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Abstract—We develop an ensemble data assimilation system

using the four-dimensional local ensemble transform kalman filter

(LEKTF) for a global hydrostatic numerical weather prediction

(NWP) model formulated on the cubed sphere. Forecast-analysis

cycles run stably and thus provide newly updated initial states for

the model to produce ensemble forecasts every 6 h. Performance of

LETKF implemented to the global NWP model is verified using the

ECMWF reanalysis data and conventional observations. Global

mean values of bias and root mean square difference are signifi-

cantly reduced by the data assimilation. Besides, statistics of

forecast and analysis converge well as the forecast-analysis cycles

are repeated. These results suggest that the combined system of

LETKF and the global NWP formulated on the cubed sphere shows

a promising performance for operational uses.
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transform Kalman filter (LEKTF), Numerical weather prediction

(NWP), Atmospheric global model (AGM).

Abbreviations

LETKF Local ensemble transform Kalman filter

NWP Numerical weather prediction

AGM Atmospheric global model

EnKF Ensemble Kalman filter

KIAPS Korea institute of atmospheric prediction

systems

KIM KIAPS integrated model

CAM Community atmospheric model

GPS-RO Global positioning system radio

occultation

OSSE Observing system simulation experiment

ESMF Earth system modelling framework

HOMME High order method modeling

environment

IO Input–output

GLL Gauss-Legendre-Lobatto

CESM Community earth system modeling

CAM-SE Spectral element version of community

atmospheric model

PDF Probability density function

RMSE Root mean square error

IFS Integrated forecast system

RMSD Root mean square difference

WRF Weather research and forecast

GFS Global forecast system

KMA Korea meteorological administration

1. Introduction

Data assimilation is a key element in a numerical

weather prediction system in that it provides an

improved initial state for the next forecast by

obtaining an optimal analysis state from statistical

treatments of available observations and current

forecasts. There are two major approaches in data

assimilation: variational and ensemble methods.

Since the ensemble Kalman filter (EnKF) technique

suggested by EVENSEN (1994) was applied to an

atmospheric system by HOUTEKAMER and MITCHELL

(1998), investigations of the ensemble technique with

operational interests have been made extensively.

Thereby computationally efficient algorithms draw

attention as high-performance computing resources

for parallel implementation becomes an issue. The

local ensemble transform Kalman filter (LETKF)

considers observations, only within a specified local

area surrounding each model grid point (HUNT et al.

2007). This nature of the LETKF algorithm can lead
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to an ensemble data assimilation technique that scales

and handles memory spaces efficiently (MIYOSHI and

YAMANE 2007). The LETKF technique has been

evaluated in applications such as for global atmo-

spheric system, and shown good performance

compared to other existing techniques in data

assimilation systems (e.g., BUEHNER et al. 2010;

MIYOSHI et al. 2010).

For the applications in weather forecasting it is

advantageous to take account for the timing of the

observations since changes in weather can be signifi-

cant within a usual analysis time interval of 6 h (HUNT

et al. 2007). A four-dimensional-LETKF (thereafter

4D-LETKF) system considers the time information of

observation in such way that time-evolving back-

ground errors are counted for finding analysis that best

fits to the observations. The 4D-LETKF algorithm has

been reported to improve the performance of forecast

and reduces analysis errors (e.g., MIYOSHI and ARA-

NAMI 2006; HARLIM and HUNT 2007). MIYOSHI (2011)

compared the LETKF and the operational 4D-Var

system implemented to the global model at the Japa-

nese Meteorological Agency (JMA), and their results

suggested that the LETKF has comparable perfor-

mance to the 4D-Var. At the Korea Institute of

Atmospheric Prediction Systems (thereafter KIAPS),

we have applied the 4D-LETKF algorithm derived in

HUNT et al. (2007) for the development of data

assimilation system coupled to a new global NWP

model. The forecast model that is being developed at

the KIAPS (KIAPS Integrated Model: KIM) is using

the spectral element method for discretization of

governing equations and formulated on the cubed

sphere (SADOURNY 1972) so that a singularity problem

at poles can be avoided. This leads to an unstructured

grid system for the model (KIM) and we need to

additionally develop a tool for the observation opera-

tor in the 4D-LETKF framework. We name the

LETKF system KIAPS-LETKF for a spectral-element

global NWP model on the cubed sphere. More details

on the model grid system and the methodology to take

account for forecast fields on the unstructured grid will

be presented in the following sections.

Before our own forecast model KIM had been

developed, we alternatively used the NCAR Com-

munity Atmospheric Model (CAM) for a test of

KIAPS-LETKF, which has a dynamical core

formulated using the spectral element method on the

cubed sphere (CAM-SE, TAYLOR et al. 1997). From

the KIAPS-LETKF implemented to the CAM, we

obtained encouraging results assimilating con-

ventional and Global Positioning System-Radio

Occultation (GPS-RO) bending angle data (KANG

et al. 2014; KWON et al. 2015). As the KIM becomes

available for tests, we modified the KIAPS-LETKF,

and coupled it to the hydrostatic version of the KIM.

