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Abstract—The presence of bedding-parallel fractures at any scale

in a rockwill considerably add to its compliance and elastic anisotropy.

Those properties will be more significantly affected when there is a

relatively high degree of connectivity between the fractures and the

corresponding interconnected pores. This contribution uses linear

poroelasticity to reveal the characteristics of the full frequency-depen-

dent compliance of an infinitely extended fracture model assuming the

periodicity of the fractured structures. The fracture compliance tensor is

complex-valued due to the wave-induced fluid flow between fractures

and pores. The interaction between the adjacent fractures is considered

under fluid mass conservation throughout the whole pore space. The

quantitative effects of fracture (volume) density (the ratio between

fracture thickness and spacing) and host rock porosity are analyzed by

the diffusion equation for a relatively low-frequencyband.Themodel in

this paper is equivalent to the classical dry linear slip model when the

bulk modulus of fluid in the fractures tends to zero. For the liquid-filled

case, the model becomes the anisotropic Gassmann’s model and sealed

saturated linear slip model at the low-frequency and high-frequency

limits, respectively. Using the dynamic compliance definition, we can

effectivelydistinguish the saturatingfluids in the fractureswith the same

order magnitude of bulk modulus (e.g., water and oil) using the com-

pliance ratiomethod. Additionally, themodified dynamicmodel can be

simplified as acceptable empirical formulas if the strain on the fractures

induced by the incoming waves is small enough.

Key words: Fracture compliance, porosity, compliance ratio,

frequency dependent, poroelastic theory.

1. Introduction

Real rocks are usually permeated by fractures,

cracks and joints due to a variety of reasons. Those

geological structures affect the mechanical and

hydrological properties of the rock (Nelson 2001).

Knowledge of the properties of preferentially ori-

ented fractures in a hydrocarbon reservoir is

important for the optimization of production. The tool

most frequently used to analyze fracture parameters

(size, orientation and density) is the measurement and

analysis of seismic wave velocities and energy

changes (Maultzsch et al. 2003). A variety of evi-

dences shows that seismic waves are slowed and

attenuated because fractures of any scale generally

increase rock permeability and elastic compliance

(Biot 1956, 1962; Pride et al. 2004; Müller et al.

2010). In non-permeable media, scattering attenua-

tion is the main dissipative mechanism; however, in

permeable porous rocks, fluid flow (i.e., fluid–solid

friction) is another important form of energy loss.

The relation between waves and fluid flow in porous

media has been described successfully by poroelastic

theory if the rocks are micro-homogeneous at the

pore scale (Biot 1956, 1962). However, the wave

dispersion and attenuation cannot be described by this

classical theory when the rock has specific hetero-

geneities at pore or larger dimension (e.g., broken

pores and fractures).

Analysis of the effective anisotropic elastic tensor

of fractured rocks can be divided into two methods:

the straightforward effective stiffness approach and

the compliance superposition approach. The effective

stiffness of fractured media can be obtained by

effective medium theory, provided that the wave-

length is much longer than the scale of the

heterogeneities (pores and fractures). When we take

into account the local fluid flow at the scale of the

pores or fractures, the elastic parameters show fre-

quency dependence. Le Ravalec and Guéguen (1996)
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studied the high- and low-frequency elastic moduli

for a saturated porous/cracked rock by comparing

between self-consistent and poroelastic theories.

Hudson (1981) and Hudson et al. (1996) used the so-

called ‘method of smoothing’ for the crack problem

(Keller 1964). Chapman (2003) derived the effective

stiffness of cracked porous media by Eshelby’s ‘in-

teraction energy’ theory (Eshelby 1957). Jakobsen

et al. (2003) presented the T-matrix approach to allow

for non-dilute concentrations of cracks. In almost all

the cases mentioned, the first step in such a calcula-

tion requires knowledge of the micro-distribution of

inclusions. O’connell and Budiansky presented the

elastic moduli of a solid permeated with an isotropic

distribution of cracks by use of a self-consistent

approximation (O’connell and Budiansky 1974).

The compliance approach is quite popular in

recent decades. The effects of aligned fractures on

excess effective compliance can be simply reduced to

two parameters if the fractures are rotationally

invariant about the fracture normal direction: normal

compliance and shear compliance, which are associ-

ated with pore fluid properties and the structure of the

fractures. One important aspect of the compliance is

that the ratio of normal compliance to shear compli-

ance helps to identify the petrophysical parameters of

fractures and the host matrix (Schoenberg 1980; Liu

et al. 2000; Sayers et al. 2009; Verdon and Wüstefeld

2013). Moreover, the compliance formulation can be

better understood on a physical perspective and

without detailed assumptions concerning the

microstructure of the fractures (Schoenberg 1980;

Gurevich 2003; Far et al. 2013). At high fracture

density, the first-order result written in terms of

compliances is closer to the experiment data than the

first-order stiffness method (Hudson et al. 2001).

However, previous studies were mainly focused on

dry fractures and sealed fluid-saturated fractures

(fractures embedded in a non-permeable background

matrix) (Hudson 1981; Sayers and Kachanov 1995;

Schoenberg 1980; Schoenberg and Sayers 1995;

Verdon et al. 2008; Sarout and Guéguen 2008). As

for the dynamic fracture compliance, the wave-in-

duced fluid flow (WIFF) process among fractures

with different fracture mechanics and geometry

characteristics has been discussed systematically by

Guéguen and Sarout (2009, 2011) and Guéguen and

Kachanov (2011). They mainly assumed that the

dynamic fracture compliance and wave dispersion

were the result of fracture-to-fracture squirt-flow.

When all the fractures have the same geometry and

orientation, dispersion is null due to the fact that

neighboring fractures would be subjected to the same

pore fluid perturbation when a wave propagates

through the medium. In contrast, the WIFF effects

and frequency dependence can appear when the

fractures are randomly oriented. The effects of fluid

flow between fractures and pores are analyzed widely

using the stiffness approach (Jakobsen et al. 2003;

Hudson et al. 1996; Chapman 2003). However, the

WIFF process was rarely studied using the compli-

ance approach (Wang 2014). Some efforts thereafter

were taken to demonstrate the effects of fluid

exchange between different pores in the low/high-

frequency limit or in empirical formulas (Gurevich

2003; Adelinet et al. 2011; Brown and Gurevich

2004). Actually, in comparison to sealed fractures,

open fractures are more compliant when fluid has

time to move between fractures and pores. In other

words, fluid flow in porous and fractured media

affects significantly the mechanical response of the

rock.

