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Abstract—Where coastal tsunami hazard is governed by near-

field sources, such as submarine mass failures or meteo-tsunamis,

tsunami propagation times may be too small for a detection based

on deep or shallow water buoys. To offer sufficient warning time, it

has been proposed to implement early warning systems relying on

high-frequency (HF) radar remote sensing, that can provide a dense

spatial coverage as far offshore as 200–300 km (e.g., for Diginext

Ltd.’s Stradivarius radar). Shore-based HF radars have been used to

measure nearshore currents (e.g., CODAR SeaSonde� system;

http://www.codar.com/), by inverting the Doppler spectral shifts,

these cause on ocean waves at the Bragg frequency. Both modeling

work and an analysis of radar data following the Tohoku 2011

tsunami, have shown that, given proper detection algorithms, such

radars could be used to detect tsunami-induced currents and issue a

warning. However, long wave physics is such that tsunami currents

will only rise above noise and background currents (i.e., be at least

10–15 cm/s), and become detectable, in fairly shallow water which

would limit the direct detection of tsunami currents by HF radar to

nearshore areas, unless there is a very wide shallow shelf. Here, we

use numerical simulations of both HF radar remote sensing and

tsunami propagation to develop and validate a new type of tsunami

detection algorithm that does not have these limitations. To sim-

ulate the radar backscattered signal, we develop a numerical model

including second-order effects in both wind waves and radar signal,

with the wave angular frequency being modulated by a time-

varying surface current, combining tsunami and background cur-

rents. In each ‘‘radar cell’’, the model represents wind waves with

random phases and amplitudes extracted from a specified (wind

speed dependent) energy density frequency spectrum, and includes

effects of random environmental noise and background current;

phases, noise, and background current are extracted from inde-

pendent Gaussian distributions. The principle of the new algorithm

is to compute correlations of HF radar signals measured/simulated

in many pairs of distant ‘‘cells’’ located along the same tsunami

wave ray, shifted in time by the tsunami propagation time between

these cell locations; both rays and travel time are easily obtained as

a function of long wave phase speed and local bathymetry. It is

expected that, in the presence of a tsunami current, correlations

computed as a function of range and an additional time lag will

show a narrow elevated peak near the zero time lag, whereas no

pattern in correlation will be observed in the absence of a tsunami

current; this is because surface waves and background current are

uncorrelated between pair of cells, particularly when time-shifted

by the long-wave propagation time. This change in correlation

pattern can be used as a threshold for tsunami detection. To vali-

date the algorithm, we first identify key features of tsunami

propagation in the Western Mediterranean Basin, where Stradi-

varius is deployed, by way of direct numerical simulations with a

long wave model. Then, for the purpose of validating the algorithm

we only model HF radar detection for idealized tsunami wave

trains and bathymetry, but verify that such idealized case studies

capture well the salient tsunami wave physics. Results show that, in

the presence of strong background currents, the proposed method

still allows detecting a tsunami with currents as low as 0.05 m/s,

whereas a standard direct inversion based on radar signal Doppler

spectra fails to reproduce tsunami currents weaker than

0.15–0.2 m/s. Hence, the new algorithm allows detecting tsunami

arrival in deeper water, beyond the shelf and further away from the

coast, and providing an early warning. Because the standard

detection of tsunami currents works well at short range, we envi-

sion that, in a field situation, the new algorithm could complement

the standard approach of direct near-field detection by providing a

warning that a tsunami is approaching, at larger range and in

greater depth. This warning would then be confirmed at shorter

range by a direct inversion of tsunami currents, from which the

magnitude of the tsunami would also estimated. Hence, both

algorithms would be complementary. In future work, the algorithm

will be applied to actual tsunami case studies performed using a

state-of-the-art long wave model, such as briefly presented here in

the Mediterranean Basin.

1. Introduction

1.1. Rationale

In the past decade, two major tsunamis, the 2004

Indian Ocean (IO) tsunami (GRILLI et al. 2007;

IOUALALEN et al. 2007) and the 2011 Tohoku tsunami

(GRILLI et al. 2013), caused tens of thousands of
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fatalities and enormous destruction in Indonesia, and

six other countries in the IO basin, and in Japan.

