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Abstract—We solve the nonlinear shallow water-wave equa-

tions over a linearly sloping beach as an initial-boundary value

problem under general initial conditions, i.e., an initial wave profile

with and without initial velocity. The methodology presented here

is extremely simple and allows a solution in terms of eigenfunction

expansion, avoiding integral transform techniques, which some-

times result in singular integrals. We estimate parameters, such as

the temporal variations of the shoreline position and the depth-

averaged velocity, compare with existing solutions, and observe

perfect agreement with substantially less computational effort.
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1. Introduction

Significant advancements have been achieved in

the basic understanding (Okal 2015), warning

methodology (Bernard and Titov 2015), and pre-

disaster preparedness against tsunamis, since the

2004 Indian Ocean (Synolakis and Bernard 2006)

and, especially, after the 2011 Japan (Kânoğlu et al.

2015) events. One of the key advancements was the

establishment of the standards for tsunami numerical

models, which were introduced as a set of analytical,

experimental, and field data by Synolakis et al.

(2008). Hence, the validated and verified tsunami

numerical models (Synolakis et al. 2008) consistently

show predictions with excellent agreements with field

measurements, i.e., deep ocean, tide gauge, and runup

data (Titov et al. 2016).

The nonlinear shallow water-wave (NSW)

models have been widely used in tsunami modeling.

The National Oceanic and Atmospheric Adminis-

tration’s operational tsunami forecast system is

based on validated and verified NSW model called

the method of splitting tsunami (MOST), and has

been used for every significant tsunami during the

in-house development since 2003 and at the opera-

tional warning centers since 2013 (Titov et al. 2016;

Bernard and Titov 2015). The analytical solutions of

the NSW equations and its linear approximation, the

linear shallow water-wave (LSW) equations, have

been extensively used as key instruments in funda-

mental understanding of the maximum runup of long

waves—tsunamis—as well as swash zone dynamics

(Antuono and Brocchini 2010; Madsen and Fuhrman

2008; Kânoğlu 2004; Kânoğlu and Synolakis 1998;

Brocchini 1997; Brocchini and Peregrine 1996;

Synolakis 1987). An extensive number of analytical

studies on the NSW equations employs the state-of-

the-art hodograph transformation introduced by

Carrier and Greenspan (1958). The Carrier–Green-

span transformation converts the nonlinear set of

equations into a single linear equation, which is

solvable by standard methods. However, this unique

transformation did not find many applications for a

very long time, probably due to difficulty in imple-

menting geophysically meaningful initial wave

profiles.

This restriction was overcome by Synolakis

(1987) with a boundary value problem (BVP) for-

mulation. The Carrier–Greenspan transformation was

used by Synolakis (1987) to solve the nonlinear

propagation and runup problem over a sloping beach

as a BVP, taking the boundary condition at the toe of

the beach from the solution of the LSW equations for

the canonical problem—wave propagation first over a

constant depth and then over a sloping beach. Later,

Tadepalli and Synolakis (1994) used the methodol-

ogy of Synolakis (1987) to solve the LSW equations
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and showed that the leading-depression N-waves run

up higher than their counterparts, i.e., leading-eleva-

tion N-waves. Madsen and Schäffer (2010) extended

the work of Synolakis (1987), and Tadepalli and

Synolakis (1994) by avoiding the classical solitary

wave tie between wavenumber and wave height to

depth ratio, and providing solutions for the temporal

variation of the shoreline motions for solitary waves

and N-waves for the canonical problem.

Carrier and Greenspan (1958) used the Hankel

transform in their original formulation with two very

specific initial wave profiles. Carrier et al. (2003)

improved the Carrier and Greenspan (1958) solution

in terms of initial wave profiles, again using the

Hankel transform and representing the solution in

terms of a Green function, which involves the com-

plete elliptic integral of the first kind, having

singularity. This singularity becomes important,

especially, when the initial wave has velocity. Hence,

Carrier et al. (2003) were able to compute the wave

field satisfactorily only for small values of the initial

amplitude when there is an initial velocity. Kânoğlu

(2004) adopted the original solution of Carrier and

Greenspan (1958), but linearized the hodograph

transformation to derive the initial conditions in the

transform space. This approach led to simpler solu-

tion integrals and allowed the use of more realistic

initial waveforms. Later, Kânoğlu and Synolakis

(2006) showed how to incorporate the exact nonlinear

initial wave velocity into the hodograph transform

technique.

