2003), S = 46% and Pr = 14.6 can be

interpreted as a rather effective strategy. On the

contrary, when the forecasting model is compared

with a reference model of past seismicity, it turns out

to be a strategy with a rather low predictive ratio

Pr = 3.9, although the achieved statics passed the test

at 95% confidence level for most of the values of T.

Anyway as mentioned before, due to a fundamental

property of probability gain scoring (Molchan 2003),

Figure 9
Average results of the error diagram test, as obtained from the models application in two non-overlapping periods (2003–2007 and

2008–2012), based on a reference model of a uniform spatial density distribution of seismicity (black circles) and a reference model of past

seismicity (open circles). a, b Display the error diagrams obtained from the ISC and MB14 catalogs, respectively. The dashed lines show the

long-term trend of the values corresponding to random guessing. The filled areas show acceptable scores at above 95% confidence level

(below the confidence bound of a = 5%)

Figure 10
Illustration of the S-values (circles) and the predictive ratio values

(squares) of the ISC forecasting model relative to a reference

model (stated briefly in the legend as Ref model) of a uniform

spatial density distribution of seismicity (bold symbols) and a

reference model of past seismicity (open symbols). Higher S-values

and lower Pr-values relate to lower forecast efficiency and vice

versa
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the maximum gain is reached when the T tends to

zero; as a result, a single success obtained by

randomly declaring few sporadic alarms may lead

to very high probability gain estimates.

The forecasting model based on the MB14 catalog

provided scores quite similar to those from the ISC

data; thus the above-mentioned considerations are

pretty general and do not depend on the specific

catalog.

6.2. Comparison Between the Model

and the National Seismic Hazard Map of Iran

The forecasting model developed in this study

aims to provide some time-independent information

about the probability of earthquake occurrence in the

region. According to this model, the areas where the

expected rate/probability is relatively high might be

identified as the most hazardous areas. In this section,

we wish to explore to what extent the hazard

estimates provided by the forecasting map, based on

smoothed seismicity, differ from the national prob-

abilistic seismic hazard map (PSHA) of Iran,

Fig. 11a, which is provided by permanent committee

for revising the Iranian code of practice for seismic

resistant design of building (www.bhrc.ac.ir).

Although, the basic assumption is Poissonian

earthquake occurrence in both the forecast model and

the PSHA estimates, the quantities to be compared

are necessarily different. The PSHA seismic hazard

map provides a physically different description of the

hazard, namely the expected Peak Ground Acceler-

ation (PGA) that accounts for both seismicity rates

and seismic waves propagation. The forecasting map

based on smoothed seismicity model, instead,

accounts for earthquake occurrence rate only.

Another basic difference is the time window of the

forecast: in fact, the forecast model estimates the

rates over a 5-year window, whereas the hazard map

refers to a longer time window. Therefore, in order to

Figure 11
a The national probabilistic seismic hazard map (PSHA) of Iran, which is discretized by 0.1� 3 0.1� cells. It has been categorized into low,

moderate, high, and very high seismic hazardous zones, based on the base accelerations (ACC), i.e. 0.2, 0.25, 0.3, and 0.35 g, respectively.

b Same map, showing only cells with very high hazard (i.e. above 90th percentile). White symbols are M C 5.0 declustered events that

happened from 1 January 2013 to 2016, as reported in the available ISC catalog, and the solid lines show major faults of the region
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assess how well these substantially different hazard

maps correlate each other, we need to use robust

techniques (e.g., non-parametric statistics), applied to

coarsely discretized values.

The PSHA map has been categorized into the

zones of 4 types, according to the base accelerations

(ACC). Accordingly, the zones with ACC = 0.2,

0.25, 0.3, and 0.35 g have been interpreted as low,

moderate, high, and very high seismic hazard zones,

respectively. These acceleration thresholds corre-

spond to the following quantiles: 0.05 (5th

percentile), 0.26 (26th percentile) and 0.9 (90th

percentile); that is, 5% of the territory is assigned

low hazard, 21% moderate hazard, 64% high hazard,

and 10% very high hazard.