Fractures in crustal rocks may exist at a variety of

spatial scales, from micro-scale to meter-scale. It has

been proven that fractures of all sizes can be the

cause of wave anisotropy in rocks (Maultzsch et al.

2003). We are interested in the large-scale fractures,

due to the fluid flow in rocks mainly being controlled

by this scale of fractures (Maultzsch et al. 2003;

Nelson 2001; Liu 2013). The fractures in our study

are modeled as infinitely extended and thin poroe-

lastic layers with the different porosity characteristics

relative to the host rock (Fig. 1) (Brajanovski et al.

2005, 2006; Lambert et al. 2006; Nakagawa and

Schoenberg 2007; Gurevich et al. 2007, 2009; Müller

et al. 2010; Wang et al. 2014). In practice, this is a

double-porosity dual-permeability model corre-

sponding to a periodically layered poroelastic

medium previously studied by White (1975) and

Norris (1993). One of the reasons for this postulate

for fracture modeling is that the linear slip model

(LSM) by Schoenberg (1980) is the basis of our

research. We adopt the classical poroelastic theory

(Biot 1956) to analyze WIFF and the boundary
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conditions between the fractures and the pores. This

theory is attractive because it allows us to model

wave propagation in porous media without specifying

individual shapes of grains or pores. We note that the

fractures assumed as porous layers is a particular case

among all possible fracture populations found in

reservoirs. However, this assumption is acceptable if

the fractures are mineralized during diagenesis. More

importantly, based on previous studies by Bra-

janovski et al. (2005) and the formulations derived in

this paper, there are no restrictions on the assumption

(modeling fractures as porous layers) if the fracture

thickness is thin enough. Furthermore, the planar

porous fracture form has been validated by Lambert

et al. (2006) using poroelastic numerical simulations.

It is worth noting that in recent years a number of

models (whether stiff or compliance approach) rela-

ted to WIFF are limited mainly to penny-shaped

cracks of finite size (Thomsen 1995; Hudson et al.

1996; Tod 2001; Chapman 2003; Guéguen and Sar-

out 2009, 2011). Comparison between planar fracture

model and penny-shaped crack model is discussed in

Sect. 4 of this paper and in a companion paper.

In this paper, our goal is to derive the dynamic

compliance for poroelastic fractures embedded within

a homogeneous isotropic porous background. The

effects of wave-induced fluid flow (WIFF) between

fractures and pores in fracture deformation are con-

sidered. We quantify the pressure distribution in order

to obtain the analytic complex-valued compliance of

poroelastic fractures which is a function of fracture

density, pore structure and fluid properties.

2. Rock Fracture Model

2.1. Fluid Pressure and Flux Normal to Fracture

A fracture in a porous background matrix can be

modeled as an infinite thin porous layer with different

petrophysical and hydraulic parameters relative to the

matrix (Brajanovski et al. 2005; Gurevich et al. 2009;

Wang et al. 2014). So, fractures and the background

matrix have a different reaction to an incident wave.

A local pressure gradient between fractures and

background pores takes place at the interface between

different layers. Subsequently, the pore pressure

equilibrates with time and this process is governed

by pressure diffusion equations in a relatively low-

frequency region (Pride 2005; Müller and Rothert

2006; Wang 2014). To illustrate the definition of the

fracture problem, we present a simple 1-D heteroge-

neous model in which fluid flow can be analyzed

between two periodic stratified layers with different

petrophysical properties as shown in Fig. 1 (x1
normal to the fracture plane). The subscript index c

and m in this paper denote the fractures and the

porous background matrix parameters, respectively.

The pressure in the fractured porous medium con-

forms to the diffusion equation in a fracture periodic

Figure 1
Schematic of perfectly aligned fractures embedded in isotropic porous medium
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intervalH(hm ? hc = H).Weassume that pressureP is a

harmonic function of time and can be expressed as

Pðx1; tÞ ¼ P̂ðx1Þe�ixt, where i ¼
ffiffiffiffiffiffiffi

�1
p

, x is the angu-

lar frequency, x1 is the fracture normal direction. The

pressure diffusion satisfies the ordinary differential

equation r2P̂ þ P̂ix=D ¼ 0 (Pride 2005; Müller and

Rothert 2006), the diffusion parameter D = jML/gC,

where g is the viscosity coefficient of the pore fluid,

j = b‘2/3/(1 - /)2 is the permeability based on the

Kozeny–Carman equation (Bear 1972; Mavko et al.

1998), ‘ = 22 9 10-5 m is the pore or solid particle

scale, / is the porosity, b = 0.003 is a geometrical

factor associated with the tortuosity of the pore

network (Carcione and Picotti 2006). L is the dry

(drained) compressional P-wave modulus,

C = L ? a2M is the compressional P-wave modulus

of the fluid-saturated porous medium given by Gass-

mann’s equations (Gassmann 1951; Gurevich 2003).

M = [(a - /)/Ks ? //Kf]-1 is the pore space modu-

lus, a = 1 - Kdry/Ks is the Biot–Willis effective stress

coefficient (Biot and Willis 1957), Ks and Kf are the

bulk modulus of the rock grain and pore fluid,

respectively. ls is the shear modulus of the rock grain,

Kdry = Ks(1 - /)3/(1 - /) and ldry = ls(1 - /)3/
(1 - /) are the bulk modulus and shear modulus of

the skeleton frame (Krief et al. 1990; Brajanovski et al.

2005). However, other relationships between bulk (or

shear)modulus and porositymay be chosen, depending

on the underlying structure.