In terms of analytical solutions for more general

bathymetric profiles, Kânoğlu and Synolakis (1998)

used the LSW equations to evaluate the amplification

factor for long wave propagation over piecewise

linear slopes. They then extended their solution into a

three-dimensional problem of long wave propagation

and runup around a conical island. Later, Fuentes

et al. (2015) augmented Kânoğlu and Synolakis

(1998)’s runup estimate for the continental shelf and

slope bathymetric profile to more general ones. The

hodograph transformation technique has also been

utilized to obtain the runup of long waves on more

general bathymetries, such as non-plane beaches

(Choi et al. 2008), inclined channels with parabolic

cross sections (Didenkulova and Pelinovsky 2011a),

and U- and V-shaped bays of single (Harris et al.

2016; Didenkulova and Pelinovsky 2011b) and

piecewise (Anderson et al. 2017) slopes. Recently,

Rybkin et al. (2014) presented an exact analytical

solution of the NSW equations for wave runup over

inclined channels of arbitrary cross-section general-

izing previous studies on wave runup for a plane

beach and channels of parabolic cross sections.

An alternate analytical solution for the NSW

equations was provided by Aydın (2011), and Aydın
and Kânoğlu (2007) in the context of the wind set-

down relaxation problem, considering a long and

shallow bay connected to a deep ocean. They first

presented an explicit analytical solution for the

steady-state wind set-down phase—description of the

sea surface state in the presence of a continuously

blowing wind in seaward direction—and they then

modeled the relaxation phase—the subsequent wave

motion after the wind stops blowing—analytically.

They expressed the flow field in terms of an eigen-

function expansion combined with the hodograph

transformation technique. Their formulation for the

relaxation phase led to an initial-boundary value

problem (IBVP) involving the solution of the NSW

equations over a linearly sloping beach and was

suitable for a solution in terms of a Fourier–Bessel

series.

Furthermore, a limited number of studies

attempted to generalize the hodograph transformation

into three-dimensions and succeeded in providing

analytical solutions, at least in the weak form, for

obliquely incident waves with a small angle of inci-

dence (Brocchini and Peregrine 1996; Carrier and

Noiseux 1983). Recently, Kânoğlu et al. (2013) used

the LSW equations in three-dimensional propagation

of an N-wave to show the focusing effect in the

direction of depression, where abnormal wave height

could be observed. They conjectured that some of the

extreme runup values observed in the field such as the

ones during 27 July 2006 Java and 11 March 2011

Japan tsunamis could be explained through focusing.

Here, we use the hodograph transformation and

solve the NSW equations through eigenfunction

expansion as IBVP for the classical problem of long

wave evolution and runup over a sloping beach. We

evaluate the methodology with a wide class of initial

wave profiles with and without initial velocity.
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2. Analytical Solution

The non-dimensional form of the NSW equations

is given as

gt þ
�
ðhþ gÞu

�
x
¼ 0; ð1aÞ

ut þ uux þ gx ¼ 0; ð1bÞ

where hðxÞ ¼ x and subscripts denote derivatives

with respect to the arguments. Here, gðx; tÞ and u(x, t)

represent the free-surface elevation and the depth-

averaged velocity, respectively. The non-dimensional

quantities in (1) are defined as

x ¼ ~x=~l; ðh; gÞ ¼ ð~h; ~gÞ=ð~l tan bÞ;

u ¼ ~u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g~l tan b

q
; and t ¼ ~t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l=ðg tan bÞ

q
;

ð2Þ

where ~l, g, and b are the characteristic horizontal

length scale, the gravitational acceleration, and the

beach angle with the horizontal, respectively (Fig. 1).