For the purpose of comparison, the forecast

results, Fig. 12a, have been discretized using for the

rate values the same quantiles associated with PSHA

Figure 12
a Expected seismicity rate of the target M C 5.0 earthquakes over a 5-year forecast horizon from 2013 to 2017, based on Fig. 5, which is

discretized by 0.1� 9 0.1� cells. It has been categorized into low/moderate, high, and very high seismic hazardous zones, based on the

quantiles 0.05, 0.26, and 0.9 of the rate values. b Same map, showing only cells with very high hazard (i.e. above 90th percentile). White

symbols are M C 5.0 declustered events that happened from 1 January 2013 to 2016, as reported in the available ISC catalog, and the solid

lines show major faults of the region

Figure 13
The bivariate histogram of the values as a function of PGA from

the hazard map and rate from the forecast map. The quantiles 0.05,

0.26, and 0.9 of the rate values correspond to*0.003,*0.006, and

*0.05, respectively
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acceleration map, namely 0.05, 0.26, and 0.9. These

quantiles were considered to categorize the studied

area into zones with low, moderate, high, and very

high probability of earthquake occurrence, respec-

tively. In this way, we aim to address the following

question: given that the same portion of the territory

is assigned a given hazard category (i.e. low,

moderate, high or very high), how it compares the

classification map based on forecasts with that from

PSHA?

A visual comparison of the two maps, carried out

using the same color palette for the two maps of

categorized hazard and forecast estimates, permits to

see howwell these values correlate each other. It can be

observed in Fig. 11b that the PSHAmap assigns higher

hazard values in northern and eastern parts of Iran

territory (e.g., Alborz region), with the highest values

following themajor faults. In the forecast map, instead,

very high hazard (Fig. 12b) is assigned to the southern

part of territory (i.e. Zagros region), an area character-

ized by higher level of seismic activity.

Figure 13 shows the bivariate histogram of the

values as a function of PGA from the hazard map and

the rate from the forecast map. The cells with larger

forecast rate are mostly related with rather high PGA,

i.e. 0.3 or 0.35 g. The correlation of the values

provided at different sites by the two maps is positive

(e.g., Spearman rank correlation coefficient *0.25)

and significant (p value\ 0.01), but not strong. The

rate from forecast appears very low in most of the

territory, but that is natural within 5 years. Although

high forecast rate is generally associated with areas of

high seismic hazard (i.e. highACC), there are a number

of cells where a low forecast rate is assigned to areas of

high expected ground shaking (e.g., Alborz region).

Thus, we observed that time-independent forecasting

maps based on smoothed seismicity provide a different

picture of the seismic hazard, compared to PSHA. In

fact, forecasting maps are intended to supply informa-

tion about moderate-to-large earthquake occurrence at

the intermediate-term scale (5 years), and thus may

highlight areas where earthquakes are more likely to

occur within a relatively short time span. On the other

side, these maps may not be able to capture hazardous

areas where the rate of seismic activity is low, but

sporadic strong earthquakes are still possible.

7. Conclusions

In this study, a modified variant of the time-in-

dependent earthquake forecasting model by

Helmstetter et al. (2007) is applied to calculate the

probabilities of forthcoming M C 5.0 earthquakes

within Iran, based on M C 4.5 events since 1996.

The results show that the outputs of the two used

catalogs (the ISC and MB14 catalogs) are generally

similar, and the most hazardous area for moderate

earthquakes is the Zagros region. Moreover, the ISC

catalog has a tendency to provide higher gains than

the MB14 catalog, during both the model optimiza-

tion and the retrospective tests, whose comparison

can provide an idea about unavoidable uncertainties

related with the input data. Accordingly and as dis-

cussed by Maybodian et al. (2014), the ISC catalog

can serve well for developing forecast techniques in

Iran. The experiments performed as part of the opti-

mization process have shown that choosing the

declustered catalogs with the lowest magnitude

threshold can provide higher gains than other possible

choices of the learning catalogs. We also suggested

that a cell size of at least 0.2� 9 0.2� would be

preferable for model application in the studied region.

Compared with the results of Werner et al.

