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Abstract—Daily vertical coordinate time series of Global Nav-

igation Satellite System (GNSS) stations usually contains tectonic

and non-tectonic deformation signals, residual atmospheric delay

signals, measurement noise, etc. In geophysical studies, it is very

important to separate various geophysical signals from the GNSS

time series to truthfully reflect the effect of mass loadings on crustal

deformation. Based on the independence of mass loadings, we

combine the Ensemble Empirical Mode Decomposition (EEMD)

with the Phase Space Reconstruction-based Independent Component

Analysis (PSR-ICA) method to analyze the vertical time series of

GNSS reference stations. In the simulation experiment, the seasonal

non-tectonic signal is simulated by the sum of the correction of

atmospheric mass loading and soil moisture mass loading. The

simulated seasonal non-tectonic signal can be separated into two

independent signals using the PSR-ICA method, which strongly

correlated with atmospheric mass loading and soil moisture mass

loading, respectively. Likewise, in the analysis of the vertical time

series of GNSS reference stations of Crustal Movement Observation

Network of China (CMONOC), similar results have been obtained

using the combined EEMD and PSR-ICA method. All these results

indicate that the EEMD and PSR-ICA method can effectively sep-

arate the independent atmospheric and soil moisture mass loading

signals and illustrate the significant cause of the seasonal variation of

GNSS vertical time series in the mainland of China.

Key words: Phase space reconstruction-based independent

component analysis, ensemble empirical mode decomposition,

mass loading, hurst parameter, GNSS vertical coordinate time

series.

1. Introduction

GNSS technology has widely been applied in a

variety of geophysical studies, and thousands of

permanent GNSS stations have been established

around the world for this purpose. Analyzing the time

series of GNSS stations in the International Terres-

trial Reference Frame (ITRF) provides useful

information for the study of the global plate motion,

crustal deformation, and earthquakes. All these

studies are based on the correct interpretation of the

coordinate time series as well as on reliable and

accurate station coordinates and velocities. The

GNSS coordinate time series mainly consists of tec-

tonic deformation (e.g., DRAGERT et al. 2001; JIANG

et al. 2014), non-tectonic deformation (e.g., VANDAM

et al. 1994; TIAMPO et al. 2004), and noise (WILLIAMS

et al. 2004). Analyzing the non-tectonic deformation

signals by geometric and physical models is crucial in

studying the impacts of various geophysical phe-

nomena on GNSS reference stations. NIKOLAIDIS

(2002) applied a weighted least-square algorithm to

solve the geometric model according to linear trend,

annual, and semi-annual variations, and other char-

acteristics of GNSS coordinate time series. DONG

et al. (2002) investigated the effects of atmosphere,

non-tidal ocean, snow, soil moisture, and other

environmental factors on GNSS station displace-

ments, and explained the main causes of the annual

and semi-annual variations of GNSS time series.

However, these geometrical model and physical

model cannot directly extract mass loading signals

(annual and semi-annual periods) from the GNSS

time series. Therefore, a method separating the sea-

sonal non-tectonic deformation signals from the

GNSS vertical time series is in really needed.

The Independent Component Analysis (ICA)

method is a blind source separation method, which can

separate statistically independent source signals from

multi-dimensional mixed observation signals

(HYVÄRINEN and OJA 2000). If the geophysical phe-

nomena are independent; then, the independent
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component signals (ICs) decomposed by the ICA

method will reflect their physical phenomena. The

Phase Space Reconstruction-based Independent

Component Analysis (PSR-ICA) method, a single-

channel ICA method, can effectively separate the

independent source signals, even though they are the

same frequency (DAI et al. 2014). Therefore, in this

study, we use the PSR-ICA method to analyze the

seasonal variation of GNSS vertical coordinate time

series. However, the vertical time series of a GNSS

station is a non-stationary signal, and the PSR-ICA

algorithm can only process stationary signal; therefore,

we use an adaptive time–frequency decomposition

method called Ensemble Empirical Mode Decompo-

sition (EEMD) (WU and HUANG 2009), to process non-

stationary GNSS vertical coordinate time series and

extract the stationary seasonal signal.