In this article we explain main features of the KIAPS-

LETKF system implemented to the KIM and discuss

about its performance in an Observing System Sim-

ulation Experiment (OSSE) and real data assimilation.

Our discussion focuses on the implementation of

the LETKF to the KIM with unstructured grid system

and the use of the adaptive multiplicative inflation

method, which is especially useful when we imple-

ment the LETKF algorithm to a newly developed

model. In this situation we could avoid a manual

tuning for inflation, which can demand a lot of effort

and time by using the adaptive multiplicative infla-

tion method. Fixed inflation method cannot give

different inflation factors in space and time, which

cannot reflect background uncertainty effectively

(e.g., LI et al. 2009; MIYOSHI 2011; WHITAKER and

HAMILL 2012). This study may provide useful infor-

mation to people who are testing the adaptive method

in a LETKF framework.

In the next section we introduce the forecast

model KIM with the unstructured grid system. In

Sect. 3 the development of the KIAPS-LETKF sys-

tem is described and in Sect. 4 the performances of

data assimilation in the OSSE and real data assimi-

lation experiment are discussed. In the final section

we summarize the current work and present some

future plans. We also provide a list of abbreviations

in the Abbreviation group.

2. Forecast Model

An NWP system tends to require a large number

of modules with different functions to produce

weather forecasts. Recently many research and

operational institutions have interest in making their

models more flexible, high-performing, and robust.

To build such an NWP system, it can be inevitable to
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use the concept of ‘‘modelling framework’’, which

can provide an infrastructure that connects modules

seamlessly (HILL et al. 2004). There are a few well-

known software framework in the community of

NWP and one of them is the Earth System Modelling

Framework (ESMF). The ESMF is applied for the

construction of coupled modelling systems to use in

the area of climate modelling and NWP. It is based

on the idea that the complex applications can split

into a ‘‘component’’, which is replaceable and mod-

ifiable easily (HILL et al. 2004). A modelling

framework is designed at the KIAPS, which is based

on the similar idea as the ESMF, but diminishes

technical barriers for general users and developers of

the preliminary version of the KIM.

For the hydrostatic version of the KIM, the same

set of governing equations and their discretization

methodology is used as the spectral element hydro-

static dynamical core of High Order Method

Modeling Environment (HOMME, DENNIS et al.

2012). It is formulated in an unstructured quadrilat-

eral grid system on the cubed sphere. It has an

excellent scalability and can be free of polar singu-

larity of latitude-longitude grid system (DENNIS et al.

2012).

Some major differences between the stand-alone

HOMME and the hydrostatic version of the KIM are

the modeling framework discussed earlier, a newly

implemented infrastructure including an input–output

(IO) system, a 50-level vertical coordinate extended

up to about 60 km, and a physical parametrization

package coupled to the dynamical core, etc. (SHIN

et al. 2014). The horizontal spatial resolution used for

this study is based on the 30 elements per face and 4

Gauss–Legendre-Lobatto (GLL) points per element,

and thereby the average grid spacing at the equator is

1� and a minimum grid spacing is 0.83� (EVANS et al.

2013). Topographical information is obtained from

the smoothed topography from the Community Earth

System Modeling (CESM).

3. KIAPS-LETKF

The KIAPS-LETKF is based on the 4D-LETKF

introduced by HUNT et al. (2007) and its technical

implementation methodology is adopted from

MIYOSHI and YAMANE (2007). Computational codes

for infrastructure and main computations are obtained

from http://www.code.google.com/p/miyoshi/ and we

modified them for our purposes. A main feature of the

KIAPS-LETKF is that a computational module con-

taining observation operator has been established for

a global atmospheric model with an unstructured grid

system in the physical space such as the CAM-SE and

the KIM. Choices of observations and local subset

drawn from the global state for the local analysis are

determined by the newly implemented modules.

Since the observation operator is implemented in an

independent computation module outside of the

LETKF system, it is flexible in using any kind of

nonlinear operator. Also an adaptive multiplicative

inflation by (MIYOSHI 2011) is used to avoid under-

estimation of background error covariance where

observation is densely distributed.

At first the KIAPS-LETKF was tested using the

spectral element version of Community Atmospheric

Model (CAM-SE) before the KIM became available,

since it has the same horizontal grid systems as the

KIM adopts (KANG et al. 2014). The CAM-SE that

was used for the test has 30 vertical layers up to about

2.25 hPa (*40 km) and its horizontal grid spacing is

about 250 km. Although the focus of the CAM-SE

might be originally climate studies rather than NWP,

it has an equivalent complexity for the test of a global

data assimilation system for weather forecasts.

Observing System Simulation Experiment (OSSE)

and real data assimilation using conventional data

such as sonde and surface pressure has been done

successfully with the model.

As an early version of KIM with the hydrostatic

governing equations was released, the KIAPS-

LETKF was implemented to the KIM and its per-

formance has been evaluated. For the KIM

introduced in the previous section, input/output pro-

cedures and grid system information are updated for

the implementation of the data assimilation codes

based on the algorithms described in the following

sections.