(2010a)_ENREF_33_ENREF_34 for Italy, the sta-

bility of the results discussed in Sect. 5, suggests the

effects of seismotectonic conditions on an earthquake

forecast that can manifest itself in the number of

target events, which are on average *74 and *8

earthquakes per 5 years for Iran and Italy,

respectively.

The L test has rejected the MB14 and ISC fore-

casts 1 and 2 times, respectively, out of the 13

considered periods. The N test has passed the model

based on the ISC catalog in all the periods, while

rejecting the MB14 forecasts 5 times. In the case of

the ISC dataset, it is implied that the Poisson distri-

bution can suitably describe the number of target

events in the forecast horizon. In total, the ISC and

MB14 forecasts have been rejected for *15 and

*38% of times, respectively. The results also show

that there is a negative correlation between the

number of target events and the observed log-

likelihoods.
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After extending backward the duration of the

learning catalogs (i.e. since 1980), the L test, N test,

and R test have also been used to study a link between

the durations of the datasets, their quality, and the

predictive power of the model. Accordingly, it turns

out that a lower-quality but longer catalog does not

essentially provide a better forecast performance,

than a shorter better-quality one. The general con-

siderations about performances of the forecasting

model, however, might be affected by some evi-

denced shortcomings of the standard testing methods

applied for the analysis (e.g., Molchan 2012; Rhoades

et al. 2011). Being aware of those limits, an addi-

tional testing scheme has been applied, based on the

error diagram (Molchan 1991).

By the error diagram test, the forecasting models

have been compared with two reference models. The

first was the simple reference model of a uniform

spatial distribution, which led to conclude that the

forecasting models of smoothed seismicity may pro-

vide a rather good forecast strategy. The second

reference model was a model of past seismicity. In

this case, the forecasting models turn out to be a less

informative forecast strategy. Still the achieved stat-

ics could not be rejected at 95% confidence level

through most parts of space volume of alarms; hence,

forecasts seem to provide some statistically signifi-

cant information, in addition to simple space

distribution of past seismicity.

Overall, the two testing approaches considered

here provide different assessments of the model

results and account for the forecast rate and space.

The retrospective tests illustrate that the model

assumptions provide some limited, but statistically

acceptable performances for the studied area.

Accordingly, the considered model may provide

useful information in combination with long-term

indications from seismic hazard maps. In fact, com-

paring the forecast rate map for target M C 5.0

earthquakes and the PSHA map available for the

territory of Iran, as shown in Fig. 11, we may observe

that the two maps turn out quite different, although

some statistically significant correlation can be

detected. Quite naturally, sites with large forecast

rates are related with rather high values of accelera-

tion (i.e. ACC 0.3 or 0.35 g). While there are still a

huge number of sites where the hazard takes large

values, the forecast rate for a 5-year forecast horizon

is very small. Thus we may conclude that, although

high forecast rate is generally associated with seis-

mically active areas, characterized by the presence of

major faults and large earthquake occurrence (i.e.

high expected ground base acceleration), the proba-

bility of their occurrence within a short time window

keeps very low in most of the areas, given the

assumption of Poissonian earthquake occurrence.

Thus, it is proposed that such kind of studies

could be useful for recognizing regions most prone to

seismic activation and high seismic hazard in Iran,

specifically areas characterized by a high level of

predicted ground shaking and high forecast rates.

Still, areas where predicted rate is low, but ground

shaking is potentially high, must be considered with

caution: in fact, it cannot be excluded that sporadic

(very low-rate) strong earthquakes may occur at any

time, and this aspect should be factored in the deci-

sion-making process.
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Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A. (2013).

Iranian earthquakes, a uniform catalog with moment magnitudes.

Journal of Seismology, 17(3), 897–911.

Kossobokov, V. G. (2006). Testing earthquake prediction meth-

ods: « The West Pacific short-term forecast of earthquakes with

magnitude MwHRV C 5.8». Tectonophysics, 413(1), 25–31.

Kossobokov, V. G., & Carlson, J. M. (1995). Active zone size

versus activity: A study of different seismicity patterns in the

context of the prediction algorithm M8. Journal of Geophysical

Research, 100(B4), 6431–6441.