The explicit analytical results for the pressure in

the fractures and in the background medium were

obtained by Wang (2014) and Wang et al. (2014) in

the form

P̂ x; x1ð Þ ¼
P0
c þ A1e

ffiffiffiffi

ix
Dc

p
x1 þ A2e

�
ffiffiffiffi

ix
Dc

p
x1 � hc=2� x1 � 0

P0
m þ B1e

ffiffiffiffi

ix
Dm

p
x1 þ B2e

�
ffiffiffiffi

ix
Dm

p
x10� x1 � hm=2

8

<

:

;

ð1Þ

where Pc
0 and Pm

0 are the instantaneous initial pressure

values in the immediate vicinity of the fracture sur-

face in the fractures and in the background medium,

respectively. The origin of the coordinate system is

located at the fracture upper surface. The constant

coefficients A1, A2, B1, B2 can be obtained by the

boundary conditions at x1 = 0, -hc/2 and hm/2. The

relative fluid flow is zero at x1 = -hc/2 and x1 = hm/

2 due to the symmetry of the problem (the pressure

gradient is zero). At the interface x1 = 0, the fluid

pressure and the flux are continuous. We define the

fracture and background layer thickness fraction

rc = hc/H and rm = hm/H, and all the undetermined

coefficients satisfy

A2 ¼ P0
c � P0

m

� �

G

A1 ¼ A2e
ffiffiffiffi

ix
Dc

p
rcH

B1 ¼ A2
1þe

ffiffiffiffi

ix
Dc

p
rcH

1þe
ffiffiffiffi

ix
Dm

p
rmH

þ P0
c�P0

mð Þ
1þe

ffiffiffiffi

ix
Dm

p
rmH

B2 ¼ B1e
ffiffiffiffi

ix
Dm

p
rmH

;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð2Þ

where

G ¼ 1

1þ e
ffiffiffiffi

ix
Dm

p
rmH

� �

jc
ffiffiffiffi

ix
Dc

p

jm
ffiffiffiffi

ix
Dm

p
e

ffiffiffiffi

ix
Dc

p
rcH�1

� �

1�e
ffiffiffiffi

ix
Dm

p
rmH

� �

2

4

3

5� 1þ e
ffiffiffiffi

ix
Dc

p
rcH

� �

;

ð3Þ

Equation (3) implies that there is fluid coupling

between the fractures and the background matrix.

When the permeability of the fracture or that of the

host rock tends to zero, then the coupling coefficient

G = 0, that is, there is no fluid flow in the porous

system (Wang 2014).

2.2. Dynamic Compliance of Infinite Parallel Flat

Fractures

The quasi-static relationships between wave-in-

duced displacement and stress across a fracture can

be obtained if the wavelength is much longer than the

local scale lengths of a fracture (such as fracture

thickness, spacing, etc.). The displacement disconti-

nuity and the traction vector are linearly related

through the excess fracture compliance matrix Zij

based on the infinitesimal strain approximation

(Schoenberg 1980; Sayers and Kachanov 1995)

½Ui� ¼ Zijrj; ð4Þ

where ½U� ¼ U0 � U�hc is the displacement discon-

tinuity vector of the fracture, and rj is the effective

poroelastic wave stress acting on the fracture. The

above relationship is valid in the dry or fluid-satu-

rated condition. If the excess compliance of the

fractures is assumed to be invariant with respect to

inversion of x1, the off-diagonal terms of the com-

pliance matrix are zero, leading to

2106 D. Wang et al. Pure Appl. Geophys.



Z ¼
Zn 0 0

0 Zt 0

0 0 Zt

2

4

3

5; ð5Þ

where Zn and Zt are the normal compliance and shear

compliance of a fracture, respectively. They are real

valued (frequency independent) and have the

dimensions length/stress for the sealed and dry frac-

ture cases. In this paper, we assume that the shear

strain does not affect fluid flow, so we only verify the

effects of fluid exchange on normal compliance

(Hudson 1981; Hudson et al. 1996; Gurevich 2003).

In order to obtain the fracture normal compliance, we

derive the relationship between the fracture normal

stress r1 and the displacement discontinuity ½Us
c�1

[Eq. (4)]. The volumetric responses based on the Biot

theory of porous media are stated as

ec ¼ � 1

K
dry
c

r� acP̂c

� �

; ð6Þ

hc ¼ � ac

K
dry
c

r� P̂c

fc

� �

; ð7Þ

where ec and hc are the volumetric variations of the

solid skeleton and fluid content, respectively.

r = -(r11 ? r22 ? r33)/3 is the isotropic compres-

sive stress, fc is the Skempton coefficient of the

porous medium (Skempton 1954). Correspondingly,

two coupled mechanisms determine the interaction

between the fluid and the porous medium: the fluid

pressure can compress the rock framework and con-

fining pressure induces a fluid pressure increase in an

un-drained configuration. Equations (6) and (7) can

be expressed in another form (Wang 2014)

hc ¼ acr � Us
c þ

P̂c

Mc

; ð8Þ

where Us
c is the macroscopic solid average displace-

ment of the fracture. We find that the displacement

discontinuity of the fracture is enhanced if the pro-

cess of fluid flow is considered in Eq. (8). Based on

Fig. 1, fluid in the fracture only flows in the x1
direction because the fracture is isotropic in the x2ox3
plane (global flow and solid skeleton displacement in

the fracture plane can be ignored). Then, from Eq. (1)

and Darcy’s law S = -jcrPc/g, we can obtain the

average flux (Wang 2014; Wang et al. 2014)

S ¼ � 2jc
hcg

A2 eRc
hc
2 � 1

� �2

; ð9Þ

where Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ix=Dc

p

is the inverse of the pressure

diffusion length.We assume that the fracture thickness

and spacing are much smaller than the wavelength, but

much larger than the single grain scale. Thus, we can

regard the cube of fracture thickness (the volume of

cube is unit base area times fracture thickness height)

as the volume element inwhich the displacement of the

solid frame and fluid are averaged. The compressibility

of the fluid and the skeleton together affect the pressure

diffusion. When the compressibility of the fluid can be

ignored, fluid flow is mainly due to the deformation of

the solid skeleton. All the above leads to the average

flux based on Eq. (1) over the fracture thickness equal

to the fluid volumetric variation rate 2S = -qhc
1/qt (hc

1

is the relative fluid flow in the normal direction), and

therefore the displacement discontinuity of the fracture

in the normal direction is given by

½Us
c]1¼

hc

ac

P̂c

Mc

þ 2S

�ix

 !