These two extreme events, which were triggered by

the 3rd and 5th largest earthquakes ever recorded, of

moment magnitude Mw ¼ 9:3 and 9.05, respectively,

reminded us that tsunamis are among the most

devastating natural disasters that can impact our

increasingly populated coastal areas. Where they

cause significant onshore inundation, tsunamis have

enormous destructive power as a result of the

combination of high flow velocity Ut with total flow

depth d (or momentum flux qdU2
t , with q the fluid

density). Moreover, the hazard posed by large

tsunamis can be reinforced when their source is close

to the nearest coastal areas, and thus both their energy

spreading is low and their propagation time is short.

In the latter case, warning times will also be short,

particularly when using traditional means of detec-

tion such as seafloor pressure sensors or buoys, and

thus there will be little time for completely evacu-

ating coastal populations.

Standard point data measurements of incoming

tsunami waves (i.e., pressure gages or buoys) are

local and, hence, may not record the incoming

tsunami waves if they are also localized, and are

often destroyed by the earthquake or the tsunami in

the most impacted areas. A short tsunami propagation

time was one of the reasons for the high casualties in

Banda Aceh, Indonesia, during the 2004 IO tsunami:

the city was impacted by large waves and inundation

only 15–20 min after the earthquake was triggered in

the nearby Sumatra-Andaman subduction zone. Like-

wise, during the 2011 Tohoku tsunami, large waves

and inundation arrived in northern Honshu only

20–25 min after the earthquake triggering in the

nearby Japan Trench (JT), causing the nearly com-

plete destruction of some coastal cities and killing

entire populations who had been unable to evacuate,

despite the increasingly dire warnings, they eventu-

ally received, that the earthquake and generated

tsunami had been much larger than initially

estimated.

While such extreme seismic events are fortunately

quite rare, with return periods of 100–1000 years, in

many coastal regions of the world with moderate

seismicity, the greatest tsunami risk from near-field

sources may result, not from co-seismic tsunamis, but

from tsunamis induced by submarine mass failures

(SMFs) or from meteo-tsunamis. SMFs can be

triggered on or near the continental shelf break or

slope, by earthquakes as low as Mw ¼ 7 (e.g., TAPPIN

et al. 2008; FINE et al. 2005), that are much more

frequent than megathrust earthquakes; given enough

sediment accumulation, huge volumes of sediment

can be mobilized over significant vertical drops and

generate very large ‘‘landslide’’ tsunamis (GRILLI and

WATTS 1999, 2005; WARD 2001; GRILLI et al. 2002;

WATTS et al. 2005; TAPPIN et al. 2008). KAWAMURA

et al. (2014) recently reviewed potential tsunami-

genic submarine landslides in active margins and

showed their widespread occurrence historically, as

well as a variety of trigger mechanisms besides

seismicity. Meteo-tsunamis are tsunami-like long

waves generated by unusual weather systems, causing

fast moving squalls with low atmospheric pressure. If

these systems move at or close to the long wave

celerity on the shelf, much of their energy can be

transferred to waves by way of resonance (RABI-

NOVICH and STEPHENSON 2004; MONSERRAT et al.

2006). On June 13, 2013, a meteo-tsunami was

triggered along the US upper east coast, which caused

significant resonant oscillations in many harbors in

the region, in particular in Rhode Island (TEN BRINK

et al. 2014); this meteo-tsunami was recorded as far

as Puerto Rico.

Although few confirmed landslide tsunamis have

been identified in recent history, they have been

devastating. The 1998 Papua New Guinea tsunami is

one such case, where a Mw ¼ 7:1 earthquake only

caused a moderate tsunami, but then triggered, with

some delay, a large and deep underwater slump (i.e.,

a nearly rigid rotational SMF), which generated much

more devastating waves that killed over 2000 people

on the nearby the Sissano spit (TAPPIN et al. 2008).

Large SMFs can also be associated with large

earthquakes. After observing, through careful mod-

eling of the seismic source and resulting co-seismic

tsunami, that they could not reproduce the up to 40 m

inundation and runup that destroyed the Sanriku area

during the 2011 Tohoku tsunami, many scientists

concluded that there should have been some other

source or mechanism at play to explain the tsunami

generation, such as splay faults or SMFs (GRILLI et al.