2. EEMD and PSR-ICA Methods

The EEMD and PSR-ICA methods are jointly

used to analyze the GNSS vertical time series based

on their respective advantages. First, GNSS vertical

time series is decomposed using the EEMD method,

and then, the noise signal and seasonal signal are

classified and reconstructed based on the Hurst

parameter (RODRIGUEZ et al. 2009). After that, the

PSR-ICA method is used to decompose the recon-

structed one-dimensional seasonal signal into several

ICs that are then compared with non-tectonic crustal

deformations caused by mass loadings. The data

processing flow chart is shown in Fig. 1.

2.1. EEMD Decomposition and Extraction

of the Seasonal Non-Tectonic Signal

The EEMD, as a modified EMD algorithm, which

can be used to decompose a nonlinear and non-

stationary time series xðtÞ into several Intrinsic Mode

Functions (IMFs) and the residual signal (WU and

HUANG 2009; HUANG et al. 1998). Then, the IMFs

with different noise contents are classified and

reconstructed based on the Hurst parameter. The

general equation of the EEMD algorithm is given

below:

GNSS Vertical Time Series

EEMD 
Classification and reconstruction 

based on Hurst Parameter 

PSR-ICA Artificial Signal Recognition and Inverse 

Processing of PSR Reconstruction 

 Noise Signal
Long-term Trend Signal

Time-frequency Analysis 

Independence Analysis 

Mass Loading 1 Mass Loading 2 Mass Loading K

Seasonal Signal

Separation signal 1 Separation signal 2 Separation signal K

Figure 1
Flow chart of single-channel ICA data processing for the GNSS vertical time series analysis
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x tð Þ ¼
XD

j¼1

cj tð Þ þ rDðtÞ; t ¼ 1; 2; . . .; T ð1Þ

where cj tð Þ is the IMF component and rDðtÞ is the

residual signal.

The IMFs of the EEMD algorithm can be divided

into stationary and non-stationary parts. The non-

stationary IMFs can be reconstructed as a long-term

trend signal (QIN et al. 2012), and the stationary IMFs

need to be analyzed by the Hurst parameter. Hurst

parameter has been used to analyze noises in many

studies (MONTILLET et al. 2013; SCHROEDER AND

WIESENFELD 1991). The relation between Hurst

parameter (H) and noise signal is that the white

noise is corresponding to H ¼ 0:5, the flick noise is

corresponding to H ¼ 1 and the random walk is

corresponding to H ¼ 1:5.

The noise in the GNSS time series can be

analyzed usually after removing the linear trend

and seasonal variation. However, the EEMD

method can decompose the noise, without remov-

ing the linear trend and seasonal variation, into a

series of IMFs ordered by frequency, and these

IMFs can be classified using the Hurst parameter.

For example, MONTILLET et al. (2013) used the

EMD method and the Hurst parameter to extract

the white noise (H � 0:6) of the GNSS vertical time

series. Furthermore, several studies suggest that the

best noise model of most GNSS vertical time series

is the white plus flicker noise model (WN ? FN)

(LI et al. 2012; ZHANG et al. 1997; MAO et al. 1999;

AMIRI-SIMKOOEI et al. 2007). Therefore, we define

the IMFs whose H is within 0:6; 1:1½ Þ as colored

noise, which can be best characterized by the

WN ? FN model.

The procedure of the time–frequency analysis can

be described as follows.

1. Decompose time series x tð Þ into IMFs and residual

signal.

2. Extract the non-stationary IMFs and the residual

signal, and reconstruct them to long-term trend

signal.

3. Estimate the Hurst parameter of each stationary

IMFs. Sum over the IMFs whose H are within

½0; 1:1� as noise signal, and sum over the remain-

ing IMFs as one-dimensional seasonal signal x0 tð Þ.