3.1. Local Ensemble Transform Kalman Filter

In this section, we introduce the main idea of

Local Ensemble Transform Kalman Filter (LETKF)
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briefly. More details on the LETKF algorithm and its

implementation can be found in HUNT et al. (2007).

Suppose that x is a state vector of dynamic variables

at model grids. Ensemble analyses at the previous

analysis step are used as initial conditions to generate

background ensemble states xb(k) at time t, k ¼
f1; 2; . . .Kg where K is the number of ensemble

members. We denote Xb as the matrix whose

columns contain a departure of each ensemble

forecast xb(k) from the ensemble mean �xb: the k-th

column of Xbis xbðkÞ � �xb. Then, the observation

operator h is applied to the ensemble forecast xb(k) to

transform the background states from the model grid

space to the observation space, yb(k) = h(xb(k)). Let

Yb ¼ ybðkÞ � �yb be the background perturbations in

the observation space. Then, the background infor-

mation is ready to be compared with observations in

the same space. To update analysis states at every

grid point, the LETKF assimilates only observations

within a certain distance from each grid point. Here

we use the subscript (l) to denote a quantity defined

on such a local region centered at an analysis grid

point. The analysis mean �xa
ðlÞ, is given by

�xa
ðlÞ ¼ �xb

ðlÞ þ Xb
ðlÞ �wðlÞ; ð1Þ

where �wðlÞ is the mean weighting vector calculated

by

�wðlÞ ¼ ~P
a

ðlÞðY
b
ðlÞÞ

TR�1
ðlÞ ðyo

ðlÞ � yb
ðlÞÞ: ð2Þ

Here, ~P
a

ðlÞ ¼ ½ðYb
ðlÞÞ

TR�1
ðlÞ ðYb

ðlÞÞ þ ðK � 1ÞI=q��1

is the analysis error covariance in the ensemble

space, R is the observation error covariance matrix,

yo is the observation vector, and q is the multiplica-

tive inflation factor. Within a local region, space

localization is carried out by multiplying the inverse

observation error covariance matrix with a factor that

decays from one to zero as the distance of the

observations from the analysis grid point increases.

The spatial localization weights are given by a

Gaussian-like piecewise fifth order rational function

(GASPARI and COHN 1999; MIYOSHI et al. 2007) with

the localization scale of 2
ffiffiffiffiffiffiffiffiffiffi

10=3
p

� rh, where we

choose rh = 500 km for the horizontal localization

so that the function drops to zero at about 1800 km.

Likewise, the vertical localization function for

conventional data is defined by the Gaussian-like

rational function, with the localization scale of

2
ffiffiffiffiffiffiffiffiffiffi

10=3
p

� rv, where rv = 0.2 in the unit of the

logarithm pressure.

Then ensemble perturbations of the analysis are

determined by

Xa
ðlÞ ¼ Xb

ðlÞ½ðK � 1Þ ~Pa

ðlÞ�
1
2: ð3Þ

This provides an estimation of analysis uncer-

tainty and the global analysis ensemble xa(k) is

obtained by gathering the values for �xa
ðlÞ and X(l)

a at

all the analysis grid points.

We adopt the 4D-LETKF formulation introduced

by HUNT et al. (2007) and a time index needs to be

added to denote time-dependent terms in above

equations. See HUNT et al. (2007) for more detailed

derivation of equations in 4D formulation. Besides,

we use the adaptive multiplicative inflation suggested

by MIYOSHI (2011) for covariance inflation. In

Sect. 3.3 we briefly describe the implementation of

the adaptive multiplicative inflation and parameter

choices for a spin-up of inflation factor.

3.2. Modification of LETKF for an Unstructured

Grid Model

The KIM is formulated with fully unstructured

quadrilateral meshes based on the cubed sphere grid

which is distributed irregularly when projected on the

longitude and latitude grids. For example, two

adjacent unstructured grid-points that seem to be

located at the same latitude do not actually have the

same latitude when projected on the global meshes of

latitude and longitude. A tool to support such grid

system has not been yet implemented in the LETKF

framework (MIYOSHI and YAMANE 2007; MIYOSHI

2011). Thus, it is required to develop a new algorithm

in the observation operator h for a spatial interpola-

tion of quantities on such unstructured grids, and data

search algorithm to collect information of Y(l)
b and y(l)

o

for every observation point.

Original LETKF technique (e.g., MIYOSHI and

KUNII 2012) defines a relative position of each

observation data (ri, rj, rk) with respect to the model

grid of (i, j, k) for zonal, meridional, and vertical

directions. Then background ensemble perturbations

yb(k) are computed by the bilinear interpolation using
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the closest eight points surrounding (ri, rj, rk). For this

computation in the regular latitude-longitude grid

systems, it is simple to find points surrounding (ri, rj)

in the horizontal direction. However, more careful

examination is required to search such surrounding

points in an unstructured grid system since an

extrapolation can occur if one simply chooses the

closest four points from the position of observation

data (Fig. 1). Therefore, a search algorithm is

required to look for four points adjacent to each

observation position in such way that those points are

not only closest to the observation position but also

surround the observation. We apply Jordan Curve

Theorem for a search algorithm to sample grid points

enclosing the position of observation nearby in the

KIAPS-LETKF system. We confirmed that the mod-

ified spatial interpolation of the observation operator

worked well in previous studies (e.g., KANG et al.