We introduce the hodograph transformation sim-

ilar to Carrier and Greenspan (1958) as

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
xþ g

p
; ð3aÞ

k ¼ t � u; ð3bÞ

which allows to transform (1) into

ðr2uÞr þ 2rðgþ u2

2
Þk ¼ 0; ð4aÞ

2r uk þ ðgþ u2

2
Þr ¼ 0; ð4bÞ

by replacing the independent variables (x, t) with the

respective auxiliary variables ðr; kÞ. Furthermore,

defining a potential function as

u ¼ gþ u2

2
; ð5Þ

and eliminating u in (4), a single second-order linear

differential equation results for the potential function

u

4ukk �
1

r
ðrurÞr ¼ 0; ð6Þ

as the governing equation. Notably, this transforma-

tion maps the moving shoreline tip in the physical

coordinates onto a fixed point in the hodograph space

(r ¼ 0 at xs ¼ �gs) through (3a).

The common practice has been to use the integral

transform techniques to solve (6). However, here, we

consider an IBVP and pursue a solution through an

eigenfunction expansion, under the most general

case, i.e., an initial wave height distribution,

gðx; t ¼ 0Þ ¼ g0ðxÞ, with a corresponding velocity

profile, uðx; t ¼ 0Þ ¼ u0ðxÞ 6¼ 0. These conditions are

expressed in the hodograph space by directly

approximating x through the linearized form of (3a),

x � r2, as in Kânoğlu (2004). Then, the initial con-

ditions in the ðr; kÞ-space can be expressed as

gðr; k ¼ k0Þ ¼ g0ðrÞ and uðr; k ¼ k0Þ ¼ u0ðrÞ, or

specifically for the governing equation (6) as

uðr; k ¼ k0Þ ¼ g0ðrÞ þ
u2

0ðrÞ
2

� PðrÞ; ð7aÞ

η̃s(t̃)

η̃(x̃, t̃)

x̃

z̃

h̃(x̃)β

x̃lx̃s

Figure 1
Definition sketch (not to scale)
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ukðr; k ¼ k0Þ ¼ �u0ðrÞ �
r
2

du0ðrÞ
dr

� FðrÞ; ð7bÞ

following from (5) and (4a), respectively. Here, we

note that uðx; t ¼ 0Þ ¼ u0ðxÞ 6¼ 0 in the (x, t)-space

corresponds to k0 ¼ �u0ðrÞ 6¼ 0 in the ðr; kÞ-space

through (3b) (Kânoğlu and Synolakis 2006) and,

hence, k0 ¼ 0 at t ¼ 0 in the absence of initial

velocity.

In terms of boundary conditions, the solution

needs to be bounded everywhere, including at the

shoreline. In addition, we use homogeneous boundary

condition at the seaward boundary,

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
xl þ g

p � ffiffiffiffi
xl

p ¼ L, to formulate the solution

simply through eigenfunction expansion. We first

adopt the Dirichlet (first-type) condition,

uðr ¼ L; kÞ ¼ 0. Therefore, the boundary conditions

in the ðr; kÞ-space are

juðr ¼ 0; kÞj\1; ð8aÞ

uðr ¼ L; kÞ ¼ 0: ð8bÞ

The IBVP formulated above is now a classical

separation of variables problem, i.e.,

uðr; kÞ ¼ SðrÞTðkÞ. The series expansion for the

potential function becomes

uðr; kÞ ¼
X1

n¼1

J0ð2anrÞ ½An cosðankÞ þ Bn sinðankÞ�;

ð9Þ

through (6) applying the condition given in (8a) and

denoting an ¼ zn=ð2LÞ, where the zn are the zeros of

the Bessel function of the first kind of order zero,

J0ð�Þ, following from (8b)1. To calculate the

unknown coefficients An and Bn ðn� 1Þ, the initial

conditions given in (7) are considered:

An ¼
2

an L2 J2
1ðznÞ

�
anPn cosðank0Þ � Fn sinðank0Þ

�
;

ð10aÞ

Bn ¼
2

an L2 J2
1ðznÞ

�
Fn cosðank0Þ þ anPn sinðank0Þ

�
;

ð10bÞ

where

Pn

Fn

� �
¼

Z L

0

r�
Pðr�Þ
Fðr�Þ

� �
J0ð2anr�Þ dr�: ð11Þ

This completes the solution of the IBVP defined by

(6)–(8) in the hodograph space.