2013). Based on analyses of wave and seafloor data,
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TAPPIN et al. (2014) identified and parameterized a

large post-earthquake SMF with an estimated

500 km3 volume, deep near the JT, north of the

main rupture, whose motion could generate addi-

tional higher-frequency waves similar to those

observed at a several buoys. A detailed modeling of

wave generation and propagation from the dual

seismic-SMF source closely reproduced all of the

observations made at nearshore and deep water

buoys, and runup and inundation measured onshore.

Because they need large sediment accumulation

to occur, SMFs are triggered more often on conti-

nental slopes, in underwater canyons offshore of

large estuaries, or on the steeper parts of accretionary

prisms onshore of major subduction zones. Poten-

tially large landslide tsunamis can be generated from

such near-field sources, for which there will be short

propagation and warning times. To assess SMF

tsunami hazard along the upper US East Coast,

GRILLI et al. (2009) conducted a probabilistic analysis

based on Monte Carlo simulations (MCS) of slope

stability and tsunami generation. MCS results repro-

duced well the statistical distributions of areas,

volumes, and types (slide or slump) of SMFs found

in marine geology surveys, and identified regions of

elevated SMF tsunami hazard, in terms of 100 and

500 years return period runup. These were mostly

located north of the Carolinas with, as expected,

elevated risk off of some major estuaries such as the

Hudson River and Chesapeake Bay. The largest

known historical SMF in the region, the Currituck

slide complex, which is over 25,000 years old and

165 km3 in volume, is in fact located offshore of the

latter (GEIST et al. 2009). Tsunami generation and

coastal impact from this large SMF was modeled by

GRILLI et al. (2015), who showed that if it occurred

nowadays, the tsunami would flood heavily populated

coastal areas of Virginia, Maryland, New Jersey and

the Chesapeake Bay, with up to 5 m inundation, after

1–2 h of propagation, depending on distance to the

source (travel time in this particular case is not that

short, due to the very wide shelf in the area). The

latter work was conducted as part of the development

of comprehensive tsunami inundation maps, under

the auspice of NOAA’s National Tsunami Hazard

Mitigation Program (NTHMP). Based on the simu-

lation of the historical Currituck event, four separate

Currituck proxy SMF sources were sited off of the

upper US East Coast, where both the MCS analysis

indicated elevated hazard and the seafloor was

deemed to have sufficient sediment accumulation to

allow for such a large SMF to occur. Tsunami

generation and propagation was simulated for these

four sources, in a series of nested model grids, which

confirmed that significant landslide tsunamis would

be generated, that would arrive after fairly short

propagation times and cause large inundation in

many areas along the coast (see GRILLI et al. 2015 for

detail).

1.2. Realtime Tsunami Warning and Sensing Systems

Tsunami warning centers have been in operation

in the US for over 40 years, essentially to cover

sources in the Pacific Ocean [http://ptwc.weather.

gov; in Hawaii (PTWC) and Alaska (NTWC)]. Over

the years, these centers have served their purpose

very well, issuing rapid and reliable warnings, toge-

ther with specific tsunami runup/inundation forecasts

for many far-field locations, whenever a significant

earthquake occurred in their geographic area.

Regarding landslide tsunamis, however, the centers

have so far only been issuing warnings when some

seismic threshold is reached in previously identified

regions, that near-field landslide tsunamis are possi-

ble; no forecast is issued for meteo-tsunamis. To

issue forecasts for seismic events, the warning centers

have relied on pre-calculated tsunami scenarios

which, once the earthquake parameters are estimated

based on seismic network data, are ‘‘weighed’’ to fit

each specific event (GICA et al. 2008). Additionally,

since 2001, the warning centers have increasingly

relied on realtime tsunami measurements from

‘‘Deep-ocean Assessment and Reporting of Tsuna-

mis’’ (DART) buoys (GONZALEZ et al. 1998), a

network of deep water pressure gages, acoustically

linked to companion buoys, themselves communi-

cating with Iridium satellites. As of 2008, 39 DART

buoys had been deployed by the US, the majority in

the Pacific Ocean, but 7 of those being located in the

Gulf of Mexico and the Atlantic Ocean. More

recently, over 20 additional similar buoys have been

put in operation by other countries, in the Indian and

Pacific Oceans (see http://www.ndbc.noaa.gov/dart.
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shtml). In some areas, other instruments or platforms

have been used to make realtime tsunami measure-

ments, such as a variety of nearshore bottom pressure

sensors and sturdy GPS buoys (e.g., off Japan).