However, the EEMD method cannot decompose

components in the same frequency; therefore, the

one-dimensional seasonal signal should be analyzed

by the single-channel ICA method.

2.2. Seasonal Non-Tectonic Signal Analysis by PSR-

ICA Algorithm

PSR-ICA algorithm is a one-dimensional station-

ary signal processing method (DAI et al. 2014,

PACKARD et al. 1980; TAKENS 1981), which does not

rely on the time–frequency feature of the compo-

nents. Therefore, it can separate ICs from the one-

dimensional seasonal signals to reflect the effect of

the seasonal mass loadings. The procedure of the

PSR-ICA algorithm is shown in Fig. 2.

In this flow chart, x0 is the one-dimensional

seasonal signal; X is the reconstruction phase space;

Y ¼ WX is to obtain the ICs from the reconstruction

phase space; XK is the Kth independent subspace; xK

is the reconstructed one-dimensional seasonal signal.

2.2.1 Channel Extension

Phase Space Reconstruction (PSR) is a method of

obtaining nonlinear dynamics features through delay-

ing and embedding a one-dimensional signal into a

high-dimensional phase space to reflect the charac-

teristics of the signals (KENNEL et al. 1992). The

multi-dimensional phase space contains all signals of

physical sources, affecting the seasonal non-tectonic

deformation of GNSS stations.

))(' (
j j

j Q
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Channel Extension PSR Signal separation FastICA Reconstructio

X x
YXx nWX ∈

= →
= ⎯⎯⎯⎯⎯→⎯⎯→⎯⎯ → ⎯⎯⎯⎯⎯⎯⎯⎯⎯→

∑

Figure 2
Flow chart of PSR-ICA processing for the seasonal signal analysis
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Xi ¼ x0i; x0i 1þ sð Þ; � � � ; x0i 1þ m � 1ð Þsð Þ
� �

;

i ¼ 1; 2; � � � ;M ð2Þ

where M ¼ T � ðm � 1Þs, m is the embedding

dimension, s is the delay time. m, and s are the main

parameters of the PSR algorithm, whose optimal

solution can be obtained using the False Nearest

Neighbors method and the Mutual Information

method, respectively (DAI et al. 2014; KENNEL et al.

1992; FRASER and SWINNEY 1986).

2.2.2 Independent Component Signal Separation

Assume a set of independent source signals S t0ð Þ :
S t0ð Þ ¼ ½s1ðt0Þ; s2ðt0Þ; � � � ; snðt0Þ�T and their corre-

sponding observation signals X t0ð Þ : X t0ð Þ ¼ ½x1ðt0Þ;
x2ðt0Þ; � � � ; xmðt0Þ�T, the relationship between X t0ð Þ
and S t0ð Þ can be described as follows (HYVÄRINEN and

OJA 2000):

X t0ð Þ ¼ AS t0ð Þ; t0 ¼ 1; 2; . . .;M ð3Þ

where A is m � n -order unknown linear mixed matrix

(n�m).

ICA algorithm is to separate the ICs by solving

the mixed matrix W .

Y t0ð Þ ¼ A�1X t0ð Þ ¼ WX t0ð Þ ð4Þ

ICs Y t0ð Þ can be used to estimate S t0ð Þ effectively.
FastICA algorithm, a widely used ICA algorithm, is

used to separate ICs from WX t0ð Þ in this study.

FastICA algorithm uses the Negentropy, a measure

standard of non-Gaussian distribution, to measure the

non-Gaussian maximum of WX t0ð Þ, and it follows the

fixed-point iteration theory, which makes the conver-

gence faster and more robust (HYVÄRINEN 1999).

2.2.3 Independent Component Signals

Reconstruction

These ICs Y t0ð Þ can reflect the implicit information of

the observation signals. However, sometimes, the

number of ICs are more than the seasonal mass

loadings. Therefore, the ICs should be artificially

classified into several clusters. Then, the ICs of the

same cluster, corresponding to the same mass loading,

are multiplied by their corresponding column of the

mixed matrix to construct independent subspaces XK

for reconstructing the source signal xK (CARDOSO

1998). Therefore, the originalmulti-dimensional phase

space is equal to the sum of independent subspaces.