The depth-averaged velocity uðr; kÞ follows from

(4b) and (9) as

uðr; kÞ ¼
X1

n¼1

J1ð2anrÞ
r

�
An sinðankÞ � Bn cosðankÞ

�
:

ð12Þ

The apparent singularity of (12) at the shoreline

(r ¼ 0) can easily be resolved with the use of

limz!0 J1ðnzÞ=z ¼ n=2, and the shoreline velocity

hence becomes

usðkÞ ¼
X1

n¼1

an
�
An sinðankÞ � Bn cosðankÞ

�
: ð13Þ

Once uðr; kÞ and uðr; kÞ are calculated in the hodo-

graph ðr; kÞ-space, the solution in the physical (x, t)-

space follows as

g ¼ u� u2

2
; ð14aÞ

x ¼ r2 � g; ð14bÞ

t ¼ kþ u: ð14cÞ

The temporal variation of the shoreline position is

calculated explicitly using (13) and (14), employing

r ¼ 0:

xsðkÞ ¼
u2
s ðkÞ
2

� uð0; kÞ; ð15aÞ

tsðkÞ ¼ kþ usðkÞ: ð15bÞ

Moreover, gðx; tÞ and u(x, t) can be evaluated at any

time t ¼ t� or at any location x ¼ x� through the

following Newton–Raphson algorithms:

kiþ1 ¼ ki �
t� � tðr; kiÞ
�1 � uk½ �ðr;kiÞ

; ð16aÞ

riþ1 ¼ ri �
x� � xðri; kÞ

�2rþ ur � u ur½ �ðri;kÞ
; ð16bÞ

respectively (Kânoğlu 2004; Synolakis 1987).1 The first few zeros of the function J0ðzÞ are: z1 ¼ 2:405,

z2 ¼ 5:520, z3 ¼ 8:654, z4 ¼ 11:792, ....

3212 B. Aydin and U. Kânoğlu Pure Appl. Geophys.



In addition to the Dirichlet condition at the

seaward, we also consider the Neumann (second-

type) boundary condition, urðr ¼ L; kÞ ¼ 0. Then,

the series expansion for the potential function

becomes

uðr; kÞ ¼ A0 þ
X1

n¼1

J0ð2bnrÞ
�
An cosðbnkÞ þ Bn sinðbnkÞ

�
;

ð17Þ

bn ¼ wn=ð2LÞ, under this boundary condition. In the

Fourier–Bessel series, again, J0ð�Þ is the Bessel

function of the first kind of order zero and the wn are

the zeros of the function wJ 00ðwÞ ¼ 0 (or

wJ1ðwÞ ¼ 0)2, due to the Neumann-type boundary

condition at r ¼ L. Since wJ1ðwÞ ¼ 0 has a double

root at w ¼ 0, Dini’s expansion of order zero yields

the constant term A0 in the series solution (17)

(Bowman 1958), which is given by

A0 ¼ 2

L2

Z L

0

r� Pðr�Þ dr�: ð18Þ

The unknown coefficients (An, Bn) for n� 1 are cal-

culated from (10) replacing an ¼ zn=ð2LÞ with

bn ¼ wn=ð2LÞ. The rest of the solution is the same.

We note that the choice of Dirichlet or Neumann

boundary condition at the seaward boundary implies

gðx ¼ xl; tÞ ¼ 0 or uðx ¼ xl; tÞ ¼ 0, respectively, and

both result in wave reflection from the artificial sea-

ward boundary. However, the overall main interest in

these analytical solutions is the shoreline quantities

and, at most, flow properties close to the shoreline.