: ð10Þ

Pressure within the fracture varies from point to

point, and the average pressure in the x1 direction in

Eq. (10) can be expressed as

P̂c ¼ P0
c þ A2

2

hc

ffiffiffiffi

ix
Dc

q e
ffiffiffiffi

ix
Dc

p
hc � 1

� �

; ð11Þ

and the pressure in the fracture decreases with time

due to the fluid relaxation process (A2\ 0) (Wang

2014). The displacement discontinuity of the fracture

is given by

½Us
c�1 ¼

hc

ac

P0
c

Mc

þ A2

Mc

2

hc

ffiffiffiffi

ix
Dc

q e
ffiffiffiffi

ix
Dc

p
hc � 1

� �

2

6

4

þ 4jc
ixghc

A2 e
ffiffiffiffi

ix
Dc

p
hc
2 � 1

� �2
	

;

ð12Þ

If the wave propagates normal to the fracture, the

fracture’s instantaneous (h = 0) initial pressure far

from the fracture surface is proportional to the total

uniaxial wave stress P0
c far ¼ �funic r11 based on the

Skempton relationship (Norris 1993; Wang 2000;

Brajanovski et al. 2005), where funic ¼ acMc=Cc.

Considering the effects of initial pressure (both in
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fractures and host rock) far from the fracture surface

on fluid flow near the fracture surface, the initial

pressure values in the immediate vicinity of the

fracture surface in the fractures and background pores

are coupled with the P-wave stress (initial pressure in

the fractures is uniform due to the small ratio of

thickness to wavelength, i.e., P0
c far ¼ P0

c) (Johnson

2001)

r11 ¼ � P0
c � P0

m

� �

w; ð13Þ

where

w ¼ rcK
sat
c Cm þ rmKsat

m Cc

amMmCc � acMcCm

nunic � nunim

� �

: ð14Þ

The poroelastic parameter Ksat = Kdry ? a2M is

given by Gassmann’s equations (Gassmann 1951).

Subsequently, combining the above equations, the

dynamic normal compliance is given by the follow-

ing simplified form

½Us
c]1¼Znr11; ð15Þ

where

Zn ¼
funic hc

Mcac

1þ G

wfunic

2

hc

ffiffiffiffi

ix
Dc

q e
ffiffiffiffi

ix
Dc

p
hc � 1

� �

þ 4jcMc

ixghc

e
ffiffiffiffi

ix
Dc

p
hc
2 � 1

� �2

2

6

4

3

7

5

8

>

<

>

:

9

>

=

>

;

;

ð16Þ

Equation (16) is a new expression for the fracture

compliance and is the main result of this paper. The

compliance is frequency dependent and complex-

valued (attenuative). Unless stated otherwise, Re[Zn]

represents the real part of the normal compliance,

while the imaginary part is written as Im[Zn]. In

Eq. (16), funic hc=Mcac is the high-frequency limit (un-

drained condition) of the normal compliance.

Because G\ 0, and w\ 0 for fluid flow from soft

fractures to stiff pores, the quantity between the

braces is always greater than one and increasing with

decreasing frequency, so the dynamic compliance is

always larger than the sealed (un-drained) compli-

ance. In the high-frequency limit, S = 0 and Pc ¼ P0
c,

fluid diffusion has not enough time to achieve

pressure equilibrium, and the normal compliance is

the same as that of the fluid-filled sealed (hc = 0)

fracture model Zhigh
n ¼ hc=Cc, which is consistent

with the definition presented by Nakagawa and

Schoenberg (2007). In the low-frequency limit

Glow ¼ �1

2 hcDmjc
hmDcjm

þ 1
� � ; ð17Þ

and therefore

Z low
n ¼ funic hc

Mcac

1� 1

wfunic

Mc

2
jchc

Dc
þ McLc

Cchc

MmLm

Cmhm
þ McLc

Cchc

 !" #

; ð18Þ

When we take the limit hc ? 0, the fracture is

hollow (/c = 1, fc = 1), so

Z low
n ¼ funic hc

Mcac
1� amMm � Cm

Ksat
m

1
MmLm

Cmhm
Z
dry
n þ 1

 !

;

ð19Þ

and Eq. (19) is similar to Eq. (18) of Brajanovski’s

paper (Brajanovski et al. 2005), which was based on

the conditions of low frequency and thin fracture

thickness limits.

The poroelastic parameters of the fractured porous

medium used throughout this paper are presented in

Table 1.

Figure 2a shows the frequency dependence of the

normal compliance of an oil-filled fracture over the

full frequency band. The low and high-frequency

limits correspond to poroelastic drained and un-

drained conditions, respectively. Furthermore, for a

fixed (but finite) frequency, when hc ? 0, the

coupling coefficient becomes G = -� and

e
hc
K � 1

� �

2K=hc � 4jcMc e
hc
2K � 1

� �2

=ixghc, so that

Eq. (16) can be simplified into

Table 1

List of the constant poroelastic parameters of fractured porous

medium used throughout the paper

Variable Value SI unit

Ks ls 37, 44 GPa

H 1.5 m

‘m ‘c 22 9 10-5, 44 9 10-5 m

/c 0.48 _

goil gco2 gwater 5 9 10-3, 1 9 10-5, 1 9 10-3 Pa s

Koil Kco2 Kwater 2.0, 0.0005, 2.25 GPa

The Lame constants of solid grain are cited from Brajanovski’s

paper (2005)

2108 D. Wang et al. Pure Appl. Geophys.



Zn ¼ Zhigh
n 1� K

whc

e
hc
K � 1

� �


 	

; ð20Þ

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Dc=ix
p

is the pressure diffusion

length in the fractures. Combining Eqs. (16) and (19),

we can obtain an analogous empirical expression if

the average strain of the fracture is sufficiently small

Zn ¼ Zhigh
n þ Z low

n � Zhigh
n

� �

v; ð21Þ

where

v ¼ K
hc

G

Glow
e

hc
K � 1

� �

ð22Þ

Figure 2b shows the correction factor from low

frequency to high frequency for different (but

meeting the hc ? 0 condition) fracture thicknesses.