X ¼ X1 þ X2 þ � � � þ XK ð5Þ

where XK is the Kth independent subspace, and it can

be described as follows:

XK ¼
X

j2Q

ajyj ð6Þ

where Q is the number of ICs in a cluster, and aj is

the corresponding column of the mixed matrix to the

yj, where yj is the j th IC. The independent subspaces

XK can be reconstructed to a one-dimensional source

signal xK based on the inversion of the PSR method,

xK
i ¼

1
A

PA

h¼1

XK
j;i�ðj�1Þs 1� i� 1þ ðm � 1Þs

1
m

Pm

h¼1

XK
j;i�ðj�1Þs 1þ ðm � 1Þs� i� T � ðm � 1Þs

1
B

Pm

h¼mþ1�B

XK
j;i�ðj�1Þs T � ðm � 1Þs� i� T

8
>>>>>>>><

>>>>>>>>:

ð7Þ

where A ¼ ceilði=sÞ, B ¼ ceilððN � i þ 1Þ=sÞ, and

ceilð�Þ denotes the rounding-up function.

3. GNSS Vertical Time Series Analysis

3.1. Analysis of Observation Data and Mass

Loadings

The seasonal non-tectonic deformation of GNSS

reference station mainly includes the mass loading of

atmosphere, soil moisture, non-tidal ocean, snow, etc.

However, in most parts of China, the non-tidal ocean

mass loading and snow mass loading had a little or no

impact on crustal deformation, and they can be

neglected. Thus, the effect of atmosphere and soil

moisture mass loading are the major factors in the

analysis of the seasonal non-tectonic deformation

(WANG et al. 2005).

To explore the single-channel ICA process and its

effect on separating non-tectonic deformation, we use

the daily vertical time series of GNSS reference

stations collected by the CMONOC. These daily

GNSS solutions are generated using the GAMIT/

GLOBK software with the double-difference

726 W. Peng et al. Pure Appl. Geophys.



ionosphere-free code and phase observations. Mean-

while, the station receiver antenna phase center,

satellite antenna phase center, ocean tides, solid earth

pole tides, and solid earth tides are corrected with the

absolute phase center model, IGS ANTEX model,

FES2004 ocean tide loading model, and IERS2003

model, respectively. The tropospheric delay and

satellite coordinates are estimated with the station

coordinates during the daily data processing, and

then, each daily solutions are transformed into IGS08

using seven-parameter transformations. The data,

consisting of 13 GNSS reference stations in the area

from 90�E 15�N to 120�E 42�N (see Fig. 3), cover a

time span from January 2001 to December 2013.

The vertical time series of those 13 GNSS stations

with strong noise is manifested as non-stationary

annual variation. To explore the data sets, we

randomly choose three GNSS reference stations

(BJFS, JIXN, and LUZH) as proxies to demonstrate

the process of our methods and its results in detail.

Figure 4 shows the vertical displacement time series

of BJFS, JIXN, and LUZH sites for a time interval of

13 years.

To illustrate the non-tectonic deformation in the

selected area, we calculate the correction values of

atmospheric and soil moisture mass loadings of the 13

sites, using the 6-hour sampling atmosphere surface

pressure data and the daily sampling National Center

for Environmental Prediction (NCEP) reanalysis II soil

moisture data from 2001 to 2013. The corrections of

mass loadings are calculated using the Quasi-Obser-

vation Combination Analysis software (QOCA)

(available at http://qoca.jpl.nasa.gov). Results are

shown in Fig. 5 for the three selected sites.

