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Abstract—The most general approach to the study of rare

extreme events is based on the extreme value theory. The funda-

mental General Extreme Value Distribution lies in the basis of this

theory serving as the limit distribution for normalized maxima. It

depends on three parameters. Usually the method of maximum

likelihood (ML) is used for the estimation that possesses well-

known optimal asymptotic properties. However, this method works

efficiently only when sample size is large enough (*200–500),

whereas in many applications the sample size does not exceed

50–100. For such sizes, the advantage of the ML method in effi-

ciency is not guaranteed. We have found that for this situation the

method of statistical moments (SM) works more efficiently over

other methods. The details of the estimation for small samples are

studied. The SM is applied to the study of extreme earthquakes in

three large virtual seismic zones, representing the regime of seis-

micity in subduction zones, intracontinental regime of seismicity,

and the regime in mid-ocean ridge zones. The 68%-confidence

domains for pairs of parameter (n, r) and (r, l) are derived.

1. Introduction

The statistical study of extreme events is neces-

sary in many applications. Such extreme events are

usually connected with the most powerful natural

phenomena or with the most disastrous catastrophes.

It seems that the most general and the most justified

approach to statistical study of such events is based

on the extreme value theory (EVT) and two of its

main limit distributions: the Generalized Extreme

Value Distribution (GEV) and the Generalized Pareto

Distribution (GPD). Each of these distributions

depends on three parameters.

The GEV parameters:

• the form parameter n, -?\ n\??;

• the location parameter l, -?\ l\??;

• the scale parameter r, 0\ r\??.

The GPD parameters:

• the form parameter n, -?\ n\??;

• the lower threshold parameter h, -?\ h\??;

• the scale parameter s, 0\ s\??.

The GEV describes the limit distribution of nor-

malized maxima of increasing samples, whereas the

GPD appears as the limit distribution of scaled

excesses over sufficiently high threshold h values.

There is a close connection between these two dis-

tributions. A Poisson flow of events having a GPD

distribution is distributed in accordance with GEV

distribution. In this case, the form parameter n of both
distributions is the same, but two other parameters

differ. There are simple formulas connecting these

parameters (see Embrechts et al. 1997; Pisarenko and

Rodkin 2010). The practical use of the GPD and the

GEV is aggravated often by small sample size of

available data. The small size situation for the GPD

was studied by Pisarenko et al. (2017) where the

quantile method (QM) was found to be the most

efficient. In this paper, we concentrate on the case of

the GEV.

The GEV distribution function has a form:

FðxÞ ¼ exp � 1 þ n
r

x� lð Þ
� ��1=n

( )
;

1 þ n
r

x� lð Þ� 0:

ð1Þ

If n[ 0, then the function 1-F(x) decreases as

x-1/n. If n = 0, then we have usual exponential dis-

tribution FðxÞ¼ 1� exp � x�l
r

� �
. It should be

remarked that the normal distribution also leads to

n = 0. If n\ 0, then one has distribution restricted
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from above by l-r/n. We denote this limit as

Mmax = l-r/n. It should be noted that the case of

power-like decrease (n[ 0) can be reduced to the

case n = 0 by logarithmic transform. If a random

variable X has power distribution (the Pareto distri-

bution) F (x) = 1-(h/x)b, x C h, then log(X) has the

exponential distribution. Thus, it is sufficient to

consider only the case n B 0.

Some examples of GEV probability densities with

non-positive n are shown in Fig. 1.

The most widespread method for parameter esti-

mation is the standard maximum likelihood method.

However, its application for the GEV is complicated

by a few circumstances. First, the support of the

underlying distribution function depends on the

unknown parameters [see Eq. (1)]. Second, it was

shown that the classical good properties of the max-

imum likelihood estimators (MLE) of the GEV

parameters hold whenever n[-0.5 and are being

lost for n B -0.5. Having this in mind we shall

restrict our consideration by the former case. It

should be noted that practically interesting cases

usually meet this condition, and thus this restriction

seems to be unessential. The third circumstance is

connected with the sample size because the MLE

method is not guaranteed to be the most efficient for

small samples. The MLE for the GEV were studied in

(Smith and Naylor 1987; Buishand 1989; Smith

1990; Embrechts et al. 1997). The method of statis-

tical moment estimation and the method of weighted

moments were suggested by Hosking et al. (1985)