Therefore, the accurate calculation of shoreline

quantities before reflected wave from artificial sea-

ward boundary reaching to the domain of interest can

be achieved with the choice of the domain (xl) large

enough.

3. Applications

We apply the solution method described above to

a number of previously studied initial wave profiles.

We first consider

gg0ðxÞ ¼ H1 e�c1ðx�x1Þ2

; ð19aÞ

gn0ðxÞ ¼ H1 e�c1ðx�x1Þ2

� H2 e�c2ðx�x2Þ2

; ð19bÞ

namely, Gaussian waves and N-waves, respectively,

as suggested by Carrier et al. (2003) (Fig. 2). Carrier

et al. (2003) evaluated the time evolution of shoreline

position and velocity for two different sets of

parameters for the profiles given in (19), using the

Hankel transform. Kânoğlu (2004) obtained the same

results by avoiding elliptic integrals in Carrier et al.

(2003), as briefly described in §1. We evaluate the

shoreline position gsðtÞ and velocity usðtÞ for the

initial wave profiles without initial velocity proposed

by Carrier et al. (2003) and compare them with

Kânoğlu (2004) observing perfect agreement, hence

with Carrier et al. (2003).

We also investigate the effect of different initial

velocity approximations. Note that, while cases

without initial velocity represent tsunamis generated

in near-field, cases with initial velocity represent

tsunamis coming from far-field. We consider three

previously used relations for the initial velocity, i.e.,

the exact nonlinear relation (Kânoğlu and Synolakis

2006)

u0ðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffi
hðxÞ

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðxÞ þ g0ðxÞ

p
; ð20Þ

the linear approximation given by Carrier et al.

(2003)

u0ðxÞ � �g0ðxÞ=
ffiffiffiffiffiffiffiffiffi
hðxÞ

p
; ð21Þ

and the classic asymptotic relation discussed by

Pritchard and Dickinson (2007)

u0ðxÞ � �g0ðxÞ: ð22Þ

In Fig. 3, we compare the shoreline motions and

velocities for three different approximations of the

initial velocities for the initial wave profiles presented

by Carrier et al. (2003). We observe that while the

exact nonlinear (20) and linear (21) relations produce

almost identical results, as also noted by Kânoğlu and

Synolakis (2006), the asymptotic relation (22) pro-

duces slightly higher runup.

We then consider the initial waveforms of Tinti

and Tonini (2005), who obtained evolution and runup

of long waves resulting from earthquakes that occur

in near-field. They solved the NSW equations as an

2 The first few zeros of the function J1ðwÞ are: w1 ¼ 0,

w2 ¼ 3:832, w3 ¼ 7:016, w4 ¼ 10:174, ....
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IVP after utilizing the hodograph transformation with

the initial waveform of

g0ðrÞ ¼
X3

k¼0

ckð1 þ r2Þ�ðkþ3=2Þ; ð23Þ

having zero initial velocity. The coefficients ck are

obtained using a curve fitting procedure, which

approximates the initial sea surface profile obtained

from Okada’s (1985, 1992) dislocation model. The

initial wave profile (23) allows analytical expressions

for the quantities of interest. Tinti and Tonini (2005)

produced spatial variations of the water surface ele-

vations along with the shoreline motions and

velocities for different earthquake configurations.

Leaving the details to Tinti and Tonini (2005), in

Fig. 4, we reproduce results for one of the cases they

presented and compare their results with that of our

methodology. We obtain an excellent agreement.