After removing the linear trend of GNSS vertical

time series using the linear fitting method, the power

Figure 3
Distribution of the selected CMONOC GNSS stations
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spectrum is used to analyze the changes of the

seasonal variation of GNSS vertical time series

before and after removing the correction values of

atmospheric and soil moisture mass loading, as

shown in Fig. 6. After the correction, the annual

variation of residual time series is significantly

weakened, indicating that the correction can effec-

tively reduce the annual variation in the GNSS

vertical time series. However, the mass loading

corrections cannot completely eliminate the annual

variation in the GNSS reference stations. Therefore,

decomposing the GNSS vertical time series into

several sub-signals (relating to the main mass load-

ings) is an important way to illustrate the annual

variation in the GNSS vertical time series.

3.2. EEMD Decomposition and Reconstruction

The EEMD method is used to decompose the

vertical time series into IMF components and residual

signal. The H values of IMFs are calculated by the

Detrended Fluctuation Analysis method (GRECH and

MAZUR 2013). As the calculation error can be up to

0.1, the IMFs whose H values are within [0, 1.1] are

reconstructed as noise signal. The noise, the artificial

reconstructed seasonal signal, and the long-term trend

of BJFS, JIXN, and LUZH sites are shown in Fig. 7.

The EEMD method is also used to de-noise the

sum of atmospheric mass loading and soil moisture

mass loading. The comparison between the recon-

structed seasonal signal and the sum of the de-noised

atmospheric and soil moisture mass loadings of the

13 GNSS sites are shown in Fig. 8.

The correlation coefficients, RMS (Root Mean

Square) between the seasonal signals, and the sum of

the corrections of de-noised seasonal mass loadings

(atmospheric mass loading and de-noised soil mois-

ture mass loading) are calculated, and their values for

the 13 GNSS stations are shown in Table 1.

The correlation coefficients of the seasonal signals

and the de-noised sum of atmospheric mass loading
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and soil moisture mass loading are 0.61–0.86, and

DRMS are 18–48 %. These results are reasonable,

including the low correlation of WUHN, XNIN,

KMIN, and XIAM sites (in bold), because the mass

loading correction cannot completely reflect the

seasonal variation of GNSS vertical time series (see

Fig. 6).

From the comparison in Fig. 8 and correlation

analysis in Table 1, we can say that there is a strong

correlation between the GNSS station annual varia-

tion and the two mass loadings in the selected area.

3.3. Simulation Experiment

We mixed the de-noised correction of the atmo-

sphere and soil moisture mass loading (red line in

Fig. 8) as the simulated non-tectonic deformation

signals. First, the PSR method is applied to obtain the

multi-dimensional embedding matrix, and the time

delay is 8 and the embedding dimension is 2. Then,

the FastICA method is used to analyze the multi-

dimensional embedding matrix, and the two ICs are

obtained. We rename them as Reconstructed signal A

(RS-A) and Reconstructed signal B (RS-B) without

artificial classification and reconstruction. The com-

parison of reconstructed signals and its corresponding

simulated signals (de-noised atmospheric and soil

moisture mass loading) are shown in Figs. 9 and 10,

respectively.
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The correlation coefficients and RMS between

reconstructed signals and their corresponding simu-

lation signals are calculated, respectively, and their

values are shown in Table 2.

The simulation experiment shows that the signals

reconstructed by the PSR-ICA method can effectively

reflect the atmospheric and the soil moisture mass

loading. The correlation coefficients of the RS-A and

the atmospheric mass loading are 0.81–0.96, and the

DRMS are 11–71 %. In addition, the values of the

RS-B and the soil moisture mass loading are

0.71–0.98 and 14–77 %, respectively. These facts

suggest that the atmospheric and the soil moisture

mass loadings can be separated by single-channel

ICA.

3.4. GNSS Vertical Time Series Analysis

The seasonal variation of GNSS vertical time

series (black line in Fig. 8) is also used to verify the

effectiveness of the PSR-ICA method.

