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Abstract—Inversion of gravity data is one of the important

steps in the interpretation of practical data. One of the most

interesting geological frameworks for gravity data inversion is the

detection of sharp boundaries between orebody and host rocks. The

focusing inversion is able to reconstruct a sharp image of the

geological target. This technique can be efficiently applied for the

quantitative interpretation of gravity data. In this study, a new

reweighted regularized method for the 3D focusing inversion

technique based on Lanczos bidiagonalization method is devel-

oped. The inversion results of synthetic data show that the new

method is faster than common reweighted regularized conjugate

gradient method to produce an acceptable solution for focusing

inverse problem. The new developed inversion scheme is also

applied for inversion of the gravity data collected over the San

Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion

results indicate a remarkable correlation with the true structure of

the orebody that is achieved from drilling data.

Key words: Gravity data, focusing inversion, Lanczos bidi-

agonalization, conjugate gradient, regularization.

1. Introduction

The inversion of gravity data is one of the most

important topics in the quantitative interpretation of

practical data, since construction of density contrast

models could increase the amount of information that

can be achieved from the gravity data (Li and

Oldenburg 1998). Inversion of gravity data suffers

from many problems. The major difficulty is the

inherent nonuniqueness of gravity inverse problem.

According to Gauss’s theorem, there are infinite

equivalent source distributions that produce the same

measured gravity field (Blakely 1996).

Nonuniqueness of inverse problem solution can be

overcome by applying a priori information. Several

methods have been developed for incorporating priori

information into the inversion process (Last and

Kubik 1983; Barbosa and Silva 1994; Li and

Oldenburg 1996, 1998, 2003; Pilkington 1997, 2008;

Portniaguine and Zhdanov 1999, 2002; Farquharson

2008; Lelièvre et al. 2009).

In mineral exploration, one of the most interesting

geological frameworks for interpretation of potential

field data is detection of sharp boundaries between

orebody and host rocks. Last and Kubik (1983)

developed the compact inversion method by mini-

mizing the total volume of the causative body.

Guillen and Menichetti (1984) chose to minimize the

moment of inertia of the body with respect to the

center of the body or along single axis passing

through it. Barbosa and Silva (1994) generalize the

moment of inertia functional for compact gravity

inversion to allow compactness along several axes.

René (1986) does not solve linear systems, but

instead implement a systematic search algorithm by

iteratively applying open, reject, and fill criteria

which is able to recover compact bodies with sharp

contacts by successively incorporating new prisms

around user-specified prisms called seeds. Portni-

aguine and Zhdanov (1999) developed the focusing

inversion method based on compact inversion

method. Camacho et al. (2000) proposed a method to

estimate a 3D density contrast distribution based on a

systematic search to iteratively ‘‘grow’’ the solution

and the mathematical exploration of the model space

for defined density contrasts. Bertete-Aguirre et al.

(2002) used the total variation regularization to

obtain sharp image of gravity source, whose stabi-

lizing functional is the L1-type norm of the

1 School of Mining, Petroleum and Geophysics Engineering,

Shahrood University of Technology, Shahrood, Iran. E-mail:

mohamad1rezaie@gmail.com
2 School of Mining, College of Engineering, University of

Tehran, Tehran, Iran.

Pure Appl. Geophys. 174 (2017), 359–374

� 2016 Springer International Publishing

DOI 10.1007/s00024-016-1395-8 Pure and Applied Geophysics

http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-016-1395-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-016-1395-8&amp;domain=pdf


parameters. Silva and Barbosa (2006) developed 2D

interactive methods for inverting gravity data with

interfering anomalies produced by multiple, complex,

and closely separated 2D geologic sources. Silva Dias

et al. (2009) extended this interactive method for 3D

gravity inversion through an adaptive learning pro-

cedure. Uieda and Barbosa (2012) developed a robust

3D gravity gradient inversion by planting anomalous

densities which is able to recover compact bodies

with sharp interfaces without solving linear system of

equations.