and Christopeit (1994). However, the efficiency of

these approaches for the case of small samples still

remains uncertain, and this case is just very important

for many practical situations where sample size

consists only 30–100 [see (Pisarenko and Rodkin

2013)]. A very annoying property of small samples

occurred because of a strong bias of the MLE and

other methods. Thus, the new approaches for this

situation are very crucial. In this paper we study in

detail the case of small samples and suggest some

new modifications of the statistical moment (SM)

estimation procedure based on the bootstrap ideas. In

the study by Pisarenko et al. (2017) it was found that

the quantile method (QM) works more efficiently for

small samples in the case of GPD. In this paper we

study the problem of estimation of the GEV param-

eters for small and moderate (20–500) samples. We

have found that for this situation the method of sta-

tistical moments (SM) works more efficiently than

ML and QM estimates. We restrict ourselves below

by the comparison of efficiency of SM and ML

estimates.

2. The ML Estimates for the GEV

The GEV log-likelihood for a sample x1; . . .; xnð Þ
has form

Lðx n; r; lj Þ ¼ �n � log ðrÞ �
Xn
k¼1

1þ n
xk � l

r

h i�1=n

� 1þ 1=nð Þ
Xn
k¼1

log 1þ n
xk � l

r

h i
:

ð2Þ

The ML estimators are found as values (n, r, l)
maximizing (2) under conditions:

r[ 0; 1þ n
r

xk � lð Þ� 0: ð3Þ
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Figure 1
Examples of probability GEV densities p (x) with a few charac-

teristic non-positive n; x values are chosen to be similar with mw

values; the most typical case n = -0.2 is given by a thick line;

l = 6; r = 0.5
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3. The SM Estimates for the GEV

We denote the three first statistical moments by

M1, M2, M3:

M1 ¼
1

n

Xn
k¼1

xk; M2 ¼
1

n

Xn
k¼1

x2k ;

M3 ¼
1

n

Xn
k¼1

x3k :

ð4Þ

Their theoretic analogs are following:

� 1 = l-r/n-r�C(-n); C is the gamma function;

� 2 = (l-r/n)2-2r(l-r/n)�C(-n)-2(r2/n)
C(-2n);

� 3 ¼ l� r=nð Þ3�3r l� r=nð Þ2�C �nð Þ
� 6 r2=n

� �
l� r=nð Þ � C �2nð Þ

� 3 r3=n2
� �

C �3nð Þ: ð5Þ

Equalizing (4) and (5) we get the system of three

equations for three unknown parameters. This system

is easily solved. In fact, the skew E X�EX

stdðXÞ

� 	3

depends

only on n:

E
X � EX

stdðXÞ


 �3

¼ �C 1� 3nð Þ þ 3C 1� nð Þ � 2C3 1� nð Þ
C 1� 2nð Þ � C2 1� nð Þ3=2
h i ;

ð6Þ

where E is mathematical expectation symbol and std

is a standard deviation. Equalizing (6) to the sample

skew

M3 � 3M2M1 þ 2M3
1

M2 �M2
1

� �3=2 : ð7Þ

we get equation for n:

M3 � 3M2M1 þ 2M3
1

M2 �M2
1

� �3=2
¼ �Cð1� 3nÞ þ 3Cð1� nÞ � 2C3ð1� nÞ

Cð1� 2nÞ � C2ð1� nÞ
� 3=2 : ð8Þ

Equation (8) is solved numerically which pro-

vides the estimate n̂ of parameter n.
Then we get estimators for two other parameters:

r̂ ¼ M2 �M2
1

�C2 �n̂
� 	

� 2=n̂
� 	

C 1� 2n̂
� 	

2
4

3
5
1=2

: ð9Þ

l̂ ¼ M1

r̂

n̂
þ r̂ � C �n̂

� 	
: ð10Þ

The third moment � 3 is finite for n\ 1/3. Since

we assumed n B 0, this condition is satisfied and we

have included it as well into our numerical algorithm.

Under this condition all three sample moments con-

verge with probability one to corresponding

theoretical moments as n tends to infinity. Thus, the

SM estimates (8)–(10) converge as well to their true

values with probability one.