First, the time delay and the embedding dimen-

sion are calculated using the mutual information

method and the FNN method, respectively. The

determined time delay is 51, which is quite different

from that of the simulation experiment. A possible

explanation could be the difference between seasonal

signal and mass loading corrections. The embedding

dimension is 2 in most cases, and 3 for the KMIN

site, which indicates that the ICs should be recon-

structed into two main components.

2001 2003 2005 2007 2009 2011 2013

QION      0+20

XIAM      0+40

KMIN      0+60

XIAG      0+80

LUZH    0+100

LHAZ    0+120

WUHN    0+140

XNIN    0+160

TAIN    0+180

DLHA    0+200

JIXN    0+220

BJFS    0+240

BJSH    0+260

Year

Seasonal Signal De-noised Atmospheric+Soil moisture

Figure 8
Comparison between the reconstructed seasonal signals decomposed by EEMD and the sum of the de-noised atmosphere and soil moisture

mass loading for the 13 GNSS sites (20 mm offset per station)
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Table 1

Correlation between seasonal signals and sum of the de-noised atmospheric and soil moisture mass loading

Latitude N (�) Longitude E (�) Correlation coefficients RMS (mm) dRMS (mm) DRMS (%)

BJSH 40.25 116.22 0.72 3.1 2.5 19

BJFS 39.61 115.89 0.86 4.2 2.2 48

JIXN 38.58 117.53 0.85 3.8 2.1 45

DLHA 37.38 97.38 0.77 4.0 2.7 33

TAIN 36.22 117.12 0.75 4.7 3.2 32

XNIN 36.60 101.77 0.61 4.5 3.7 18

WUHN 30.53 114.36 0.71 4.9 3.5 29

LHAZ 29.66 91.10 0.84 6.1 3.7 39

LUZH 28.87 105.41 0.84 5.1 2.8 45

XIAG 25.61 100.26 0.85 7.6 4.2 45

KMIN 25.03 102.80 0.64 8.2 6.2 24

XIAM 24.45 118.08 0.63 4.9 3.9 20

QION 19.03 109.85 0.79 6.3 4.6 27

dRMS RMS after mass loading correction, DRMS reduction in RMS

2001 2003 2005 2007 2009 2011 2013

QION     0+10

XIAM     0+20

KMIN     0+30

XIAG     0+40

LUZH     0+50

LHAZ     0+60

WUHN     0+70

XNIN     0+80

TAIN     0+90

DLHA   0+100

JIXN   0+110

BJFS   0+120

BJSH   0+130

Year

Reconstructed signal A De-noised Atmospheric

Figure 9
Comparison between the reconstructed signal A separated by PSR-ICA and the simulated signal (de-noised atmospheric mass loading) (10-

mm offset per station)
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Then, the FastICA method is used to separate the

multi-dimensional embedding matrix. A number of

ICs are obtained. Three ICs for the KMIN site are

artificially reconstructed into two reconstructed sig-

nals, Reconstructed signal 1 (RS-1) and

Reconstructed signal 2 (RS-2). The comparison of

the two reconstructed signals for the 13 GNSS sites

and their corresponding mass loadings (de-noised

atmospheric and the soil moisture mass loadings) are

shown in Figs. 11 and 12, respectively.

The correlation coefficients and RMS between the

reconstructed signals (RS-1 and RS-2) and their

corresponding mass loading signals (de-noised

atmospheric mass loading and de-noised soil mois-

ture mass loading) are calculated, respectively, the

results are shown in Table 3.

From the correlation analysis of the reconstructed

signals (RS-1 and RS-2) and their corresponding

mass loading signals, we can say that some physical

sources affect the crustal deformation. (1) The

correlation coefficients of the RS-1 and the atmo-

spheric mass loading are between 0.50 and 0.86, and

DRMS are within the range of 5–47 %, which suggest

that the RS-1 can be considered as a seasonal non-

tectonic deformation mainly affected by the atmo-

spheric mass loading; and (2) The correlation

2001 2003 2005 2007 2009 2011 2013

QION     0+10

XIAM     0+20

KMIN     0+30

XIAG     0+40

LUZH     0+50

LHAZ     0+60

WUHN     0+70

XNIN     0+80

TAIN     0+90

DLHA   0+100

JIXN   0+110

BJFS   0+120

BJSH   0+130

Year

Reconstructed signal B De-noised Soil moisture

Figure 10
Comparison between the reconstructed signal B separated by PSR-ICA and the simulated signal (de-noised soil moisture mass loading) (10-