2014; KWON et al. 2015).

It is also possible that one can map the unstruc-

tured grid to a regular latitude and longitude grid

system and perform data assimilation, and then remap

back to the original model grid. Remapping between

two different grid structures introduces errors because

it is also an approximation. Fortunately, our approach

does not require such interpolation; LETKF

algorithm respects the model’s own grid as it is, but

just transforming model background at their own grid

into the observation space before comparing back-

ground states and the observations. Therefore, there is

no need to introduce errors due to the remapping

between two grid structures during the data assimi-

lation. Indeed, it can be one of advantageous

characteristics in our data assimilation system

because computational cost for remapping between

two different grid systems will be increasing rapidly

as the model resolution increases.

We recently found that TERASAKI et al. (2015)

compared two versions of Non-hydrostatic Icosahe-

dral Atmospheric Model (NICAM)-LETKF. One is

with the remapping process between the icosahedral

and longitude-latitude grids and the other is without

the grid conversion in similar way as we are doing

with the KIAPS-LETKF. They showed that the

second version of the NICAM-LETKF without the

grid conversion accelerates computation by 40 % and

improves accuracy by about 10 %, compared to the

version with the grid conversion. They assumed that

the remapping may cause additional error through

repeated interpolations, and add computational costs.

Their results agree with our intuitive understanding

that the remapping between two different grids will

add interpolation errors and computational overhead.

Also NERGER and HILLER (2013) used the background

fields directly from the Finite Element Ocean Model

(FEOM) with unstructured triangular grids in their

ensemble data assimilation system, even if one might

search neighboring grid points for a local observation

domain more easily with a regular latitude-longitude

grid system.

3.3. Adaptive Multiplicative Inflation

The degree of freedom is O(106), with our current

model resolution but we can use a much fewer

number of ensemble members in practice. A sam-

pling error and underestimation of background error

covariance are hardly avoidable in an Ensemble

Kalman Filter (EnKF) system for the description of

geophysical flows. Generally an ‘‘inflation’’ tech-

nique is used to treat the problem of underestimation

of error variance and a localization method to deal

with the sampling error. In this study we use the

Figure 1
a Distribution of grid points (violet dots) of CAM-SE model over

the North Pole. Suppose that observation is located at the mark of

red x, then b it causes an extrapolation when using the nearest four

points (with pink circles) to the observation for the bilinear

interpolation. That is, model values at those four points would be

used for computing yb(k) at the location of the observation x.

Therefore, in order to avoid the extrapolation at this step, we have

applied Jordan Curve Theorem to check whether the four closest

model points surround the observation, and if not then search other

points to satisfy the condition
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adaptive covariance inflation suggested by MIYOSHI

(2011) in the KIAPS-LETKF system. This technique

is the implementation of adaptive inflation approach

introduced by LI et al. (2009) within the LETKF in

such way that the inflation parameters are updated

with the ensemble transform matrix at each grid point

(See more details in MIYOSHI 2011). This adaptive

multiplicative inflation needs less effort for a tuning

and it is independent of variable (LI et al. 2009). A

prior Probability Density Function (PDF) of the

inflation parameter is assumed to be a Gaussian in

this approach and the PDF is Pr ab
i

� �

¼ N ab
i ; vb

i

� �

,

where ab
i is the mean and vi

b is the variance and their

values are tunable and prescribed initially (MIYOSHI

2011). Then a posterior PDF of inflation parameter

updated by using the Gaussian approach is given by

Pr aa
i

� �

¼ N ao
i ; vo

i

� �

Pr ab
i

� �

=norm; ð4Þ

In Eq. (5) in Miyoshi (2011), and the ‘‘norm’’

denotes the posterior PDF, Pr yijyi�1; yi�2; . . .; y0ð Þ for
ith observation yi in discrete time. Here the posterior

inflation parameter is denoted by ai
a, i = 1, 2,…, p,

and the updated inflation parameter from the newest

observations p is denoted by ao
i and its variance by vi

o.

Avoiding sampling error of those estimation of

inflation factors, LI et al. (2009) and MIYOSHI

(2011) introduced temporal smoothing of the param-

eter using the prior variance vi
b. The variance is a

tuning parameter and the strength of temporal

smoothing grows (weakens) if one sets it large

(small). In this study we initially choose the prior

variance of the inflation parameter vi
b = 0.012 for the

Gaussian approximation to the Bayesian estimates of

covariance inflation Pr(ai
b) in real data assimilation.