However, L1-type norm inversion or the focus-

ing inversion algorithm is the natural choice among

algorithms producing compact solutions (Marchetti

et al. 2014). In L1-type norm, L1 measure of the

model or the spatial derivatives of the model are

minimized with L2 measure of misfit to recover

sharp interfaces (Pilkington 2008; Farquharson

2008). Farquharson and Oldenburg (1998) used this

method for 1D inversion of electromagnetic data.

Loke et al. (2003) minimized L1 norm of horizontal

and vertical derivatives of the model in 2-D

inversion of resistivity data. Farquharson (2008)

used L1 measure of horizontal, vertical and diago-

nal derivatives in the model objective function to

recover dipping structures and models which have

angled interfaces in the inversion of 2-D MT data

and 3-D gravity data. The focusing inversion

method is based on Tikhonov regularization theory

(Tikhonov et al. 1977) which consists of a misfit

functional and a stabilizing functional. The misfit

functional measures the differences between mea-

sured data and predicted data from recovered

model. The stabilizing functional can incorporate

information about the properties of the type of

models used in the inversion (Li and Oldenburg

1996; Portniaguine and Zhdanov 2002; Farquhar-

son 2008). In this paper, the minimum support

(MS) stabilizer (Portniaguine and Zhdanov 1999;

Zhdanov 2002), similar to the one initially devel-

oped by Last and Kubik (1983), for compact 2D

inversion of gravity data is used to reconstruct 3D

density models with non-smooth features. The main

difference between the focusing inversion approach

developed by Portniaguine and Zhdanov (1999) and

the compact inversion approach introduced by Last

and Kubik (1983) is in constructing an iterative

inversion process in the space of the weighted

model parameters.

Another difficulty in gravity inversion is related to

large processing time due to large data sets over large

exploration regions and the necessary increase in

model parameters (Foks et al. 2014). For example,

Carlos et al. (2014) applied the method developed by

Uieda and Barbosa (2012) to estimate shape of iron-

ore mineralization. In their smallest 3D inversion,

they had 23,850 observation data and

2,655,900 model parameters. Many efforts have been

made to decrease the large processing time. Pilking-

ton (1997) used the 2D fast Fourier transform and

convolution theorem while Caratori Tontini et al.

(2009) used the 3D fast Fourier transform for fast

forward modeling. The number of model parameters

has been reduced by mesh refinement (Ascher and

Haber 2001). Portniaguine and Zhdanov (2002) used

a compression technique based on cubic interpolation

and regularized conjugate gradient method to speed

up the computations. The wavelet transform has been

utilized to compress kernel matrix represent the dense

matrix in sparse format (Li and Oldenburg 2003;

Davis and Li 2011; Martin et al. 2013). Čuma et al.

(2012) introduced a massively parallel regularized 3D

inversion of potential field data. They used the

reweighted regularized conjugate gradient method for

minimizing the objective functional and incorporate a

wide variety of regularization options. Octree mesh

discretization has been used to reduce the number of

model parameters (Davis and Li 2013). Foks et al.

(2014) have used an adaptive down-sampling method

to reduce the number of potential field data for for-

ward modeling and inversion. Faster iterative solvers

such as conjugate gradient (CG) (Hestenes and Stiefel

1952) and Lanczos bidiagonalization (LB) (Paige and

Saunders 1982) have been used for unconstrained

smooth inversion of potential field data (Abedi et al.

2013; Martin et al. 2013). However, LB algorithm

converges to the approximate solution with fewer

iterations rather than CG, thus LB can be faster than

CG (Abedi et al. 2013).

In this paper, we choose to use the Lanczos

bidiagonalization (LB) method (Paige and Saunders

1982) in a reweighed regularized algorithm to speed

up 3D focusing inversion of gravity data. First, the

focusing inversion procedure is described, and then

360 M. Rezaie et al. Pure Appl. Geophys.



the reweighted regularized Lanczos bidiagonalization

method is discussed. Finally, the capabilities of the

reweighted regularized Lanczos bidiagonalization

method are illustrated by its application to the

inversion of a synthetic data set and to the 3D

inversion of gravity data from the San Nicolas deposit

at Zacatecas State, Mexico.