mm offset per station)
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coefficients of the RS-2 and the soil moisture mass

loading, except for the WUHN site (in bold), are in

the range of 0.50–0.83, and DRMS are between 8 and

44 %, which means that the RS-2 can be considered

as a seasonal non-tectonic deformation mainly

affected by soil moisture mass loading. The vertical

time series of WUHN station may be affected by the

change of multipath effect and the instability of the

station monumentation. The seasonal variation is not

obvious and covered by noise and irregular trend

variation in some years, which may seriously affect

the seasonal signal extraction and the independent

signal separation.

According to the analysis of experimental results

in Sects. 3.3 and 3.4, the major mass loadings

(atmospheric mass loading and the soil moisture

mass loading) can be separated effectively by the

single-channel ICA.

4. Discussion and Conclusion

We have shown that the PSR-ICA method can

separate the independent source signals from the

mixed mass loading signal in the simulation experi-

ment. However, the correlations are 4–19 % and

2–29 % lower, respectively, between the two sepa-

rated signals using the PSR-ICA method and

atmospheric mass loading and soil moisture mass

loading in the simulation experiment. These facts

may indicate that the surface mass loadings, such as

atmospheric mass loading and soil moisture mass

loading, have a weak joint effect on crustal defor-

mation in mainland China.

The PSR-ICA decomposition of the seasonal

variation of GNSS vertical time series shows lower

correlations with atmospheric and moisture loadings

with respect to the simulation experiment. The cor-

relations are systematically 15–20 % lower, which

are mainly caused by the difference between simu-

lated signals (simulated by the sum of the de-noised

correction of the atmosphere and soil moisture mass

loadings) and GNSS time series. Their correlation

coefficients are 0.61–0.86, and the PSR-ICA

decomposition results of these two experiments are

both compared with the de-noised correction of the

atmosphere and soil moisture mass loading. How-

ever, the mass loading corrections also have errors,

such as for the KMIN site, there is no snow in this

area during 2001 and 2013, and the snow mass

loading corrections have a seasonal variation (up to

1.5 mm). The spatial resolution of mass loading data

is 2.5� 9 2.5� that mass loading corrections cannot

accurately reflect the effect of mass loadings at

specified points. Therefore, with the rapid increase of

GNSS reference stations worldwide, the separation of

mass load signals from GNSS time series is helpful to

study the effect of mass loadings on the crustal

Table 2

Correlation coefficients of reconstructed signals (Reconstruction A and Reconstruction B) and their corresponding mass loading signals

CORR-A RMS-A (mm) dRMS-A (mm) DRMS-A (mm) CORR-B RMS-B (mm) dRMS-B (mm) DRMS-B (mm)

BJSH 0.94 2.7 1.0 63 0.84 1.8 1.0 4344

BJFS 0.95 2.9 0.9 69 0.87 1.8 0.9 50

JIXN 0.96 3.4 1.0 71 0.86 1.8 1.0 44

DLHA 0.81 1.2 0.9 25 0.92 2.0 0.9 55

TAIN 0.93 3.5 1.3 63 0.85 2.4 1.3 46

XNIN 0.89 0.9 0.8 11 0.83 1.4 0.8 43

WUHN 0.92 2.9 1.2 59 0.78 2.1 1.3 38

LHAZ 0.86 1.6 0.8 50 0.95 2.5 0.8 68

LUZH 0.93 2.0 0.8 63 0.98 3.3 0.8 76

XIAG 0.94 2.2 0.8 64 0.98 3.5 0.8 77

KMIN 0.93 2.4 1.0 58 0.97 3.8 1.0 74

XIAM 0.87 1.6 1.2 25 0.71 1.4 1.2 14

QION 0.94 1.3 0.8 39 0.93 2.1 0.8 62

Case A RS-A and the de-noised atmospheric mass loading, Case B RS-B and the de-noised soil moisture mass loading, CORR correlation

coefficient, dRMS RMS after mass loading correction, DRMS reduction in RMS
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deformation and improve the accuracy of the cor-

rection model of mass loadings.