x ? 0 and x ? ? correspond to Zn ¼ Z low
n and

Zn ¼ Zhigh
n , respectively. Figure 3 shows the differ-

ence between the analytical solution [Eq. (16)] and

empirical solution [Eq. (21)]. In Fig. 3, the differ-

ence of exact (analytical) and approximate

(empirical) results increases with the fracture thick-

ness increasing for a fixed frequency. The difference

between the two results vanishes with increasing

frequency. In this case, the WIFF process does not

take place because the wave period is much shorter

than the pressure equilibration time. In contrast,

when the frequency is low enough, the difference

between the two equations [Eqs. (16), (21)] is

obvious because the fractures thickness is small

compared to the pressure equilibration length. It is

implied that the assumption hc ? 0 made for the

approximate solution is no longer satisfied. In other

words, high (low) frequency has the same effects as

having thinner (thicker) fractures, which can be

perceived by the relationship between fracture

thickness and frequency in Eq. (16).

2.3. Characteristic Frequencies of Zn

Frequency dispersion of the imaginary part of the

compliance can be regarded as the frequency depen-

dence characteristics of attenuation (Brajanovski

et al. 2005; Gurevich et al. 2009). Based on

Eqs. (3) and (16), we derive the asymptotic values

of the imaginary part of the compliance, and compare

them with pre-existing theoretical results (Bra-

janovski et al. 2006; Müller and Rothert 2006).

The behavior of Im[Zn] in the generic periodic

porous structure exhibits three different frequency

regimes separated by two characteristic frequencies

(see Appendix 1). For x ? 0, the imaginary part of

the compliance reduces to

Figure 2
a Oil-filled fracture normal compliance dispersion predicted by full frequency, low-frequency limit, high-frequency limit and dry fracture

conditions for rc = 0.003 and /m = 0.12. b Correction factor v in Eq. (21) as a function of frequency for various thickness fractions for an

oil-filled fracture and /m = 0.12
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Im½Zn� ¼ x
hc

wMcac

1

4Dmnhm

; ð23Þ

This corresponds to the low-frequency asymptote

of the compliance, which is proportional to fre-

quency. The intermediate frequency segment of

Im[Zn] becomes broader for smaller fracture thick-

ness. When hc ? 0 for a fixed (but finite) frequency,

we obtain

Im½Zn� ¼
ffiffiffiffi

x
p amMm � Cm

Ksat
m Cc

h2
c

1

2
ffiffiffiffiffiffiffiffi

2Dc

p ; ð24Þ

Thus, for frequency dispersion of the imaginary

part of the compliance is proportional to x1/2 in the

intermediate frequency band. When x ? ? we

obtain

Im½Zn� ¼
2
ffiffiffiffi

x
p hc

Mcac

1

w
1

hc

ffiffiffiffi

1
Dc

q

jc
ffiffiffiffi

1
Dc

p

jm
ffiffiffiffi

1
Dm

p þ 1

� � ð25Þ

Consequently, at high frequency the imaginary

part of the compliance is proportional to x-1/2. The

behavior can be observed in Figs. 5b, 6b and 7d.

Furthermore, the theoretical analysis of the frequency

regimes mentioned above is in agreement with

published results obtained using different methods

(Müller and Rothert 2006; Lambert et al. 2006).

From a physical standpoint, if the thickness of the

fracture is small and the frequency is low, the host

rock contribution to fluid flow (incoming fluid flow

into host rock) is the dominant (see Appendix 2)

cause of wave attenuation (Im[Zn]) because of its

relatively long characteristic pressure relaxation time.

In this case, the first characteristic frequency of

Im[Zn] is essentially constant. With the increase of

fracture thickness or wave frequency, the flux from

the fractures Sc approaches the flux from the host

medium Sm, and exceeds Sm finally (see Appendix 2).

Since the pressure relaxation time of fractures is

always shorter than that of the host medium, the

second peak (characteristic frequency) of attenuation

(Im[Zn]) tends to the low-frequency range with the

fracture thickness increasing.

3. Results

3.1. Effects of Pore Structure and Physical

Properties of Fluids

Based on what has been described above, wave-

induced fluid flow in the fracture and its dynamic

compliance are influenced by the host rock, the

fractures pore structure, and the pore fluid properties

simultaneously.

The background porosity is an important param-

eter controlling the fluid storage capacity of the

rock. During the WIFF process, the host rock plays

the role of the fluid container (low pressure), while

the fracture is the fluid source (high pressure). The

matrix porosity /m can change the normal compli-

ance, as it affects the fluid flow process. Figure 4a–c

shows the relationship between the background

matrix porosity and the fracture normal compliance

Re[Zn], the imaginary component of normal com-

pliance Im(Zn), and the ratio of normal to shear

compliance Re[Zn]/Zt for different fluids. The frac-

ture in the normal direction is similar to an elastic

medium when /m is small enough (no space to store

the influx). The curves in Fig. 4a–c show an increase

of fracture compliance with the increase of the host

rock porosity, and then reach a peak which corre-

sponds to a sufficient pressure equilibrium state

(pressure equilibrium time equals the half of the

Figure 3
Oil-filled fracture normal compliance dispersion for the analytical

and empirical solutions under the different fracture thickness

conditions, rc = 0.003, /m = 0.12. Solid and dotted lines represent

exact and approximate solutions, respectively
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wave period) for a fixed frequency. The reason for

the curves to decline after this peak is due to the

parameter G/w in Eq. (16) (Fig. 4d). An analogous

tendency can be observed in Fig. 4a–c. From a

physics viewpoint, the difference in petrophysical

parameters between adjacent layers is decreasing

with the increase of /m (rock is homogeneous when

/m = /c). The initial pressure in the host rock will

be higher than in the fractures if /m keeps increasing

(/m[/c) which results in fluid flowing in an

opposite direction (flowing from the host rock to the

fractures). In this case, the host rock is softer than

the fractures, and the normal compliance is smaller

than Zhigh
n .