Kossobokov, V. G., Peresan, A., & Panza, G. F. (2015). On

operational earthquake forecast and prediction problems. Seis-

mological Research Letters, 86(2A), 287–290.

Maybodian, M., Zare, M., Hamzehloo, H., Peresan, A., Ansari, A.,

& Panza, G. F. (2014). Analysis of precursory seismicity patterns

in Zagros (Iran) by CN algorithm. Turkish Journal of Earth

Sciences, 23(1), 91–99.

Molchan, G. M. (1991). Structure of optimal strategies in earth-

quake prediction. Tectonophysics, 193(4), 267–276.

Molchan, G. M. (2003). Earthquake prediction strategies: a theo-

retical analysis. In: Nonlinear dynamics of the lithosphere and

earthquake prediction (pp. 209–237), Springer, New York

Molchan, G. M. (2012). On the testing of seismicity models. Acta

Geophysica, 60(3), 624–637.

Molchan, G. M., & Kagan, Y. Y. (1992). Earthquake prediction and

its optimization. Journal of Geophysical Research, 97(B4),

4823–4838.

Mousavi-Bafrouei, S. H., Mirzaei, N., & Shabani, E. (2014). A

declustered earthquake catalog for the Iranian Plateau. Annals of

Geophysics, 57(6), S0653–1–25.

Panza, G. F., La Mura, C., Peresan, A., Romanelli, F., & Vaccari,

F. (2012). Chapter three-seismic hazard scenarios as preventive

tools for a disaster resilient society. Advances in Geophysics, 53,

93–165.

Peresan, A., Kossobokov, V. G., & Panza, G. F. (2012). Opera-

tional earthquake forecast/prediction. Rendiconti Lincei, 23(2),

131–138.

Peresan, A., Panza, G. F., & Costa, G. (2000). CN algorithm and

long-lasting changes in reported magnitudes: The case of Italy.

Geophysical Journal International, 141(2), 425–437.

Peresan, A., Rotwain, I., Zaliapin, I., & Panza, G. F. (2002). Sta-

bility of intermediate-term earthquake predictions with respect to

random errors in magnitude: The case of central Italy. Physics of

the Earth and Planetary Interiors, 130(1), 117–127.

Peresan, A., Zuccolo, E., Vaccari, F., Gorshkov, A., & Panza, G. F.

(2011). Neo-deterministic seismic hazard and pattern recognition

techniques: Time-dependent scenarios for North-Eastern Italy.

Pure and Applied Geophysics, 168(3–4), 583–607.

Radan, M. Y., Hamzehloo, H., Peresan, A., Zare, M., & Zafarani,

H. (2013). Assessing performances of pattern informatics

method: A retrospective analysis for Iran and Italy. Natural

Hazards, 68(2), 855–881.

Reasenberg, P. (1985). Second-order moment of central California

seismicity, 1969–1982. Journal of Geophysical Research,

90(B7), 5479–5495.

Rhoades, D. A., Schorlemmer, D., Gerstenberger, M. C., Christo-

phersen, A., Zechar, J. D., & Imoto, M. (2011). Efficient testing of

earthquake forecasting models. Acta Geophysica, 59(4), 728–747.

Richards-Dinger, K. B., & Shearer, P. M. (2000). Earthquake

locations in southern California obtained using source-specific

station terms. Journal of Geophysical Research, 105(B5),

10939–10960.

Schorlemmer, D., & Gerstenberger, M. C. (2007). RELM testing

center. Seismological Research Letters, 78(1), 30–36.

Schorlemmer, D., Gerstenberger, M. C., Wiemer, S., Jackson, D.

D., & Rhoades, D. A. (2007). Earthquake likelihood model

testing. Seismological Research Letters, 78(1), 17–29.

Schorlemmer, D., Zechar, J. D., Werner, M. J., Field, E. H.,

Jackson, D. D., Jordan, T. H., et al. (2010). First results of the

regional earthquake likelihood models experiment. Pure and

Applied Geophysics, 167(8–9), 859–876.

Shahvar, M. P., Zare, M., & Castellaro, S. (2013). A unified seismic

catalog for the Iranian plateau (1900–2011). Seismological

Research Letters, 84(2), 233–249.