We used the bootstrap variant with replacement

(Efron 1979). In bootstrap sample y1; . . .; ynð Þ each yk
was randomly chosen from the initial sample

x1; . . .; xnð Þ. We have taken usually 10,000 bootstrap

samples and averaged obtained estimates. Bootstrap

samples are not independent, but the mathematical

expectation of a sum equals to sum of expectations

for dependent terms too.

We have modified the SM by adding a very useful

procedure. To estimate std we divided each bootstrap

sample into two equal subsamples x
ð1Þ
1 ; . . .; x

ð1Þ
n=2

� 	
;

x
ð2Þ
1 ; . . .; x

ð2Þ
n=2

� 	
. Then, we got estimate of variance:

var ¼ 1

n

Xn=2
k¼1

x
ð1Þ
k � x

ð2Þ
k

� 	2

; ð11Þ

taking into account that E x
ð1Þ
k � x

ð2Þ
k

� 	2

¼ 2var, so that

var is an unbiased estimate of the true variance var.

Then we averaged estimates (11) over all bootstrap

ensembles. The similar method was used to estimate

standard deviation of the quantiles Qq (s) (see below).
Similarly, to estimate the significance level of the

Anderson–Darling distance (ADD) that was used in our

procedure we put parameter estimates derived from the

first subsample into the DF and used this DF as ‘‘theo-

retical DF’’ for the second subsample. Thus, each time

theoretical DF and the used subsample were indepen-

dent. Of course, there was some loss of efficiency

(because the sample size is two times less), so that our

procedure gives slightly lowered significance value.

4. Comparison of the MLE with the SM

We have carried out the comparison on artificial

GEV samples generated with the help of computer

random numbers.

Vol. 174, (2017) The Estimation of Probability of Extreme Events for Small Samples 1549



The quality of statistical estimates is defined by

three characteristics:

1. The mean-square error MSE

MSE ¼ E n̂� n
� 	2

� �1=2
, where E is mathematical

expectation symbol.

2. The bias

BIAS ¼ E n̂
� 	

� n.
3. The standard deviation

STD ¼ E n̂� E nð Þ
� 	2

� �1=2
:

These statistical characteristics are related by

equation:

MSE2 = BIAS2 + STD2: ð12Þ

Thus, knowing two of them one can determine the

third. The quality of an estimate is characterized fully by

MSE, but sometimes two other statistical characteristics

are of interest too. Analyzing estimates of the GEV

parameterswe concentratemainly on the form parameter

n since its estimation is most difficult. The estimation of

parameter r and especially parameter l is much easier

and certain.Wecarried out estimationofnwithin interval
-0.5\n B 0. Since the centered and normalized term

(x-l)/r is entered in the GEVwe can study estimates of

parametern for anyfixedr,l. The statistical properties of
n-estimate do not depend on them.

The results of the estimation are collected in

Tables 1, 2, 3, 4, 5, and 6. The averaged over n,
-0.5\ n B 0, MSE and absolute Bias for the Maxi-

mum Likelihood and the Moment Method are shown in

Figs. 2 and 3. We see that ML has larger average MSE

for n *\ 100, and larger average bias over all con-

sidered range. These estimates for two other parameters

r, l behave similarly. Thus, we can conclude that for

small samples (n B 100) the SM estimates are more

efficient than the ML estimates, at least within the n-
range (-0.5, 0] that is the most interesting for applica-

tions [see (Pisarenko and Rodkin 2010, 2013)].

5. The GEV Estimates for Different Seismic Zones

To illustrate the exposed SM-method we have

formed three large samples of seismic magnitudes,

representing the seismic regime of three different

seismic–tectonic situations: subduction zone, inter-

continental seismicity and mid-ocean ridge zone. We

have aimed both to illustrate the application of the

SM-method and to check the conclusion (Kagan

1999) on the universality of the seismic moment–

frequency relation in all seismic areas excepting the

specific character of seismicity in the mid-ocean

ridge zones.