In terms of practical applications, the methodology

presented here could be efficiently used for the initial

consideration of the locations of tsunami-prone devices

and structures, such as oscillating wave surge converters

or tsunami shelters, against tsunami attack. O’Brien

et al. (2015) considered oscillating wave surge con-

verters and evaluated whether they could withstand

force due to an incoming tsunami. Fritz et al. (2012)

analyzed eyewitness videos recorded at a location near a
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Figure 2
Initial waveforms of a a Gaussian and b a negative Gaussian with H1 ¼ 0:017, c1 ¼ 4:0 and x1 ¼ 1:69 in (19a), and leading-depression N-

waves with c H1 ¼ 0:02, c1 ¼ 3:5, x1 ¼ 1:5625, H2 ¼ 0:01, c2 ¼ 3:5 and x2 ¼ 1:0, and d H1 ¼ 0:006, c1 ¼ 0:4444, x1 ¼ 4:1209,

H2 ¼ 0:018, c2 ¼ 4:0 and x2 ¼ 1:6384 in (19b). The time variations of the shoreline e–h positions and i–l velocities under u0ðx; t ¼ 0Þ ¼ 0.

Solid lines represent the present solution, while circles represent the solution of Kânoğlu (2004)
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surviving coast guard building during the 11 March

2011 Japan tsunami and determined the time history of

the tsunami flood at that location with high-end particle

tracking methodologies. As pointed out by Kânoğlu

et al. (2013), such measurements are incredibly useful

for civil defense to help inform communities at risk of

how quickly overland depths can change. They also

emphasized that such calculations are needed for every

tsunami shelter in the tsunami prone regions around the

world. It is clear that these shelters need to be built at

least outside of the regions, where absolute maximum

tsunami onshore and offshore velocities occur. Even

though a detailed computational analysis is required, the

analytical solution presented here might be useful dur-

ing the preliminary analysis, at least as a first-order

estimate, in determining where these devices or shelters

should not be located.

4. Conclusions

We modeled nonlinear propagation of long waves

climbing up on a linearly sloping beach as an IBVP

by combining the eigenfunction expansion method

with the hodograph transformation introduced by

Carrier and Greenspan (1958). We considered a wide

class of initial wave profiles with and without initial

velocity and evaluated shoreline quantities using our

methodology. Our methodology allows accurate

estimation of the quantities of interest and our results

are in excellent agreement with integral transform

solutions (Kânoğlu and Synolakis 2006; Tinti and

Tonini 2005; Kânoğlu 2004; Carrier et al. 2003).

Moreover, our methodology is more flexible com-

pared to the integral transform methods in terms of

using different initial wave profiles. We also analyzed

the effects of exact nonlinear, linearized, and

asymptotic initial velocity assumptions on the

shoreline quantities, confirming that the exact non-

linear and linear initial velocities produce almost

identical results (Kânoğlu and Synolakis 2006). In

addition, our solution is computationally efficient

over the integral transform methods, i.e., it requires

much less computational effort. One disadvantage of

our methodology is that the evolving wave may

possibly be contaminated by the wave reflected from
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Figure 3
Time variations of the shoreline a–d positions and e–h velocities, for initial wave profiles given in Fig. 2a–d, respectively, with different

approximations of the initial velocities. Solid lines represent the present solution with the nonlinear initial velocity profile defined by (20),

while circles and dashed lines represent the results of the linear (21) and the asymptotic (22) initial velocity approximations, respectively
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the artificial seaward boundary. However, the shore-

line quantities are of the most interest, and therefore,

this difficulty can simply be avoided by choosing a

sufficiently large computational domain. Postacioglu

et al. (2016) considered radiation damping to the

deep sea, which could be applied here to avoid the

reflection from seaward boundary. Nevertheless, in

our view, this would complicate the solution pre-

sented here and will not contribute in terms of

shoreline behavior, which is the interest in our ana-

lytical solution.

The methodology we presented here can easily be

used in benchmarking of numerical models for their

shoreline runup algorithms (Synolakis et al. 2008), in

further relating tsunami flow parameters to earth-

quake source (Sepulveda and Liu 2016), and in

evaluating coastal structures and devices against

tsunami attacks, at least, during the preliminary

design phase. Moreover, we note that even numerical

solutions of Boussinesq-type equations usually revert

to temperamental NSW algorithms during runup. Our

methodology which does not involve the occasional

calculation of singular integrals holds promise for

implementation in runup algorithms in several kinds

of numerical computations, the latter remaining fairly

ad-hoc, almost three decades after being proposed by

Hibberd and Peregrine (1979).
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