Figure 5a shows that the normal compliance

Re[Zn] tends to a finite value in the high-frequency

limit regardless of the value of /m. The fluid is

locked in the fractures and has not enough time to

equilibrate. However, for the low-frequency limit, the

drained compliance is inversely proportional to /m as

the difference of pore properties between fractures

and host rock decreases with increasing

/m(/m\/c). Therefore, the initial pressure differ-

ence decreases and vanishes when /m = /c. So the

Figure 4
a–d Change of Re[Zn], Im(Zn), compliance ratio and G/w with respect to /m for 150 Hz and rc = 0.003 for oil, carbon dioxide and water
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wave attenuation associated with the flux of fluid will

decrease (see Fig. 5b).

Different pore fluids will yield different results.

Mc = 0 and Pc = 0 when the fluid bulk modulus

tends to zero (i.e., dry fracture), so the dry normal

compliance is much larger than in the fluid-filled case

in the low-frequency limit (anisotropic Gassmann

equations). Gas has a weak effect on the fracture

compliance, whereas liquids can decrease signifi-

cantly the excess fracture compliance, especially for

sealed (or small diffusion parameter) fractures. Fig-

ure 6a shows the dynamic normal compliance

dispersion for three fluids with different bulk mod-

ulus and viscosity parameters. The bulk modulus of

carbon dioxide is much smaller than that of oil and

water but cannot be ignored. While fractures filled

with gas have a weak dispersion in Fig. 6a when

fractures are modeled as poroelastic layers, the

dispersion can become more significant if one

assumes that the fractures are hollow or the fracture

thickness hc ? 0 (Chapman 2003). Note that a

fracture saturated with water has the same normal

compliances at the low and high-frequency limits

compared with the oil filling case. That is, for the

static (un-drained and drained) cases, we cannot

distinguish between the normal compliance of water

and oil saturated fractures as they have a similar bulk

modulus. Yet this is the drawback of sealed fracture

models published previously (Liu et al. 2000; Sayers

et al. 2009). The sealed models do not consider the

flow between fractures and pores; therefore, the

compliance of oil- and water-filled fractures is

indistinguishable. In our model, by contrast, the

diffusion coefficient D, rather than the bulk modulus

can be used to discriminate between oil and water in

the fractures in the middle-frequency band.

Wave-induced fluid flow (WIFF) is an important

attenuation mechanism in porous media. In our

fractured medium model, the imaginary component

of the normal compliance Im[Zn] may partly reflect

wave attenuation characteristics. Thus, Fig. 6b pro-

vides information on frequency dependence of

seismic wave attenuation. Carbon dioxide has the

smallest viscosity and the lowest characteristic

frequency, which is in contrast to the conclusions

published earlier by Hudson et al. (1996) and

Chapman (2003). Previously published models were

based on the assumption that fluid flow (pressure

diffusion) is controlled by the fluid only (i.e., the

fracture is completely hollow). The theoretical basis

is the mechanics of viscous fluids rather than

poroelasticity. In this paper, we define the pressure

diffusion process based on equation r2P̂c þ
P̂cix=Dc ¼ 0 in the fracture (the fracture is regarded

Figure 5
a Oil-filled fracture normal compliance dispersion for various /m. b Im[Zn] frequency dependence characteristics under different /m

conditions
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as a porous layer), so Dc is the critical factor that

controls pressure diffusion for a fixed fracture

thickness (Dm has the same relationship for a

different fluid as Dc). Carbon dioxide has the smallest

diffusion parameter, so that pressure relaxation is the

slowest in this case.

3.2. Effect of Fracture Thickness

The fracture normal compliance associated with

viscous flow is a function of the layer thickness and

fracture fraction (hc/H). We define the characteristic

time Tchara ¼ ph2
c=4Dc for which the pressure diffu-

sion length equals half the fracture thickness. It is

proportional to the fracture thickness and is inversely

proportional to the diffusion coefficient. The shear

compliance is frequency-independent and defined by

hc/lc. Figure 7a shows that the normal-to-tangential

compliance ratio tends to a fixed value when fracture

thickness tends to zero due to the fracture being in a

drained condition (wave period is much larger than

the diffusion characteristic time). For a fixed rc, the

compliance ratio is inversely proportional to the wave

frequency. In contrast, Re[Zn] is proportional to the

fracture thickness in Fig. 7b). Figure 7c, d shows the

Re[Zn] and Im[Zn] dispersion curves for various

thickness ratios. We find that the Re[Zn] dispersion

range and the characteristic frequencies of Im[Zn]

tend to be higher for a thinner fracture. Note that the

coordinates of Fig. 7c, d are displayed in log–log

scale. The drained and un-drained normal compliance

is directly proportional to the thickness (Fig. 7b, c) as

mentioned by Brajanovski et al. (2006). As discussed

in Sect. 2.3, the behavior of Im[Zn] in the generic

periodic porosity structure exhibits three different

frequency regimes separated by two characteristic

frequencies. Moreover, the regime of Im[Zn] between

the two characteristic frequencies broadens and the

peak of Im[Zn] decreases with decreasing fracture

thickness (Fig. 7d). In Fig. 7d, Im[Zn] for different

fractions equals each other with increasing frequency

(and vanishes in the high-frequency limit). In this

case, fluid flowing occurs only in the immediate

vicinity of the fracture surfaces.

3.3. Ratio of Normal Compliance to Shear

Compliance

Identifying pore fluid types in the fractures and

pores of a fractured reservoir is an important goal in

the petroleum exploration process. It has already been

shown by several authors that the ratio of normal

Figure 6
a, b Re[Zn] and Im[Zn] frequency dependence for oil, carbon dioxide and water, /m = 0.12, rc = 0.003
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compliance to shear compliance is an effective and

sensitive indicator for discriminating liquid from gas

because the introduction of a relatively incompress-

ible fluid into a fracture significantly decreases the

normal compliance, but keeps the shear compliance

unchanged such that Re[Zn]/Zt ? 0 (Liu et al. 2000;

Lubbe et al. 2008; Sayers et al. 2009).