This value is small but realistic for the variance of the

prior estimate of inflation in practice (MIYOSHI 2011).

We observed that the forecast-analysis run is unsta-

ble if we use a larger parameter than vi
b = 0.012 with

an earlier version of the KIM model for the assim-

ilation test using real observation data. The value of

variance is an indicator of the strength of temporal

smoothing in the spin-up of the inflation parameter

and a larger value leads to more temporal fluctuations

(MIYOSHI 2011). Since the cycle runs stably with the

current version of the KIM model even when we

increase the variance, we additionally test with the

variance vi
b = 0.042 and compare the performance

with the test using vi
b = 0.012 for data assimilation of

real observation. More detailed explanation with

respect to the parameter will be given along with

corresponding results in Sect. 4.2.

4. Evaluation

4.1. Observing System Simulation Experiment

(OSSE)

We first evaluate the performance of the KIAPS-

LETKF implemented to the global NWP model KIM

under the OSSE where we can easily find sources of

errors. Since a true state is given in an OSSE, it is

useful to evaluate a newly developed data assimila-

tion system prior to carrying out real data

assimilation. We assume a single model run using

the KIM as a true state (nature) and generate

simulated observations by projecting the true state

into an observational space through a spatial inter-

polation and variable transformation. Certain

observational errors of realistic scale are added to

the simulated observations. We attempt to maintain

the simulated observations close to real data by

drawing temporal and spatial positions of NCEP

PrepBufr data containing conventional observations

such as sonde and surface pressure observations. In

this study we generate a true state by integrating the

forecast model KIM from 00 UTC 25 July 2011 for

15 days. Typically observational data can be obtained

at 00 and 12 UTC more than 06 and 18 UTC

temporally. Also more observations are distributed

over the land than the ocean, and over the Northern

Hemisphere than the Southern Hemisphere.

We use 30 members of ensemble so that the initial

ensemble members are obtained by choosing 30

model states simulated by the forecast model KIM.

Consequently, the initial error of the ensemble is

supposed to be quite large. The purpose of this OSSE

is to examine if analysis and forecast can converge to

the true state in time when simulated observations are

assimilated by the KIAPS-LETKF even though the

initial ensemble states are far from the true state.

Figure 2 shows the difference of analysis and

background from the nature when the forecast-

analysis cycle is performed once, at 06 UTC on 25

July 2011. The upper panel shows the zonal winds at

2560 S. Shin et al. Pure Appl. Geophys.



the 45th model level from the top (about 925 hPa)

and lower panel shows the meridional winds at the

same vertical level as the upper one. Since we assume

the nature as the true state at a given time and space,

we define the difference from the nature as an error. It

is shown that the large background error is effectively

compensated by the analysis increment as a result of

data assimilation and eventually the analysis error

becomes small in the regions of large background

errors. While sonde observations are concentrated

over lands in the Northern Hemisphere, surface

pressure observations are distributed evenly in the

whole globe, even in the Southern Hemispheric

Ocean. Even if there are few sonde observations

over the Southern Hemispheric Ocean, analysis

increments induced by surface pressure data signif-

icantly reduce background errors of wind variables in

addition to the surface pressure due to the multivari-

ate background error covariance in the ensemble data

assimilation technique. The analysis with reduced

errors is then used as an initial condition for the next

forecast-analysis cycle.

Figure 3 shows the time series of globally aver-

aged value of Root Mean Square Error (RMSE)

computed in the observational space. The background

RMSE drops rapidly in the early stage of the forecast-

analysis cycle and approaches to the level of the

RMSE in analysis with time. Depending on the

number of available observations and background

uncertainties, the magnitude of the background

RMSE fluctuates in a small scale, but converges to

the level of the analysis RMSE. This behaviour

indicates that the forecast-analysis cycle runs stably

and ensemble forecast does not drift away from the

true state.

Figure 2
Background errors (left column), analysis increments (middle), and the analysis errors (right column) of U (top) and V (bottom). Here, analysis

increments indicate analys minus background, and background/analysis errors are computed by true states subtracted from the

background/analysis states

Figure 3
Time series of root mean square error (RMSE) for temperature

during the first 15-day forecast-analysis cycles. The background

RMSE is denoted in blue, and the analysis RMSE in red lines
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It is important for a stable forecast-analysis cycle

run to estimate uncertainties of background reason-

ably and to represent background error covariance

correctly. Thus, we further examine whether the scale

of the ensemble spread is comparable to that of the

background RMSE error. The ensemble spread is

defined as a standard deviation of ensemble members

with respect to the ensemble mean.