We restricted the depth by 70 km. The moment

magnitudes mw were taken from the GCMT seismic

moment catalog (http://www.globalcmt.org/

CMTsearch.html); time interval 01.01.1976–

12.01.2016 was examined. There were 23,379 events,

4.65 B mw B 9.08. We have cleaned the catalog

from aftershocks and swarms with the help of the

Kagan–Knopoff algorithm (Knopoff et al. 1982)

which reduced the number of events down to 8954

(we call them main shocks). According to our method

[see for details (Pisarenko and Rodkin 2010)] the

catalog time interval is divided into n equal blocks,

and maximum event mk is taken in each block. Thus,

we get a sample m1; . . .;mnð Þ. According to the the-

ory of extreme events the distribution of mk tends to

the GEV as the length of block goes to infinity. Thus,

we try to fit a GEV to this sample varying n and

choosing block length that should be sufficiently

large. We used both the ML and SM methods with

the bootstrap modification described above. The

number of bootstrap samples was 10,000. The

goodness-of-fit was measured by the Anderson–Dar-

ling distance ADD between sample DF Fn (x) and

theoretical GEV F (x):

ADD ¼ n

Z1

�1

WðxÞ � FnðxÞ � FðxÞ½ �2dFðxÞ

¼ �n

� 1

n

Xn
k¼1

2k � 1ð Þ logðxkÞ þ log 1� xnþ1�kð Þ½ �;

ð13Þ

where x\ x2\. . .\ xn is ordered sample

m1; . . .;mnð Þ; the weighting function WðxÞ ¼
1

FðxÞ 1�F xjð Þ½ � [see (Anderson and Darling 1954)]. We

prefer to use just the ADD rather than more tradi-

tional measures of goodness-of-fit like, say, the

Cramer-von Mises distance with WðxÞ � 1 or the
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Kolmogorov–Smirnov distance n1/2�max|Fn

(x)-F (x)| just because its weighting function stresses

the fitting at the ends of distribution in study, which is

important for our problem. We put both ML and SM

sample estimates of GEV parameters in (1) and used

this function as the theoretical F (x). Finally, we used

ADD for each bootstrap sample under given n and

averaged it over the bootstrap ensemble. Varying

n we chose value n0 giving minimum averaged ADD.

To estimate significance level of the minimum ADD

one can not use standard statistical ADD-tables since

they are applicable only for exactly known theoretical

DF with no estimated parameters. We used a simu-

lation procedure to avoid this obstacle, repeating our

method of ADD estimation 10,000 times. Then we

estimated the p value equal to probability of

Table 1

Mean-square error MSE values MSEML(n̂) and MSESM(n̂) as functions of the true values n and n

n -0.499 -0.40 -0.30 -0.20 -0.10 0

n = 20

MSEML(n̂)
0.266 0.254 0.240 0.236 0.237 0.243

MSESM(n̂) 0.164 0.141 0.134 0.131 0.137 0.156

n = 50

MSEML(n̂)
0.112 0.109 0.107 0.109 0.114 0.119

MSESM(n̂) 0.110 0.097 0.088 0.086 0.089 0.103

n = 100

MSEML(n̂)
0.069 0.067 0.068 0.070 0.074 0.077

MSESM(n̂) 0.081 0.071 0.063 0.061 0.066 0.075

n = 200

MSEML(n̂)
0.044 0.043 0.045 0.046 0.049 0.052

MSESM(n̂) 0.058 0.051 0.045 0.043 0.047 0.056

n = 500

MSEML(n̂)
0.026 0.026 0.026 0.027 0.030 0.032

MSESM(n̂) 0.037 0.033 0.029 0.027 0.030 0.038

Minimal values are underlined

Table 2

BIASML(n̂) and BIASSM(n̂) as functions of the true values n and n

n -0.499 -0.40 -0.30 -0.20 -0.10 0

n = 20

BIASML(n̂)
-0.099 -0.084 -0.063 -0.051 -0.033 -0.023

BIASSM(n̂) 0.056 0.025 0.000 -0.030 -0.058 -0.096

n = 50

BIASML(n̂)
-0.036 -0.030 -0.024 -0.020 -0.012 -0.009

BIASSM(n̂) 0.026 0.019 0.001 -0.013 -0.026 -0.051

n = 100

BIASML(n̂)
-0.020 -0.018 -0.014 -0.011 -0.009 -0.004

BIASSM(n̂) 0.018 0.006 -0.001 -0.007 -0.016 -0.029

n = 200

BIASML(n̂)
-0.012 -0.010 -0.008 -0.006 -0.003 -0.002

BIASSM(n̂) 0.010 0.005 0.000 -0.003 -0.007 -0.017

n = 500

BIASML(n̂)
-0.006 -0.005 -0.004 -0.003 -0.002 -0.001

BIASSM(n̂) 0.006 0.002 0.000 -0.001 -0.003 -0.007

Minimal absolute values are underlined

Vol. 174, (2017) The Estimation of Probability of Extreme Events for Small Samples 1551



exceeding observed ADD under null hypothesis that

GEV is valid. Usually a hypothesis is rejected if

p value is less than 0.1. In our examples, p values

were less than the table values but still more than 0.1

(see Table 7) which admissibly justifies using the

GEV.