We use the EEMD method to decompose the

GNSS vertical time series into noise signal, seasonal

signal, and long-term trend signal. The PSR-ICA

method is applied to analyze the seasonal signal. We

successfully obtain the seasonal non-tectonic defor-

mation signals. Through the case study of the selected

GNSS reference stations, the following three con-

clusions can be drawn: (1) By obtaining noise signal,

seasonal non-tectonic deformation signal, and long-

term trend signal using the EEMD method, we found

that the seasonal signal is strongly correlated with the

sum of the major mass loading corrections; (2) In the

simulation experiment, the high correlation between

the separated signals and mass loadings (correlation

coefficients are 0.71–0.98 and DRMS are 11–77 %)

has proved that the PSR-ICA algorithm can accu-

rately extract the physical source signals from the

non-tectonic deformation signals; (3) The high cor-

relation between the signals separated from seasonal

signals and mass loadings (correlation coefficients are

0.50–0.86 and DRMS are 5–47 %) can effectively

illustrate the seasonal variation (mainly annual vari-

ation) in the vertical time series of the GNSS

reference station, and the separated signals can more

accurately reflect the effects of various mass loadings

on the crustal deformation.

2001 2003 2005 2007 2009 2011 2013

QION    0+10

XIAM    0+30

KMIN    0+50

XIAG    0+70

LUZH    0+90

LHAZ  0+110

WUHN  0+130

XNIN  0+150

TAIN  0+170

DLHA  0+190

JIXN  0+210

BJFS  0+230

BJSH  0+250

Year

Reconstructed signal 1 De-noised Atmospheric

Figure 11
Comparison between the reconstructed signal 1 separated by PSR-ICA and the atmospheric mass loading (20-mm offset per station)
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Figure 12
Comparison between the reconstructed signal 2 separated by PSR-ICA and the soil moisture mass loading (20-mm offset per station)

Table 3

Correlation between the reconstructed signals (RS-1 and RS-2) and its corresponding mass loading signals

CORR RMS-1 (mm) dRMS-1 (mm) DRMS-1 (%) CORR RMS-2 (mm) dRMS-2 (mm) DRMS-2 (%)

BJSH 0.75 1.9 1.8 5 0.71 2.4 1.8 25

BJFS 0.86 3.2 1.7 47 0.57 1.3 1.2 8

JIXN 0.79 3.0 2.0 33 0.72 1.1 0.9 18

DLHA 0.76 1.7 1.1 35 0.81 2.8 1.9 32

TAIN 0.80 2.3 2.0 13 0.75 3.2 2.2 31

XNIN 0.57 2.1 1.7 19 0.75 3.1 2.3 26

WUHN 0.61 3.5 3.2 9 0.35 1.9 2.9 253

LHAZ 0.64 2.2 1.7 23 0.85 4.5 2.5 44

LUZH 0.62 3.4 2.7 21 0.76 2.4 2.0 17

XIAG 0.73 5.1 4.0 22 0.63 5.5 4.3 22

KMIN 0.63 4.1 3.4 17 0.50 7.0 6.3 10

XIAM 0.50 3.0 2.8 7 0.72 2.6 1.8 31

QION 0.63 2.6 2.1 19 0.83 4.4 2.9 34

Case 1 RS-1 and de-noised atmospheric mass loading, Case 2 RS-2 and de-noised soil moisture mass loading, CORR correlation coefficient,

dRMS RMS after mass loading correction, DRMS reduction in RMS
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