Figure 4 shows the background RMSE and the

ensemble spread averaged over the last 5 days of the

15-day forecast-analysis cycle runs. Here we show

the ensemble spread multiplied by the adaptive

multiplicative inflation to reflect the effective ensem-

ble spread that the data assimilation algorithm is

actually identifying. The upper panel shows the

RMSE and the ensemble spread of zonal wind at

the level of 925 hPa, and the lower panel shows those

of temperature at the same level. Mostly the ensemble

spread is large in the area of large background error

and the magnitude of spread is nearly equivalent to

that of errors in general. An outstanding feature in the

pattern of the ensemble spread is the large spread in

temperature over the northern America. That is, the

analysis system tends to overestimate the background

errors, while trying to avoid an underestimation with

the inflation. This can result from that the adaptive

multiplicative inflation is independent of variable and

can be enhanced in the area of dense observation,

where ensemble spreads decrease while the differ-

ences between the background and observation

remains significantly larger than the spread of any

analyzed variables (MIYOSHI 2011). We examine the

magnitude difference between the background error

and ensemble spread of the other variables, and found

that the background error of specific humidity is

significantly larger than its spread over the northern

America (not shown here). This may lead to an

enhanced inflation in that region for all variables used

for analysis. In that way, the adaptive multiplicative

inflation effectively hinders the underestimation of

Figure 4
RMSE with respect to the truth (left) and ensemble spread (right) for zonal wind (top) and temperature (bottom) at 925 hPa averaged over the

last 5 days during the 15-day forecast-analysis cycles
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the ensemble spread in that area of dense observation.

Therefore, this result indicates that the estimation of

background uncertainties is reasonable in this OSSE

testing the KIAPS-LETKF implemented to the KIM,

and the system properly avoids filter divergence.

4.2. Assimilation of Real Data

After we examine the performance of the KIAPS-

LETKF implemented to the KIM in an ideal situation,

real data assimilation has been carried out using the

sonde and surface pressure observations. The real

data assimilation experiment is performed for one-

month period starting from 1 February 2014. We use

NCEP PrepBufr synoptic and surface pressure obser-

vation data. As in the OSSE, we use 30 members of

ensemble. The cluster that we use at the KIAPS has

the Central Processing Unit (CPU) from INTEL Xeon

2.9 GHz RHEL 6.3. The computational time of

LETKF is on average 14 min, and of 9-h model

forecast is 45 min for 30 members when we use 20

computing nodes (16 processors per node).

For the evaluation of our analysis, we use the

observation data that have been used for data

assimilation and an independent data of ECMWF

ERA-Interim reanalysis (DEE et al. 2011), respec-

tively. The ECMWF reanalysis is produced by the

Integrated Forecast system (IFS) at the ECMWF,

which has been verified in long history and known as

a qualified analysis through a data assimilation of

diverse types of observations. Hence it is reasonable

to assume that the ECMWF analysis can provide

states of atmosphere close to reality. It might be

desirable to use independent observation data for the

evaluation, but we think that the evaluation using the

NCEP PrepBufr can be complemented by that using

the ECMWF reanalysis for a relevant interpretation.

Besides, comparison of short-range forecast with

the observations is still useful to see the performance

of data assimilation while comparison between

analysis and the verification using observations could

be a sanity check of the data assimilation system. For

a quantitative monitoring of the error with reference

to the ECMWF reanalysis, a remapping of data from

the cubed sphere grid system onto the latitude-

longitude grid system is required. We use a tool

developed at the KIAPS for a conservative data

remapping on the sphere between two any grid

systems (KIM et al. 2014). Also we interpolate the

data from KIM vertical levels to the pressure levels

defined as in the ECMWF reanalysis data. The

number of vertical levels of pressure coordinate is 37

from 0.1 hPa to 1000 hPa. The initial ensemble is

composed of model states that are obtained from

model simulation in 12-h interval in order to have a

sufficient spread at the initial time.

Figure 5 shows the background and analysis

errors of zonal winds at 925 hPa after one forecast-

analysis cycle at 06 UTC 01 February. Here we

regard the ECMWF reanalysis as the true state for

evaluation, and look at the Root Mean Square

Difference (RMSD) between an ensemble mean and

the reanalysis. Although the background error of

initial ensemble is large (top of Fig. 5), the analysis

increment compensates it significantly after the first

analysis cycle (middle of Fig. 5). Therefore, analysis

resulted from the KIAPS-LETKF gets closer to the

ECMWF reanalysis after one cycle of data assimila-

tion using conventional data only. If one considers

that ECMWF assimilates various kinds of observa-

tions in addition to the conventional data, this shows

promising performance of the KIAPS-LETKF data

assimilation system as the first experiment under an

operational setting. The decrease in the magnitude of

RMSD is especially effective in the Northern Hemi-

sphere where more dense observations are available.

We also examine changes in the vertical profile of

background and analysis Root Mean Square Differ-

ence (RMSD) and bias in comparison to the sonde

data during the forecast-analysis cycle (Fig. 6). The

analysis of KIAPS-LETKF shows much smaller bias

and RMSD than the background, and that difference

is especially large in the middle troposphere after the

first forecast-analysis cycle, at 06 UTC 01 February

2014. As the data assimilation cycles are repeated,

the profile of bias and RMSD with respect to the

observations becomes stabilized, and thus the gap of

the profiles between background and analysis gets

Figure 5
Differences between KIM background and ERA interim reanalysis

(upper panel), between the background and KIAPS-LETKF

analysis (middle), and between the KIAPS-LETKF analysis and

the ERA reanalysis (low panel) for 925 hPa-zonal winds at 06 UTC

on 01 February 2014

c
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small at 06 UTC on 28 February when the forecast-

analysis cycle proceeds 4 weeks. This illustrates that

KIAPS-LETKF data assimilation well reflects the

observations overall.