Once a NOAA center issues a tsunami warning,

together with a first set of near- and far-field impact

forecasts, if a tsunami is actually observed at

instruments that are part of its realtime sensing

system (e.g., at DART buoys), the center will refine

its initial forecast by using realtime data to revise the

working tsunami scenario and better match observa-

tions; such a revision then periodically takes place as

more data become available, on both the source (e.g.,

earthquake parameters obtained from seismic net-

works) and the generated tsunami, and new warnings

and forecast are issued. For this procedure to reliably

work, however, the tsunami needs to first propagate

to and be measured at the location of deployed

instruments; hence, this process of iterative revision

takes time to be initiated; for instance, during the

Tohoku 2011 event, it took 30 min for the tsunami to

be recorded at the nearest DART buoy (GRILLI et al.

2013; TAPPIN et al. 2014). Thus, in situations such as

described above, with nearshore seismic or SMF

sources, there may not be enough time with current

realtime sensing systems to issue a second warning

that is based on actual tsunami data, besides indicat-

ing that an earthquake has occurred and, based on its

magnitude and depth, a tsunami was possibly gener-

ated. For non-seismically induced nearshore SMF

tsunamis or for meteo-tsunami events, there may not

event be enough time to issue a first warning once a

tsunami has been detected nearshore. Hence, new

sensing technologies such as shore-based HF radars

could help fill in this detection time gap and issue an

early warning for near-field tsunami sources.

2. Principles of Tsunami Detection Based on HF

Radar Remote Sensing

2.1. Background

As discussed above, new sensing technologies

should be developed and implemented to provide

early warning and allow for realtime coastal hazard

assessment of tsunamis generated from sources in the

near-field, such as SMF- and meteo-tsunamis. Due to

the nature of these sources, such technologies should

also have both a denser and broader spatial coverage

than the point measurement buoys and similar

sensing systems currently used. Here, we propose to

achieve these goals by way of high-frequency (HF)

radar remote sensing.

In recent years, Surface Wave High-Frequency

Radars (SWHFR) radar remote sensing of coastal

currents has been operational, in particular in US

coastal waters, based on the CODAR SeaSonde�sys-

tem (http://www.codar.com/). With this technology,

currents are detected by measuring the Doppler shift

they induce on the radar signal. BARRICK (1979) ini-

tially proposed using HF radars for tsunami detection

and, more recently, his ideas were validated by the

numerical simulations of LIPA et al. (2006), who

demonstrated that the 2004 IO tsunami could have

been detected at some distance offshore if this tech-

nology had been installed in Indonesia. Other

numerical studies, based on the WERA HF radar

system characteristics (http://www.helzel.com/de/

6035-wera-remote-ocean-sensing) reached similar

conclusions (HERON et al. 2008; DZVONKOVSKAYA

et al. 2009a; GURGEL et al. 2011). During the 2011

Tohoku tsunami, shore-based HF radars made direct

observations of the incoming tsunami current, in the

near-field in Japan (HINATA et al. 2011; LIPA et al.

2011, 2012a) and, in the far-field, in Hawaii (BEN-

JAMIN et al. 2015) and in Chili (DZVONKOVSKAYA et al.

2011; DZVONKOVSKAYA 2012). No realtime tsunami

detection algorithm was in place, but the a posteriori

analysis of radar data obtained during the event

allowed identifying the tsunami current in the mea-

surements. In some of these studies, simple tsunami

detection and warning algorithms were proposed,

based on the magnitude of the current inferred from

the radar Doppler spectrum. A more advanced algo-

rithm was proposed by LIPA et al. (2012a), based on

detecting elevated correlations of inferred currents in

neighboring radar cells, and validated using field data

for the Tohoku tsunami. The same approach was later

successfully applied to a posteriori detect velocities

caused by the weak 2012 Indonesian tsunami in the

near-field, using data from radars deployed on the

coasts of Sumatra and the Andaman Islands (LIPA

et al. 2012b), and the June 2013 US meteo-tsunami,
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using data from radars deployed along the US East

Coast (LIPA et al. 2014).