2. Methodology

2.1. Forward Modeling of Gravity Anomalies

To solve the forward problem, we divide the

underground space into small blocks (cells) with

constant density contrast. The density contrasts

within each cell is a known parameter and the gravity

response of each cell is calculated using the formula

given by Boulanger and Chouteau (2001). If the

observed gravity anomalies are caused by M subsur-

face cells, the gravity anomaly at the field point i is

given by:

di ¼
XM

j¼1

Gijmj i ¼ 1; . . .;N ð1Þ

where di is the gravity observation at the point i, mj is

the density contrast of jth prism and Gij relates ith

datum to the jth subsurface cell. The forward

modeling of gravity data in Eq. (1) can be written

as following matrix equation:

Gm¼d; G 2 RN�M ; d 2 RN ;m 2 RM ð2Þ

Here, G is forward operator matrix that maps the

physical parameters space into the data space. m

denotes the vector of known model parameters and d

is data vector that is given by measurement data.

There are some errors in measurement data because

of equipment uncertainties and other difficulties. So,

Gm ¼ dobs ð3Þ

where, dobs ¼ d þ e is the vector of observed data (the

data vector) and e 2 RN is the vector of data error.

2.2. Focusing Inversion

The main purpose of the gravity inverse problem

is to find a geologically plausible density model (m)

based on G and some measured data (dobs) at the

noise level. The gravity inverse problem is usually ill-

posed and the solution can be nonunique and/or

unstable. We can solve this problem by the mini-

mization of the Tikhonov parametric functional

(Tikhonov et al. 1977):

PaðmÞ ¼ uðmÞ þ aSðmÞ; ð4Þ

where the misfit functional is defined as:

uðmÞ ¼ WdðGm� dobsÞk k220 ð5Þ

a is the regularization parameter, SðmÞ is the

stabilizing functional (stabilizer), Wd is the data

weighting matrix given by Wd ¼ diag ð1=r0i;
. . .; 1=r0NÞ, with r0i stands for the standard deviation

of the noise in the ith datum. There are different

stabilizers. An example is the traditional smooth

inversion algorithm that is based on the minimum

norm of smoothing stabilizing functional. These

algorithms cannot describe the sharp geological

boundaries between different geological formations

because the recovered models usually have a

smeared-out, fuzzy character (Farquharson 2008).

This problem arises, for example, in inversion for the

local target with sharp boundaries between the ore

zone and the host rocks in mining exploration

(Zhdanov et al. 2004; Farquharson 2008; Lelièvre

et al. 2009). In these situations, we can use stabilizing

functional producing compact solutions, such as the

so-called minimum support or minimum gradient

support functionals (Last and Kubik 1983; Portni-

aguine and Zhdanov 1999, 2002; Zhdanov 2002).

Here, we select a stabilizer equal to the minimum

support functional as follows:

SðmÞ ¼
XM

k¼1

m2
k

m2
k þ b2

; ð6Þ

where b[ 0 is a focusing parameter determining the

sharpness of the produced image (Zhdanov 2002) and

typically is a small value. Substituting the stabilizing

functional in Eq. (4) by Eq. (6), we obtain:

PaðmÞ ¼ uðmÞ þ a
XM

k¼1

m2
k

m2
k þ b2

; ð7Þ

We applied Wm as the depth weighting matrix (Li

and Oldenburg 1998) to compensate lack of the data

Vol. 174, (2017) Fast 3D Focusing Inversion of Gravity Data Using Reweighted... 361



sensitivity to the deeper model parameters. If the

diagonal elements of the matrix Wm are specified by

fw1;w2;. . .;wMg, then, the depth weights (wk) can be

incorporated into the minimization problem with the

minimum support stabilizer (Portniaguine and Zhda-

nov 2002):

PaðmÞ ¼ ~Gm� ~dobs
�� ��2

2
þa

XM

k¼1

w2
km

2
k

m2
k þ b2

; ð8Þ

where ~G¼WdG and ~dobs¼Wddobs. Therefore, an

iterative weighting matrix is introduced as follows

(Portniaguine and Zhdanov 2002):

WðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag ðm2 þ b2IÞW�2

m

q
; ð9Þ

where, diagðm2 þ b2IÞ, is the diagonal matrix formed

by the elements m2
k þ b2 and I 2 RM is the identity

matrix. Wm ¼ diag ð1=ðz1Þc; . . .; 1=ðzMÞcÞ is the depth
weighting matrix. Here, zj is the depth of jth model

parameter and c = 0.8 is suitable for focusing

inversion of gravity data (Vatankhah et al. 2015).