Figure 7 shows the vertical profiles of background

and analysis differences from the ECMWF reanaly-

sis. The background and analysis are remapped onto

the grid system defined in the ECMWF reanalysis and

then compute the global mean values of the bias and

RMSD at each pressure level of ECMWF data. Here

we show the RMSD of zonal wind at 06 UTC 01 and

at 06 UTC 28 February, respectively (Fig. 7). As

shown in the comparison with the NCEP PrepBufr

data (Fig. 6), the analysis RMSD of zonal wind with

reference to the ECMWF data becomes much smaller

than the background RMSD in the whole troposphere

after the first cycle of forecast-analysis. After 4 weeks

of forecast-analysis cycle, the profile of analysis from

our assimilation and the background RMSDs become

similar to each other, which means that the analysis

increments are not as large as during the early stage

of the forecast-analysis cycle.

The decrease of analysis increments with time

may indicate the convergence of background and

analysis, but also it can imply that the background

uncertainties may be underestimated due to a

decrease in the ensemble spread. However, in real

data assimilation, background error covariance could

not fully reflect forecast uncertainties and thereby

ensemble spread is significantly limited compared to

errors. Indeed, this is why we have incorporated the

adaptive multiplicative inflation introduced by

MIYOSHI (2011) to better represent background uncer-

tainties when the difference between the background

and observation is large. MIYOSHI and KUNII (2012)

also used the adaptive multiplicative inflation in real

data assimilation using the LETKF implemented to

the Weather Research and Forecast (WRF) model

(SKAMAROCK et al. 2005). The adaptive inflation is

originally designed to balance between the departure

of background from observation and ensemble

spread. However, they found that the magnitude of

ensemble spread became much smaller than the

RMSD compared to the NCEP analysis as the

forecast-analysis cycle runs repeat although the

adaptive inflation method was applied. They assumed

that the ensemble spread tended to be small and

uncertainties of background states were underesti-

mated when adaptive multiplicative inflation was not

spun-up sufficiently. Therefore, we also tune the

parameter of variance vi
b of Eq. (4) for the estimation

of adaptive inflation factor.

Figure 6
Vertical profiles of global mean bias (dashed lines) and RMSD (solid lines) with respect to the NCEP prepbufr data, for the background (blue)

and the analysis (red) of the zonal wind at 06 UTC on 01 February 2014 (left) and at 06 UTC on 28 February 2014 (right)
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The variance of inflation parameter represents the

time-smoothing strength, and thus spin-up proceeds

faster, but temporal fluctuation increases if the

variance increases. As discussed in Sect. 3.3, we

increase the variance from vi
b = 0.012 to vi

b = 0.042,

to accelerate the spin-up and repeat the experiment

using real observations. Figure 8 shows the time

series of globally-averaged RMSD of the two

KIAPS-LETKF analyses with different vi
b in com-

parison to ECMWF reanalysis data. We examine the

RMSD of zonal wind at 850 hPa. The black (red) line

shows the result from the experiment using

vi
b = 0.012 (vi

b = 0.042). At the beginning, the per-

formance difference is negligible, but the

performance becomes better in the analysis with the

larger variance after about 25 cycles, although

temporal fluctuations in RMSD are increased in that

case. Figure 9 shows the vertical profiles of both bias

and RMSD from the NCEP PrepBufr data averaged

over the period 06 UTC 15 * 18 UTC 27 February.

The RMSDs of temperature and zonal wind are

evidently smaller in the whole troposphere when we

use vi
b = 0.042. A similar pattern in the vertical

profiles is found in the comparison with the ECMWF

reanalysis (Fig. 10). We found that the results

from the KIAPS-LETKF analysis are significantly

improved when the spin-up of inflation parameter

proceeds faster. We also examine if the increase of

the variance also affects the scale of ensemble spread.

Figure 11 shows the time series of horizontal mean

ensemble spread of the zonal wind at 850 hPa in the

experiments using the two different variances. The

magnitude of ensemble spread is initially about half

Figure 8
Time series of the root mean square difference (RMSD) of the

zonal wind (U) analysis at 850 hPa with respect to the ECMWF

reanalysis between 06 UTC 01 and 00 UTC 26 February 2014. The

black solid line shows the result from the test using vb
i = 0.012

which is denoted by sb = 0.01 in the legend, and red line with

diamond markers shows the case using vb
i = 0.042

Figure 7
Vertical profiles of global mean RMSDs with respect to the ERA Interim data, for the zonal wind of background (blue) and analysis (red) at 06

UTC on 01 February 2014 (left) and at 06 UTC on 28 February 2014 (right)
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of the RMSD from the ECMWF analysis. However,

the ensemble spread drops rapidly during the early

stage of the cycle in both experiments. Once the

spread drops, the spread remains nearly unchanged

for long period when the variance of the adaptive

inflation vi
b = 0.012. It is the concerning case that

may cause filter divergence at the end. Meanwhile,

the spread becomes gradually grow again when the

raised variance for the inflation parameter is used. It

may help the LETKF algorithm better estimate the

uncertainties of backgrounds and take more observa-

tions to be reflected in the analysis and to avoid a

filter divergence. This result indicates that we need to

optimize a relevant growth rate for the multiplicative

inflation as the performance of the system is affected

by the choice of the parameter.