We have applied this procedure to the seismic

moment GCMT catalog. We have studied the

seismicity in three virtual zones representing the

intracontinental seismicity, subduction zones seis-

micity, and the mid-ocean ridge zones seismicity.

The earthquakes that occurred in these three virtual

zones are presented in Fig. 4. We have chosen for

examination the areas of high seismicity level cor-

responding to these three tectonic situations. The

virtual subduction zone includes 18,299 events, the

Table 3

MSEML(r̂) and MSESM(r̂) as functions of the true values n and n

n -0.499 -0.40 -0.30 -0.20 -0.10 0

n = 20

MSEML(r̂)
0.219 0.206 0.196 0.197 0.197 0.206

MSESM(r̂) 0.189 0.176 0.169 0.109 0.173 0.196

n = 50

MSEML(r̂)
0.118 0.114 0.113 0.113 0.116 0.119

MSESM(r̂) 0.117 0.112 0.109 0.108 0.112 0.127

n = 100

MSEML(r̂)
0.082 0.080 0.078 0.078 0.080 0.083

MSESM(r̂) 0.085 0.080 0.077 0.077 0.080 0.092

n = 200

MSEML(r̂)
0.057 0.056 0.055 0.055 0.056 0.058

MSESM(r̂) 0.060 0.057 0.055 0.054 0.058 0.067

n = 500

MSEML(r̂)
0.036 0.035 0.034 0.034 0.035 0.036

MSESM(r̂) 0.038 0.036 0.035 0.034 0.037 0.045

Minimal values are underlined

Table 4

BIASML(r̂) and BIASSM(r̂) as functions of the true values n and n

n -0.499 -0.40 -0.30 -0.20 -0.10 0

n = 20

BIASML(r̂)
-0.015 -0.021 -0.034 -0.038 -0.046 -0.053

BIASSM(r̂) -0.064 -0.056 -0.050 -0.032 -0.010 0.028

n = 50

BIASML(r̂)
-0.036 -0.030 -0.024 -0.020 -0.012 -0.009

BIASSM(r̂) 0.026 0.019 0.001 -0.013 -0.026 -0.051

n = 100

BIASML(r̂)
-0.011 -0.043 -0.078 -0.018 -0.019 -0.021

BIASSM(r̂) -0.025 -0.023 -0.022 -0.014 0.010 0.026

n = 200

BIASML(r̂)
-0.012 -0.010 -0.008 -0.006 -0.003 -0.002

BIASSM(r̂) 0.010 0.005 0.000 -0.003 -0.007 -0.017

n = 500

BIASML(r̂)
0.000 -0.002 -0.003 -0.005 -0.006 -0.007

BIASSM(r̂) -0.006 -0.005 -0.004 -0.003 0.001 0.005

Minimal absolute values are underlined
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virtual intracontinental zone includes 2116 earth-

quakes, and the virtual mid-ocean ridge zone includes

4168 events.

The estimates of GEV parameters for three virtual

zones are collected in Table 7. Corresponding distri-

bution tails 1-F (x) are shown in Figs. 5, 6, and 7. The

optimal sample sizes occurred as follows: n = 66

(subduction), n = 60 (continents), n = 60 (ridges).