Now, Eq. (8) can be reformulated using matrix

notation:

PaðmÞ ¼ ~GWðmÞW�1ðmÞm� ~dobs
�� ��2

2
þa W�1ðmÞm

�� ��2
2
;

ð10Þ

Equation (10) could be transformed into a space

of weighted model parameters mw by replacing the

variables m ¼ WðmÞmw and ~Gw ¼ ~GWðmÞ (Vatan-

khah et al. 2015):

PaðmwÞ ¼ ~Gwmw � ~dobs
�� ��2

2
þa mwk k22; ð11Þ

Equation (11) is similar to the classical minimum

norm optimization problem that the solution is

achieved according to the regularization theory

(Tikhonov et al. 1977). The only important difference

is the new forward modeling operator, ~Gw ¼ ~GWðmÞ,
which depends on mw, so it changes in the iteration

process (Portniaguine and Zhdanov 2002). We can

impose the upper and lower density bounds,

mmin;mmax½ �, via a penalization algorithm (Portni-

aguine and Zhdanov 1999, 2002) to recover more

feasible model.

2.3. Reweighted Regularized Lanczos

Bidiagonalization Method

Practically, the solution of focusing gravity

inverse problem (i.e., Eq. 4) is obtained with an

iteratively defined weighting matrix (WðmÞ). In each

iteration, Eq. (11) has to be solved, then model

parameters (m) are calculated and bound constraints

are imposed. The minimization problem in Eq. (11)

can be solved using any iterative technique, such as

conjugate gradient method.

Portniaguine and Zhdanov (1999, 2002) have

developed the reweighted regularized conjugate gra-

dient (RRCG) method as a simple approach to

minimize the parametric functional Eq. (11). In this

framework, the variable weighting matrix WðmÞ is

computed in each iteration using Eq. (9) after that the

values of model parameters (m) are obtained from the

previous iteration. Then, Eq. (11) is reweighted using

linear transformation (i.e., Eq. 10). Finally, this

minimization problem is solved using conjugate

gradient method. The iterative process stops when

the misfit in Eq. (5) reaches the required level.

It is assumed that the contaminating noise on the

data is independent and Gaussian with zero mean.

Then uðmÞ becomes the Chi-squared variable vN
2 with

N degrees of freedom. This is a well-known statistical

quantity whose E[vN
2 ] = N provides a target misfit for

the inversion (Li and Oldenburg 1996). Setting

uðmÞ�N should provide a good solution providing

that our assumptions about the errors are valid.

Therefore, the iterative process stops when uðmÞ�N

(Zhdanov 2002). This approach is simple. But it is

slow and the misfit and stabilizing functional can

change, and even increase from iteration to iteration

due to reweighting (Zhdanov 2002; Zhdanov and

Tolstaya 2004). In this paper, we use Lanczos

bidiagonalization (Paige and Saunders 1982) for

solving Eq. (11). Because if Lanczos bidiagonaliza-

tion is applied to the least squares problem Eq. (11),

then at early iterations, the approximate solution will

be achieved (Berisha and Nagy 2013). Therefore, this

method can be a faster iterative solver rather than the

conjugate gradient (CG) method.

The Lanczos bidiagonalization algorithm has

been applied to obtain the approximate solutions of
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large scale linear inverse problems such as Eq. (11)

with very ill-conditioned matrices (Martin et al.

2013). This algorithm carries out l steps of the

Lanczos bidiagonalization process applied to the

matrix ~Gw. This algorithm is summarized in Algo-

rithm 1 (Calvetti et al. 2000):

The parameter l is the number of Lanczos bidiag-

onalization iteration inAlgorithm 1. If l is chosen small

enough so that all computed qj and rj are positive, then
the algorithm can determine the matrices

Ul ¼ u1; u2. . .; ul½ � 2 RN�l, Vl ¼ v1; v2. . .; vl½ � 2
RM�l with orthonormal columns, as well as the lower

bidiagonal matrix Cl 2 Rl9l that is defined as:

Cl ¼

q1
r2 q2

r3 q3
. .
. . .