Water and oil are very common in hydrocarbon

reservoirs and exist as both single and mixed fluids.

From a petrophysical viewpoint, the compliance ratio

method is powerless to distinguish between oil and

water in a sealed fracture because they have a similar

bulk modulus. However, for an open fracture the fluid

viscosity coefficient controls the characteristic time

of pressure relaxation. Hence, we can identify

different fluids with different viscosity (such as water

and oil) based on the compliance ratio.

Figure 8a, b shows a remarkable distinction of

compliance ratio between oil and water for the values

Figure 7
a Oil-filled fracture compliance ratio versus thickness fraction for frequencies 15 Hz, 150 Hz and 15 kHz. b Normal compliance versus

thickness friction for frequencies 10 Hz, 100 Hz and 0.1 MHz. c, d Frequency-dependent Re[Zn] and Im[Zn], respectively, from the interlayer

flow
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of host rock porosity and seismic exploration fre-

quency that we are interested in.

4. Discussion

The use of the concept of dynamic compliance

can provide important information on fluid content

and lithology of reservoirs. In principle, the WIFF

process establishes a relationship between the prop-

erties of a porous rock and wave signatures. Fracture

compliance increases with porosity up to a peak

around to a few per cent porosity (Fig. 4a, b). This

peak represents an inherent diffusion equilibrium

during wave propagation in the fractured porous

medium. Therefore, the magnitude of compliance for

a fixed frequency can reflect the background porosity

which in turn determines the fluid volume. Note that

the wave velocity trend of fractured media versus the

host rock porosity can be different from the one

shown in Fig. 4a. The reason is that the elastic

moduli of the host rock are usually inversely pro-

portional to porosity according to Gassmann

equations (Gassmann 1951). Yet in order to obtain

wave velocity, the effective elastic moduli of the

fractured rock are calculated by inverting the

effective compliance which is a superposition of the

compliance of the host rock (inverse of the elastic

moduli of the host rock) and the extra compliance of

the fractures.

Two characteristic frequencies for a reservoir with

periodically spaced fractures described above can be

interpreted as a superposition of two coupled fluid

flow processes. This may look counter-intuitive, as

the previous models for the penny-shaped cracks

have a characteristic frequency associated the WIFF

process which is a function of crack radius (Dvorkin

et al. 1995; Hudson et al. 1996; Chapman 2003).

Fluid flow between cracks and pores in published

models obeys Darcy’s law. Correspondingly, the

WIFF process in these models is just calculated from

the cracks surfaces to neighboring pores. In this

paper, the characteristic lengths for pressure diffusion

are the fracture spacing and thickness, rather than the

fracture radius. We can predict from Fig. 7d that the

second characteristic frequency vanishes when the

fracture thickness decreases. Fluid identification is in

principle possible with our model. Combining the

dynamic compliance and the compliance ratio

method, oil can be potentially distinguished from

water for a conventional reservoir porosity at seismic

frequencies (Fig. 8a, b).

Figure 8
a Change of compliance ratio for oil-filled and water-filled fractures with respect to /m for 150 Hz and rc = 0.003. b Compliance ratio

dispersion for oil-filled and water-filled fractures for /m = 0.2, and rc = 0.003
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In recent years many of models of attenuation and

dispersion due to WIFF have been proposed. Most of

these models are limited to finite penny-shaped

cracks. We have demonstrated that one can obtain the

fracture compliance without abandoning the

assumption (i.e., modeling fractures as porous layers)

if the fracture thickness is thin enough [Eqs. (16),

(19), (20)]. However, the range of fracture porosities

for which we can regard fractures as poroelastic

layers has not been clearly defined, especially for the

fractures of a low degree of mineralization. For

completely hollow but finite thickness fractures

(/c = 1, hc = constant), we can deal with this

problem by two methods that are (1) assuming frac-

tures as planes (no thickness) and considering the

WIFF only in the host rock similarly to the popular

fracture models with a zero aspect ratio (fractures are

infinite) and (2) modeling fractures as a thin layer

(without pore structure) saturated with fluids (Liu

et al. 2000). For the latter case, the poroelastic theory

and viscous fluid mechanics corresponding to the host

rock and the fractures, respectively, can be adopted to

reveal the pressure diffusion and boundary conditions

between the host rock and the fractures (Wang et al.

2016). We need to utilize Navier–Stokes equation to

analyze the fluid flow in the hollow fractures (Tang

and Cheng 1989; Wang and Zhang 2014).

For simplicity, we usually assume that the fracture

(filled with porous material or hollow) has infinite

extent and consists of two parallel planes. Therefore,

the model that so far have been studied predomi-

nantly correspond to the fluid flow between the

fractures and the background pores in the fractures

normal direction. In practice, real fractures in rocks

are inhomogeneous (e.g., the fracture surfaces are

rough) along the fracture plane (Sayers et al. 2009),

and the WIFF within the fracture is three dimensional

(Wang 2014; Wang et al. 2016).

Alternatively, a fracture can be described as a set

of discrete penny-shaped cracks (Sayers 1991). The

compliances of penny-shaped cracks have been

extensively studied in the past few decades (Kacha-

nov 1980; Liu et al. 2000; Sayers et al. 2009). The

crack compliance is related to the crack radius and

aspect ratio, and to the background matrix properties.

The comparison between the porous layer model and

penny-shaped crack model is presented by Galvin and

Gurevich (2006) and Gurevich et al. (2009). In the

low-frequency limit, the two models are consistent

with the fundamental equations of anisotropic Gass-

mann’s theory (Gurevich et al. 2009). Since planar

fractures with the same specific surface per unit

volume can be expressed through crack density for

penny-shaped cracks, the high-frequency attenuation

asymptote for the layer model and the penny-shaped

crack model are exactly the same (Galvin and

Gurevich 2006; Gurevich et al. 2009). In a compan-

ion paper, we will systematically discuss that one can

establish the quantitative correspondence between the

layered fractures and the penny-shaped cracks and

illustrate this with the experimental tests.