We have used the SM-estimation. Standard devi-

ations were estimated by the method of two

subsamples, described above. By the way, these std

estimates were close to estimates obtained from the

bootstrap ensembles. p values were estimated by the

cross-validation of two subsamples too. It should be

noted that p values calculated directly from the

bootstrap ensembles (which is not legitimate because

Table 5

MSEML(l̂) and MSESM(l̂) as functions of the true values n and n

n -0.499 -0.40 -0.30 -0.20 -0.10 0

n = 20

MSEML(l̂)
0.259 0.263 0.267 0.265 0.267 0.268

MSESM(l̂) 0.240 0.242 0.246 0.246 0.250 0.257

n = 50

MSEML(l̂)
0.156 0.158 0.158 0.160 0.162 0.164

MSESM(l̂) 0.155 0.155 0.154 0.155 0.159 0.163

n = 100

MSEML(l̂)
0.109 0.108 0.111 0.112 0.114 0.114

MSESM(l̂) 0.110 0.108 0.109 0.110 0.113 0.113

n = 200

MSEML(l̂)
0.076 0.077 0.078 0.079 0.079 0.079

MSESM(l̂) 0.077 0.078 0.078 0.078 0.078 0.080

n = 500

MSEML(l̂)
0.048 0.050 0.049 0.050 0.049 0.051

MSESM(l̂) 0.049 0.050 0.049 0.050 0.049 0.052

Minimal values are underlined

Table 6

BIASML(l̂) and BIASSM(l̂) as functions of the true values n and n

n -0.499 -0.40 -0.30 -0.20 -0.10 0

n = 20

BIASML(l̂)
0.063 0.056 0.049 0.048 0.039 0.037

BIASSM(l̂) -0.015 0.004 0.018 0.034 0.046 0.065

n = 50

BIASML(l̂)
0.026 0.021 0.019 0.019 0.014 0.012

BIASSM(l̂) -0.005 -0.001 0.006 0.014 0.020 0.029

n = 100

BIASML(l̂)
0.013 0.014 0.012 0.010 0.010 0.006

BIASSM(l̂) -0.007 0.001 0.004 0.008 0.013 0.016

n = 200

BIASML(l̂)
0.008 0.007 0.004 0.006 0.004 0.004

BIASSM(l̂) 0.004 -0.001 0.000 0.004 0.006 0.010

n = 500

BIASML(l̂)
0.004 0.004 0.003 0.002 0.002 0.001

BIASSM(l̂) -0.003 -0.001 0.000 0.001 0.003 0.004

Minimal values are underlined
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of inserted parameter estimates) in this case occurred

much larger than the cross-validated p values. Thus,

the cross-validation modification turned out to be

quite valuable.

As it is seen from Table 7 the form parameter n is

estimatedwith a large uncertainty in all three zones. The

coefficient of variation Cv (ratio of sample std to abso-

lute sample mean) varies from 0.29 up to 0.78 which

testifies to a large uncertainty. The scale parameter r is

estimatedmore confidently. ItsCv ranges from 0.088 up

to 0.102. The location parameter l is estimated themost

certainly: 0.007 B Cv B 0.011. The quantiles Qq (s) of
maximum event in future s years (see for details below)
possess sufficient stability also. The sample quantile

Q0.5 (10) (median of maximum magnitude in future

10 years) has variation interval 0.014 B Cv B 0.017

and Q0.90 (10) has correspondingly 0.021 B

Cv B 0.028. For comparison, sample coefficient for

statistic corresponding to maximum possible event,

namely

M̂max ¼ l̂� r̂

n̂
ð14Þ

is extremely uncertain. Its Cv takes values much more

than one. Thus, its use in practical purposes is highly

questionable.

The statistical character of the SM estimates can

be illustrated by 2D 68%-confidence domains for

pairs of parameters (n, r) and (r, l). The confidence

level 68% corresponds to ±std intervals for Gaussian

distribution. In our case, the quantile distribution is

asymmetric, so that the 68% intervals are more ade-

quate. These domains were derived as follows. First,

we have found the non-parametric estimate of 2D-

density of pair of estimates in question in form of

f x; yð Þ ¼ 1

n

Xn
k¼1

Kr
x� xk

sx
;
y� y

sy


 �
; ð15Þ

where n is the size of artificial sample, generated by

SM estimates of parameters in question (we took

n = 10,000); Kr is 2D symmetric kernel depending

on a scale parameter r; (xk, yk), k ¼ 1; . . .; n is the

sample; sx, sy are sample standard deviations of X, Y.