.

rl ql

2
666664

3
777775

ð12Þ

For underdetermined system of equations,

N\\M, the approximate solution of Eq. (11)

(mw) can be obtained from:

mw ¼ ~GT
wUly ð13Þ

where

y ¼ ðClC
T
l þ aIlÞ�1ðr1e1Þ ð14Þ

where el ¼ 0; 0; . . .; 0; 1½ � 2 Rl. y can be specified

iteratively by solving the least squares problem

(Calvetti et al. 2000):

min
y2Rl

CT
l

a1=2Il

� �
y� a�1=2r1elþ1

����

����
2

2

ð15Þ

Computing mw in Eq. (11) using Cl 2 Rl�l,

instead of ~Gw, can be a useful approach for fast

approximate computation of underdetermined system

of equations (Abedi et al. 2013). We can compute

y by solving Eq. (15) using QR factorization effi-

ciently with the aid of Givens rotations (Eldén 1977).

However, there is no need to form Eq. (15) explicitly

in each Lanczos bidiagonalization iteration, but the

solution can be obtained using an efficient QR

factorization updating scheme at each iteration (Paige

and Saunders 1982). Lanczos bidiagonalization iter-

ation (l) is usually low; therefore, LB becomes a fast

algorithm for solving Eq. (11).

2.4. Choosing Regularization Parameter

To select an optimal regularization parameter a,
we run the first iteration without regularization

(a0 = 0). Then, this result (m1) is used to determine

the initial value of the regularization parameter which

balance the model misfit functional uðmÞ and the

stabilizing functional SðmÞ at the start of inversion

process. The initial value of the regularization

parameter, a1, is determined after the first iteration,

as follow (Zhdanov 2002):

a1 ¼
~Gm1 � ~dobs

�� ��2
2

m1k k22
ð16Þ
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In some situations, the stabilizing functional can

increase from iteration to iteration. Zhdanov (2002)

proposed to damp the regularization parameter pro-

portionally to the increase of the stabilizing

functional, as follow:

ak ¼ a1q
k�1; k ¼ 1;2;3;. . .;0\q\1; ð17Þ

where, ak, is the optimal regularization parameter in k

th iteration and q 2 ð0:5;0:9Þ based on empirical

experiments. Here, we assign q ¼ 0:5. Then the

regularization parameter is reduced according to

Eq. (17) on each iteration and continuously iterates

until the acceptable misfit value is achieved that

should be at the noise level of the data or a maximum

number of iterations is reached. This optimal regu-

larization parameter selection approach is called

adaptive regularization (Zhdanov 2002). Reweighted

regularized Lanczos bidiagonalization method is

summarized in Algorithm 2.

3. Synthetic Tests

We apply our fast algorithm to a synthetic test to

evaluate the reliability of the introduced method. The

true model consists of three different bodies embed-

ded beneath the surface so that density of uniform

background is zero. Density of each block is 1.0
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(g/cm3). These bodies are buried at different depths

(Table 1).

Figure 1a is a perspective view of the true model.

The data gathered over a grid of 1000 9 1000 m with

sample spacing of 25 m. There are 1600 data and 3 %

Gaussian noise of the accurate datum magnitude has

been added (Fig. 1b).

The subsurface is discretized into

40 9 40 9 20 = 32,000 rectangular prisms with the

same size of 25 m in x, y and z directions (Mx, My,

Mz). The inverse problem has been solved using

reweighted regularized Lanczos bidiagonalization

(RRLB) method that is described in the preceding

section. It is suggested that the optimum value of b is

the point of maximum curvature at the plot of the

normalized stabilizing functional as a function of b
(Zhdanov and Tolstaya 2004). Zhdanov and Tolstaya

(2004) proposed this empirical method for focusing

parameter selection which resembles the L-curve

method. Their idea is to consider the plot of the

normalized stabilizing functional for a range of val-

ues of the focusing parameter b and for a given priori

estimate of the solution. If prior knowledge about the

solution is absent then priori estimate of the solution

could be obtained from, e.g., a smooth inversion with

the minimum norm stabilizer. Here, we found b of

order 10-2 is appropriate thus we set b = 0.02. The

maps of depth slices through the recovered model of

RRLB method are shown in Fig. 2.