As we shall see, however, for these approaches

based on detecting tsunami currents inverted from the

radar Doppler spectrum to work, the current must be

sufficiently strong to rise above background noise and

current, which limits this type of tsunami detection to

fairly shallow water, where tsunami currents become

stronger due to shoaling, and thus to nearshore

locations, unless there is a wide shelf. This will be

detailed later.

In this study, we develop and validate a new

tsunami detection algorithm, well-suited to HF radar

data, that does not have this limitation to strong

currents and could thus detect tsunamis in deeper

water, further offshore, and provide an earlier warn-

ing, particularly for coasts that face narrow shelves.

Since actual radar data with tsunami effects were not

available during our study, we developed and vali-

dated this new algorithm by way of numerical

simulations of both tsunami and radar signal. Appli-

cations aimed at demonstrating the relevance of the

method are presented in this paper for idealized

tsunamis and bathymetry, but in follow-up work, we

will apply the algorithm to realistic tsunami case

studies performed using state-of-the-art propagation

models. We give an example of such simulations, for

the purpose of illustrating tsunami propagation fea-

tures, for the Western Mediterranean Basin area

where a new type of HF radar, referred to as

Stradivarius (developed by Diginext Ltd.) was

deployed in late 2014, to cover the Gulf of Lion

along and off the southern French Mediterranean

coast (Fig. 1). In the radar signal simulations, for

sake of illustration, we also use the characteristics of

Stradivarius. This HF radar has a lower carrier

electromagnetic wave (EMW) frequency

(fEM ¼ 4:5 MHz) than other radars currently

deployed for measuring coastal currents (e.g.,

CODAR or WERA systems) and has an EMW

propagation mode within the atmosphere–ocean

interface that allows making measurements signifi-

cantly beyond the horizon. In a bistatic configuration

and using efficient antennas and wave forms, Stradi-

varius has been shown in field experiments to

measure surface currents up to 200–300 km

distances, depending on the radar power and envi-

ronmental noise (Fig. 1).

Because the main goal of this initial study is to

demonstrate the validity of the new detection algo-

rithm, we use an idealized framework in simulations,

in which the radar is assumed to work in a monostatic

configuration (which is the limiting case of Stradi-

varius’ actual bistatic configuration for long range),

with a direction of observation nearly perpendicular

to shore. However, to simulate realistic environmen-

tal noise levels, which is important for the validation

of the algorithm, the actual attenuation of the

Stadivarius radar signal measured in field tests is

used in the modeling. Both the bathymetry and

tsunami wave trains are assumed here to be invariant

along the coast, so that tsunami wave crests are

approaching the coast perpendicularly to the radar

line-of-view. This is in fact a fairly good approxi-

mation in many cases of actual tsunami propagation

over a wide shelf, with long stretches of nearly

straight coastline and shore-parallel bathymetry.

The proposed method, however, is not limited to

simple cases of nearly shore-parallel tsunami crests

and shore-normal currents, but is applicable to

arbitrary bathymetry and incident tsunami trains.

Figure 1
Site of Stradivarius radar bistatic deployment in the Gulf of Lion,

Mediterranean sea: solid brown area of coverage, blue symbol

transmitter location, red symbol receiver antennas location, and

dashed lines equivalent monostatic distance from radar in km.

Labels mean: FR France; SP Spain; IT Italy; CR Corsica
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For illustration, Figs. 2 and 3 show such an example

of surface elevations and current magnitude simu-

lated in the Western Mediterranean Sea, for a

landslide tsunami generated by an SMF on the west

shore of Corsica, using the Boussinesq long wave

model FUNWAVE-TVD (SHI et al. 2012; GRILLI

et al. 2013). Landslide tsunami generation is simu-

lated using the three-dimensional model NHWAVE

(MA et al. 2012). The SMF has a 2.7 km3 volume and

is located west of Calvi, Corsica, at 42�34N; 8�33E

on the continental shelf break; it is 12 km long down-

slope, 3 km wide cross-slope, has a maximum

thickness 0.25 km in depth 776 m, and is assumed

to be a rigid slump moving in a direction 280� from

North, over an average 13� slope. The modeling of

the SMF geometry and kinematics follows the

Figure 2
Numerical modeling of the propagation of a landslide tsunami generated by a SMF in West Corsica (SE corner area), to the Gulf of Lion (NW