We have used the Gaussian kernel

Krðx; yÞ ¼
1

2pr2
exp � x2

2r2
� y2

2r2


 �
: ð16Þ

The scale parameter r should be chosen as a

compromise between too smoothed and too ‘‘sharp’’

estimates of the density. This choice depends on n

and on structure of 2D sample points. We have taken

r = 0.5 which seems to meet both conditions. Now,

let D (h) denote domain on (x, y)-plane, where f (x,

y)[ h. We select h so that probability P{D} of

domain D (h) would be equal to q, where q

(0\ q\ 1) is a given number:
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Figure 2
The averaged mean-square error MSE values for different sample

sizes n; the maximum likelihood (solid line) and the moment

method (dashed line)
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Averaged abs (BIAS) values for different sample sizes n; the

maximum likelihood (solid line) and the moment method (dashed

line)
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Table 7

The GEV parameter estimates for three zones

n r l Q0.50 (10) Q0.90 (10) p-v (ADD)

Subduction

DT = 221 days

n0 = 66

-0.146 ± 0.068 0.509 ± 0.049 7.30 ± 0.08 8.58 ± 0.17 9.12 ± 0.30 0.34

Continents

DT = 243 days

n0 = 60

-0.212 ± 0.062 0.476 ± 0.048 6.49 ± 0.07 7.57 ± 0.13 7.96 ± 0.21 0.37

Ridges

DT = 243 days

n0 = 60

-0.102 ± 0.096 0.310 ± 0.037 6.41 ± 0.05 7.22 ± 0.12 7.60 ± 0.24 0.32
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Figure 4
Earthquake epicenters of the virtual subduction zone (black dots), virtual intracontinental zone of seismicity (grey dots), and virtual mid-ocean

ridge zone (dark grey dots)
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PfDg ¼
ZZ

DðhÞ
f ðx; yÞdxdy ¼ q: ð17Þ

The 2D domain D (hq) is the q %-confidence

domain for pair (X, Y) that is optimal (it consists of

points of higher probability than other q %-domains).

We have chosen q = 68% since in 1D case this

confidence level corresponds to ±std domain. The

68%-confidence domains for pairs (n, r) and (r, l)
are shown in Figs. 8 and 9.

We see the pair (n, r) distinctly separates the

Ridge Zone from two others, whereas the pair (r, l)
separates definitely all three types of seismic zones.

One can say that parameters r, l have a resolving

power for zone separation whereas parameter n has

not.

The obtained estimates can be commented as

follows. We cannot differentiate the cases of sub-

duction zone seismicity, intracontinental seismicity,

and mid-ocean ridge zone seismicity through the n
parameter values, but these zones can be well dif-

ferentiated by l and r parameter values (Fig. 9). It

means that the magnitude distribution function in

these zones is definitely different. Thus, basing on the

available data (40 years catalog) we are not able to

decide whether the n-parameter is universal or not,
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Figure 5
The complementary sample distribution function 1-F (x) vs.

seismic moment mw magnitudes for the virtual subduction zone
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Figure 6
Distribution tail for the virtual intracontinental seismicity, the axis

as in Fig. 5
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Figure 7
Distribution tail for the virtual mid-ocean ridge zone, the axis as in

Fig. 5
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but longer catalogs perhaps will permit to decide this

question.

For the full characterization of the seismic regime

we have to add to the magnitude distribution dis-

cussed above one more parameter—the intensity of

earthquake flow exceeding some threshold magni-

tude. This parameter appears to be rather robust. We

have cleaned the catalog from aftershocks and

swarms to make earthquake flow close to the Poisson

point process. If the seismic region catalog covers

time span T, then the intensity (the mean number of

main events per time unit) can be estimated as

k̂ ¼ n=T , where n is number of main events over

some selected threshold h. Let us denote the true

intensity as k0. We have Eðk̂Þ ¼ k0. The variance of a
Poisson random value n equals to its mean value:

Varðk̂Þ ¼ VarðnÞ=T2 ¼ E nð Þ=T2 ¼ k0T=T
2 ¼ k0=T;

stdðk̂Þ ¼
ffiffiffiffiffi
k0

p
=T1=2:

ð18Þ

For practical use for large n we can replace k0 for
n/T:

Eðk̂Þ � n=T ; stdðk̂Þ �
ffiffiffi
n

p
=T: ð19Þ

The ratio std k̂
� 	

=E k̂
� 	

� 1=n1=2 characterizes

the variability of a random value. In our estimation of

the intensity this ratio was usually less than 0.05–0.1

which can be interpreted as a rather high level of

stability and robustness of estimate of intensity. In

our bootstrap experiments we have put sample size to

be a Poissonian random number with parameter n

(real sample size) and thus took into account the

intensity variation.