Shebalin, P. N., Narteau, C., Zechar, J. D., & Holschneider, M.

(2014). Combining earthquake forecasts using differential prob-

ability gains. Earth, Planets and Space, 66(1), 1–14.

Talebi, M., Zare, M., Madahi-Zadeh, R., & Bali-Lashak, A. (2015).

Spatial-temporal analysis of seismicity before the 2012 Varze-

ghan, Iran, Mw 6.5 earthquake. Turkish Journal of Earth

Sciences, 24(3), 289–301.

Werner, M. J., Helmstetter, A., Jackson, D. D., & Kagan, Y. Y.

(2011). High-resolution long-term and short-term earthquake

forecasts for California. Bulletin of the Seismological Society of

America, 101(4), 1630–1648.

Werner, M. J., Helmstetter, A., Jackson, D. D., Kagan, Y. Y., &

Wiemer, S. (2010a). Adaptively smoothed seismicity earthquake

forecasts for Italy. arXiv:1003.4374.

Werner, M. J., Zechar, J. D., Marzocchi, W., Wiemer, S., & Group,

C.-I. W. (2010b). Retrospective evaluation of the five-year and

ten-year CSEP-Italy earthquake forecasts. Annals of Geophysics,

53(3), 11–30

Vol. 174, (2017) Long-Term Probabilistic Forecast for M C 5.0 Earthquakes in Iran 1579

http://arxiv.org/abs/1003.4374


Wiemer, S. (2001). A software package to analyze seismicity:

ZMAP. Seismological Research Letters, 72(3), 373–382.

Wiemer, S., & Wyss, M. (2000). Minimum magnitude of com-

pleteness in earthquake catalogs: Examples from Alaska, the

western United States, and Japan. Bulletin of the Seismological

Society of America, 90(4), 859–869.

Zare, M., Amini, H., Yazdi, P., Sesetyan, K., Demircioglu, M. B.,

Kalafat, D., et al. (2014). Recent developments of the Middle

East catalog. Journal of Seismology, 18(4), 749–772.

Zechar, J. D. (2010). Evaluating earthquake predictions and earthquake

forecasts: A guide for students and new researchers. Community

Online Resource for Statistical Seismicity Analysis, 1–26.

Zechar, J. D., Gerstenberger, M. C., & Rhoades, D. A. (2010a).

Likelihood-based tests for evaluating space-rate-magnitude

earthquake forecasts. Bulletin of the Seismological Society of

America, 100(3), 1184–1195.

Zechar, J. D., & Jordan, T. H. (2008). Testing alarm-based earth-

quake predictions. Geophysical Journal International, 172(2),

715–724.

Zechar, J. D., & Jordan, T. H. (2010). Simple smoothed seismicity

earthquake forecasts for Italy. Annals of Geophysics, 53(3),

99–105.

Zechar, J. D., Schorlemmer, D., Liukis, M., Yu, J., Euchner, F.,

Maechling, P. J., et al. (2010b). The collaboratory for the study

of earthquake predictability perspective on computational

earthquake science. Concurrency and Computation: Practice and

Experience, 22(12), 1836–1847.

Zechar, J. D., Schorlemmer, D., Werner, M. J., Gerstenberger, M.

C., Rhoades, D. A., & Jordan, T. H. (2013). Regional earthquake

likelihood models I: First-order results. Bulletin of the Seismo-

logical Society of America, 103(2A), 787–798.

(Received July 2, 2016, revised January 30, 2017, accepted March 4, 2017, Published online March 11, 2017)

1580 M. Talebi et al. Pure Appl. Geophys.


	Long-Term Probabilistic Forecast for M ge 5.0 Earthquakes in Iran
	Abstract
	Introduction
	Data
	Declustering
	Methodology
	Spatial Distribution
	Model Optimization
	Magnitude Distribution
	Space--Time--Magnitude Distribution

	Results
	Discussion
	Retrospective Tests
	Comparison Between the Model and the National Seismic Hazard Map of Iran

	Conclusions
	Acknowledgements
	References