For comparison, the inverse problem has been

solved by the reweighted regularized conjugate gra-

dient (RRCG) method. Figure 3 shows the maps of

depth slices through the recovered model from pro-

posed inversion method.

The results indicate acceptable reconstruction of

the synthetic multisource bodies at different depth

levels below the surface. Both solutions are blocky

and define depth to the top and bottom of deep bodies

adequately. The recovered bodies in model along the

cross-section (A–B) are adequately matched with real

location of synthetic bodies (Fig. 4).

The running time and the misfit value of each

inversemodel are computed for a 16 GBRAM,Core i7

2.6 GHz processor and 64-bit operation system. The

obtained solution from both algorithms have been

converged to the solution with the same number of

Figure 1
Perspective view of the true model with three blocks (a). Gravity anomaly produced by the true model in a with 3 % Gaussian noise of the

accurate datum magnitude (b)

Table 1

Parameters of true model

Model number x 9 y 9 z

dimensions (m)

Depth to

top (m)

True density

(g/cm3)

(1) 425 9 150 9 150 50 1

(2) 225 9 200 9 200 100 1

(3) 225 9 200 9 200 150 1
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iterations and misfit values are less than the number of

observed data (1600) (Fig. 5). However, in RRLB

algorithm, the solution has been achieved 88.18 s

(35.4 %) faster than RRCG algorithm (Table 2).

The relative efficiencies of the RRLB and the

RRCG method were tested using the synthetic test.

we solved five problems with models of different

sizes: Mx, My, Mz = 20 9 20 9 10, 25 9 25 9 12,

30 9 30 9 15, 35 9 35 9 17, and 40 9 40 9 20.

The data dimensions were changed proportionally to

the Mx and My in each case. The relative efficiencies

are shown in Fig. 6. The dotted black line and solid

blue lines show the performance of the RRCG and

RRLB methods, respectively.

Therefore, according to the results, the proposed

RRLB algorithm can be a more efficient solver rather

than the RRCG algorithm for focusing inversion of

gravity data.

Figure 2
Plan sections through the recovered density models obtained from the 3D focusing inversion of gravity anomaly using the RRLB method at

different depths. The edges of the blocks in the true model are outlines in black
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4. Inversion of Real Data

San Nicolas is a massive sulfide copper-zinc

deposit in Zacatecas State, Mexico. The deposit is a

volcanogenic massive sulfide deposit containing

1.35 % copper and 2.27 % zinc with some gold and

silver that is estimated to be 72 million tons ore. The

deposit is hosted in a series of mafic and felsic vol-

canic rocks which lie over graphitic mudstones

(Fig. 7).

The deposit is almost bounded to the east by a

southwest-dipping fault, which is inferred to be a

feeder structure. Mineralization has been occurred

along the fault at depth in an unconstrained part of the

Figure 3
Plan sections through the recovered density models obtained from the 3D focusing inversion of gravity anomaly using the RRCG method at

different depths. The edges of the blocks in the true model are outlines in black
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deposit referred to as the keel. The volcanic host

rocks of the deposit are covered by a Tertiary breccia

overburden, which varies in thickness from 50 to

150 m (Phillips et al. 2001).

Phillips (2001) interpreted residual gravity data

from observed gravity data (Fig. 8a). Phillips (2001)

inverted this residual data set using unconstrained

smooth algorithm (Li and Oldenburg

1996, 1998, 2003) which does not retrieve the sharp

geological boundaries adequately. Lelièvre (2009)

used an advanced constrained inversion method to

invert the data set which can incorporate more

Figure 4
A cross-sectional slice of the density model obtained from the 3D focusing inversion of gravity data shown in Fig. 1b at an Easting of 700 m