6. The Quantiles Qq (s) as a Robust Estimate

of the Seismic Hazard

The exposed above method can be used in the

seismic hazard assessment. Usually for this aim, the

maximum regional magnitude mmax [see, e.g., (Kijko

2012)] is used. It is well known, however, that mmax

estimate is very unstable [see (Pisarenko and Rodkin

2010)]. In the GEV distribution, the maximum pos-

sible magnitude is given by expression Mmax = l-r/
n (14) which explains the instability by small (or even

very small) denominator n in most cases connected

with seismic hazard assessment. In practical exam-

ples, one can obtain very improbable values Mmax

like 20–100. Taking this fact into account we have

recommended (Pisarenko and Rodkin 2007, 2010) to

exploit instead of mmax the quantiles QqðsÞ level q of

maximum event in future time interval s. If one uses

time blocks DT for measuring maxima then the the-

oretical QqðsÞ has form:

QqðsÞ ¼ lþ r
n

s
DT logð1=qÞ


 �n

�1

" #
ð20Þ

In our estimation we found an optimal number n0
equal to T/DT, where T was the catalog time span.

Figures 10, 11 and 12 show the quantiles QqðsÞ for

our three zones with q = 0.50 (median) and q = 0.90

along with 68% confidence intervals. We see that for

large future time intervals s = 1000, 5000 years the

confidence intervals become very large. For the

subduction zone they reach 1.2–1.5 magnitude unit (it

should be noted also that the results for the ridge zone

can be relatively less accurate because of lack of

seismic stations near these zones). This fact testifies

that it is hardly possible to speak definitely about

maximum magnitudes occurring in such large future

times. Quite satisfactory results can be obtained only

for essentially less time intervals, e.g., if

s = 10 years (short-term prediction) and

s = 50 years (period of exploitation of usual
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6.4

6.6

6.8

7

7.2

7.4

68% CONT

68% SUBD

68% RIDGES

Figure 9
68%-confidence domains for pairs of parameters (r, l)
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constructions). For s = 10, the 68% confidence

intervals do not exceed 0.25 magnitude unit, and for

case s = 50 years 68% confidence interval does not

exceed 0.5 magnitude unit which is close to the

standard error in the majority of hazard assessment

schemes.

7. Summary

The most general theoretic approach to charac-

terization of the tail distribution in range of rare

extreme events is based on the Extreme Value theory

(EVT). This theory has two main limit distributions:

the GEV and the GPD. To use these distributions, one

has to estimate statistically their parameters. But in

many practical situations, one possesses limited

experimental data for this aim, which makes the use

of standard statistical tools like the method of maxi-

mum likelihood (ML) rather questionable and not

reliable. We tried to study this rather typical situation

of small sample size. The GPD was studied in our

work (Pisarenko et al. 2017); the GEV has been

considered in this paper. In the study by Pisarenko

et al. (2017) we found for the GPD approach a good
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a Median and b 90%-quantiles of maximum mw-value in future

T years in the virtual subduction zone with 68% confidence levels
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confidence levels
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competitor to the ML for small samples—the method

of quantiles. Now we have established for the same

situation that well-known method of statistical

moments (SM) is preferable for the GEV. We tried

the method of quantiles too, but for the GEV it turned

out to be less efficient than the ML and SM methods.

It was shown that for small samples (n\ 100) the

SM mostly overpasses other methods.

Using the discussed SM approach we have

examined the Kagan (1999) conclusion on the uni-

versality of the seismic moment–frequency relation

and have found that we are able to discriminate three

virtual seismic zones: the virtual subduction zone, the

virtual intracontinental zone and virtual mid-oceanic

ridge zone through l and r parameter values. It

cannot be done, however, using the parameter n only.

The change in l and r values of these zones corre-

lates well with the change in earthquake magnitudes

typical of such zones.

We have suggested the quantiles QqðsÞ of maxi-

mum event in future time interval s, as a

stable statistical characteristic of the seismic regime

and seismic danger. Its stability is explained by the

fact that it is an integral characteristic of the distri-

bution law in question as opposed to the

unstable maximum possible magnitude Mmax.
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