Figure 9
Vertical profiles of global mean bias (dashed lines) and RMSD (solid lines) of zonal wind (left) and temperature (right) analysis with reference

to the sonde data from NCEP PrepBufr, for the case using the prior inflation variance vb
i = 0.012 denoted by sb = 0.01 in blue, and for the

case using vb
i = 0.042 denoted by sb = 0.04 in red line. These are time-averaged values for the period between 06 UTC on 15 February and at

18 UTC on 27 February 2014

Figure 10
The same as Fig. 9, except with reference to the ECMWF reanalysis data
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Finally we examine the geopotential height field

in the analyses produced 6-hourly from the forecast-

analysis cycle runs for a month, and compare with

those from the ECMWF reanalysis. We compute the

differences in the 500 hPa-geopotential height from

the ECMWF reanalysis for the period 06 UTC 13

February *00 UTC 28 February, and then average

the differences. Also we repeat that comparison for

the forecasts produced by the integration of the KIM

for one-month with the initial condition obtained

from the Global Forecast System (GFS) reanalysis

(Environmental Modeling Center 2003). The GFS

reanalysis at the initial time is quite close to the

ECMWF reanalysis (not shown here). Figure 12

shows that analysis from the forecast-analysis cycle

run is much closer to the ECMWF reanalysis than the

forecast in most areas on the globe. This result

indicates that the KIAPS-LETKF shows a promising

performance in forecast-analysis cycle runs for

weather forecast, given forecast model and observa-

tion data.

5. Summary

We develop the KIAPS-LETKF system with the

KIM, a newly developed global NWP model at the

KIAPS. The major tool added to the preexisting

LETKF technique is the new interpolation algorithm

for the observation operator h in using the forecast

fields with unstructured grid system on the cubed

sphere. Also we construct a computing routine for the

forecast-analysis cycle, in harmony with the KIM

modeling framework.

The KIAPS-LETKF system is evaluated using the

OSSE and data assimilation using NCEP PrepBufr

containing conventional observation data such as

sonde and surface pressure observations. The fore-

cast-analysis cycle proceeds fine in the OSSE and the

analysis errors of prognostic variables are much

lower than the background errors just after one cycle.

The background errors of all variables decrease as the

cycle repeats, and the magnitude of errors approaches

to the level of analysis errors. This indicates that the

ensemble data assimilation system shows a reason-

able performance and motivates us to perform real

data assimilation for further verification of the

system.
Figure 11

The same as Fig. 8, but ensemble spread in each test case

Figure 12
Time-averaged geopotential height field difference (in meter) at 500 hPa between the single forecast by KIM and the ECMWF reanalysis

(left), and between the analysis from the KIAPS-LETKF assimilation run and the ECMWF reanalysis (right) for the period between 06 UTC

on 13 and 00 UTC on 28 February 2014
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For the quantitative evaluation of the KIAPS-

LETKF performance in real data assimilation exper-

iment, NCEP PrepBufr data and ECMWF reanalysis

are used and both bias and RMSD are computed.

Results are consistently encouraging: (1) there is

significant error reduction in the early stage and (2)

background and analysis converge in time, and the

forecast-analysis cycle runs stably. However, the

difference between the magnitude of ensemble spread

and RMSD is much larger than that estimated in the

OSSE. This may imply that uncertainties of system

can be underestimated in real data assimilation

experiments. In the OSSE only initial errors of

ensemble exist as the forecast model is assumed to be

perfect. However, in real data assimilation back-

ground error covariance may not fully reflect forecast

uncertainties and thereby ensemble spread is signifi-

cantly limited compared to errors when the

multiplicative inflation is not sufficiently spun-up.

We increase the variance of inflation parameter to

accelerate the spin-up of the multiplicative inflation,

and this leads to a better performance of the KIAPS-

LETKF. The value of RMSD from the ECMWF data

is reduced and the ensemble spread grows up again

gradually after it drops at the initial forecast-analysis

cycle. We may need to take further consideration of

using an optimal value of the prior variance of

inflation parameter which can affect the performance

of the KIAPS-LETKF system. In addition, we started

investigating the use of an additive inflation (YANG

et al. 2015) as a complement to the multiplicative

inflation to handle such problems as sampling and

model errors. Moreover, we intend to assimilate

additional types of observations such as microwave

radiance data and GPS-RO.
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