(A–B) using the RRLB method (a) and the RRCG method (b). The borders indicate the true position of each body
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Figure 5
The predicted gravity anomalies from the recovered models using (a) RRLB method and (b) RRCG method. Histograms of data residuals

defined as the difference between the predicted and observed data with corresponding means and standard deviations (Std) for (c) RRLB

method and (d) RRCG method

Table 2

Comparison of inversion results for RRBL and RRCG algorithms

Method Running time (s) Number of iterations Misfit value

RRLB 160.5 3 1175

RRCG 248.68 3 1124
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geological information from the deposit. He shows

that by adding available priori information about the

geologic structure or borehole information as con-

straints, the results are improved. He developed an

inversion algorithm to include the mentioned con-

straints and obtained a more reasonable estimate of

the deposit. However, the focusing inversion

algorithm does not require additional information

about geologic structure or borehole information.

For 3D inversion of the data, the subsurface of

study area has been discretized with 43 9 36 9 20

cells of 50 m in the x, y and z direction respectively.

The sulfide body has the highest density (3.5 g/cm3)

and Tertiary breccia has the lowest density (2.3 g/

cm3) in the region (Phillips et al. 2001). The highest

density contrast is 1.2 (g/cm3). Therefore, we set

-0.2 (g/cm3) as lower density bound and 1 (g/cm3) as

upper density bound. Finally, the distribution of the

density contrast under the study area was found by

3D inversion. The achieved misfit value is 127 which

is less than the number of observed data (190)

(Fig. 8b). Figure 9 shows the result of the 3D

focusing inversion using RRLB algorithm in a hori-

zontal slice of the anomalous density contrast

distribution at a depth of 300 m.

We can see an anomalous body with high density

contrast around the center of the study area that

represents San Nicolas deposit. There are two other

anomalous bodies with lower density contrast in the

northeast and southwest of the region. The drilling

result has demonstrated that north-eastern anomalous

body represents a mafic intrusive rock. Similar mafic

intrusives outcropping at the south-western anoma-

lous body at the surface (Phillips 2001). Two cross-

sections through the recovered density model at an

Easting of -1700 m and at a Northing of -400 m

have been illustrated in Fig. 10. The borders on cross-

sections indicate true geologic boundaries of San

Nicolas sulfide body that is inferred from drilling

data.

We can clearly see the lateral shape and extent of

the main body of the deposit well defined and

southwest-dipping fault is reasonably determined.

Thus, we obtained a good solution in agreement with

true geologic boundaries of San Nicolas sulphide

body and other geological studies in the area.

5. Conclusions

We have improved the reweighted regularized

method for the focusing inversion of gravity data

Figure 6
Execution time of RRLB and RRCG against number of cells in

x direction. The size of the problem is referred to the number of

points in x direction (Nx), assuming that other dimensions change

proportionally for the five considered cases. The solid blue lines

show the performance of the proposed method (RRLB)

Figure 7
West-facing geologic cross-section from San Nicolas deposit at an

Easting of -1700 m (after Phillips 2001)
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using Lanczos bidiagonalization. Inversion of noise

contaminated synthetic data showed that the

reweighted regularized Lanczos bidiagonalization

method is a more efficient algorithm rather than the

common reweighted regularized conjugate gradient

method in focusing inversion of gravity data. The

obtained results indicate the new developed 3D

focusing inversion method based on RRLB algorithm

is able to produce a focused solution that define the

shape and extent of synthetic bodies adequately.

Furthermore, the application of this 3D focusing

inversion approach for a real gravity data set

Figure 8
San Nicolas residual gravity map with the data locations (black dots) (a). Gravity map obtained from the predicted data using the RRLB

method (b). Histogram of data residual defined as the difference between the predicted and observed data with corresponding mean and

standard deviation (Std) (c)

Figure 9
Recovered density model, slice at 300 m depth
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produced a model that is consistent enough with the

available geology and drilling data.

Compression techniques such as wavelet com-

pression can compress the kernel matrix and decrease

the required memory. Therefore, it is suggested that a

compression technique is used with reweighted reg-

ularized Lanczos bidiagonalization to make focusing

inversion problems even more efficient for large scale

problems. Also, parallel regularized 3D inversion

using reweighted regularized Lanczos bidiagonaliza-

tion will be a subject of future works for large scale

problems.
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