Finally, it should that be noted the results derived

in this paper are only valid for periodically fractured

structures. In the normal direction, 1D random media

(fracture spacing is a stochastic function) are more

realistic in the earth’s crust. Further research is

required to uncover how to relate the random func-

tions to experimentally significant parameters. The

numerical simulation tools for evaluation of effective

equivalent rock properties will certainly contribute to

this research goal.

5. Conclusions

The behavior of a fractured porous medium is

coupled and can be complex. To relate fracture

compliance to seismic frequency, a dynamic rock

physics model is presented that can describe the

effects of the wave-induced fluid flow process on

fracture normal compliance. For aligned fractures,

the normal compliance in the low and high-frequency

limit is equivalent to the results of the anisotropic

Gassmann equation and a sealed fluid-filled fracture

model, respectively. Furthermore, the examples

results show that knowledge of fractures and rock

properties of the unfractured host medium are crucial

for an accurate description of fracture compliance.

We obtain an analogous empirical expression which

agrees well with the analytical solution if the fracture

thickness is thin enough. The behavior of Im[Zn] in a

periodically fractured structure exhibits three differ-

ent frequency regimes separated by two characteristic

frequencies.
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Based on our model, the compliance ratio method

is more efficient for distinguishing fluids with similar

bulk modulus but different viscosity. Fractures filled

with oil have a significant difference in the compli-

ance ratio dispersion relationship, relative to the

water case. For a fixed H and /c, interlayer flow is

controlled by fracture thickness and the background

matrix diffusion parameter. Interaction between

adjacent fractures is determined by fluid mass con-

servation. The proposed model is appropriate for high

fracture volume density conditions. In future work,

the model containing aligned fractures with randomly

spacing will continue to be studied.
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Appendix 1

Frequency Dependence of Im[Zn]

The frequency characteristics of Im[Zn] (attenua-

tion) are associated with the pressure equilibrium

process. In this paper, the wave attenuation is

controlled two diffusion systems corresponding two

characteristic lengths that are fracture spacing and

fracture thickness, respectively.

When x ? 0, Eq. (3) can be written as

G ¼ �1

2þ
ffiffiffiffiffi

ix
Dm

q

hm

� � jc
Dc

hc
jm
Dm

hm
þ 2þ

ffiffiffiffi

ix
Dc

q

hc

� � ; ð26Þ

Using the values in Table 1 for the physical

parameters introduced this paper leads to the

inequality

n ¼
jc
Dc

hc

jm
Dm

hm

� 1; ð27Þ

We can then derive the imaginary part of the

compliance

Im½Zn� ¼ Im � hc

wMcac

�2 1
2

ffiffiffiffi

ix
Dc

q

hc þ 1
� �

2þ
ffiffiffiffiffi

ix
Dm

q

hm

� �

nþ 2þ
ffiffiffiffi

ix
Dc

q

hc

� �

2

6

4

3

7

5

¼ x
hc

wMcac

1

4Dmnhm

ð28Þ

This means the low-frequency asymptote of the

compliance, proportional to frequency. Additionally,

the intermediate segment of Im[Zn] regime becomes

broader for smaller fracture thickness. When hc ? 0

for a fixed (but finite) frequency,

2

hc

ffiffiffiffi

ix
Dc

q e
ffiffiffiffi

ix
Dc

p
hc � 1

� �

� 4jcMc

ixghc

e
ffiffiffiffi

ix
Dc

p
hc
2 � 1

� �2

: ð29Þ

Then G = -1/2, w ¼ Ksat
m Cc

amMmCc�acMcCm
,

limhc!0 Mc ¼ limhc!0 Cc and ac = 1. So Im[Zn] is

given by

Im½Zn� � Im � hc

Mcac

1

w
�1

hc

ffiffiffiffi

ix
Dc

q hc

ffiffiffiffiffiffi

ix
Dc

r

þ
h2
c

ix
Dc

2

 !

2

6

4

3

7

5

:

ð30Þ

Thereby, Eq. (30) reduces to a formula in a

frequency-dependent form

Im½Zn� ¼
ffiffiffiffi

x
p amMm � Cm

Ksat
m Cc

h2
c

1

2
ffiffiffiffiffiffiffiffi

2Dc

p : ð31Þ

That is, the imaginary part of the compliance is

proportional to x1/2 in the intermediate frequency

band. Finally, when x ? ?, the following inequal-

ity can be obtained

2

hc

ffiffiffiffi

ix
Dc

q e
ffiffiffiffi

ix
Dc

p
hc � 1

� �

� 4jcMc

ixghc

e
ffiffiffiffi

ix
Dc

p
hc
2 � 1

� �2

: ð32Þ

Thus, we find immediately that

Im½Zn� ¼ Im G
2

hc

ffiffiffiffi

ix
Dc

q ehc
ffiffiffiffi

ix
Dc

p
2

6

4

3

7

5

; ð33Þ

meanwhile, when x ? ?
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G � � 1
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therefore,
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The imaginary part of the compliance is propor-

tional to x-1/2.

Appendix 2

Fluid Flux Ratio Normal to Fracture

As for the derivation of Eqs. (1–3), fluid flow

between the fractures and the background pores can

be seen as an inter-coupling process controlled

simultaneously by the hydrologic properties of frac-

tures and of the background. Combining Eqs. (1–3)

and Darcy’s law Vflow ¼ �rP j
g, we can obtain the

fluid flux equation

S ¼ � jc
g

A2 e
ffiffiffiffi

ix
Dc

p
hc=2 � 1

� �2

þ jm
g

B1 e
ffiffiffiffi

ix
Dm

p
hm=2 � 1

� �2

;

ð36Þ

Then the flux ratio between fracture and matrix

1 ¼ Sc
Sm

is

1 ¼ � jc
jm

A2

B1

eRchc=2 � 1
� �2

eRmhm=2 � 1ð Þ2
; ð37Þ

In the low-frequency limit, the flux ratio is hc/

hm � 1 according to Eq (36). The pore pressure

gradient is a constant in the whole pore structure. The

flux ratio is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dc=Dm

p

� 1 in the high-frequency

limit, indicating that the WIFF only occurs near the

fractures planes. Therefore, we can conclude that the

total flux mainly comes from host rock in the low-

frequency limit while from fracture in the high-

frequency limit.
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