area). Color scale is surface elevation and black contours are bathymetry in meter. Panels show snapshots of simulations with the long-wave

propagation model FUNWAVE-TVD after: a 100; b 200; c 300; d 400; e 500; f 1 h; g 1 h100; h 1 h200; i 1 h300; and j 1 h400 of propagation,

initialized at 425 s with results of the tsunami generation model NHWAVE. The x-axis is longitude east, and y-axis is latitude north

3900 S. T. Grilli et al. Pure Appl. Geophys.



method outlined in GRILLI et al. (2015) and is not

detailed here as it is beyond the scope of this paper.

In Fig. 2, we see that after about 50 min the landslide

tsunami is propagating onto the Gulf of Lion shelf as

a series of long-crested tsunami waves, towards the

actual location of Stradivarius’ receiver antennas in

Camargue (Fig. 1). Due to refraction, wave crests and

troughs have become nearly parallel to the nearshore

bathymetry and shoreline over the shelf, despite their

initial westward propagation, towards Spain, near the

SMF source (see for instance Fig. 2e–j, after waves

have propagated over the 100 m isobath). As waves

approach shore, due to shoaling, the crests and trough

amplitudes increase as well as the horizontal current

magnitude, essentially as a function of the reduction

in depth, except for a few areas with submarine ridges

and canyons, where waves focus or defocus. Figure 3

shows snapshots of the horizontal velocity module

Figure 3
Same case as Fig. 2. Color scale is horizontal velocity module in m/s computed with the long-wave propagation model FUNWAVE-TVD for

the same times as in Fig. 2
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computed for this case; as expected, velocities are on

the order of a few cm/s in deep water, but become

greater than 0.1 m/s after tsunami waves have

crossed the 1000 m isobath (see Fig. 3d). Over the

shelf, in shallower water, particularly in wave

focusing areas, velocities become larger than

0.15 m/s, the approximate threshold for an accurate

direct detection by HF radar, based on the radar

signal Doppler spectrum.

Other examples of landslide and co-seismic

tsunami propagation over the US east coast shelf

can be found in GRILLI et al. (2010, 2015) and

TEHRANIRAD et al. (2015). The application of the HF

radar detection algorithm to such more realistic

tsunami case studies will be presented in a follow-

up paper.

2.2. Principles of Detection by HF Radar

The analysis of EMW interactions with ocean

surface waves allows to infer various oceanographic

parameters from the SWHFR backscattered signal,

with the most frequently analyzed one being the near-

surface ocean current (see, e.g., the review papers of

BARRICK 1978; SHEARMAN 1986; WYATT et al. 2013).

Although most of the material in this section is

standard and can be found in various references, for

sake of completeness and clarity of the notations and

definitions, a brief summary is presented hereafter. It

has been known since CROMBIE (1955) that the

dominant contribution to the sea echo is produced

by the so-called resonant Bragg wave, whose wave-

length LB is half the radar wavelength kEM. Assuming

deep water ocean waves, we find from the linear

dispersion relationship,

LB ¼ kEM

2
¼ gT2

B

2p
with kEM ¼ cEM

fEM

; ð1Þ

where kEM denotes the EMW wavelength,

cEM ¼ 299;700 km/s is the speed of light in the air,

and g ¼ 9:81 m/s2 is the gravitational acceleration.

For Stradivarius, we find LB ’ 33:3 m and

TB ¼ 4:62 s. Wind waves of this period are present in

the ocean for wind speeds exceeding about 6 m/s.

The lower radar frequency of Stradivarius, therefore,

prevents it from measuring currents in very calm sea

conditions; however, with its large range, the radar is

likely to find many regions of the sea with proper

wind wave coverage.

It follows that the Doppler spectrum of the

backscattered radar signal is mainly composed of

two peaks at the so-called Bragg frequencies �fB,

with from Eq. 1,

fB ¼
ffiffiffiffiffiffiffiffiffiffiffi

g fEM

p cEM

r

ð2Þ

For Stradivarius, for instance, we find,

fB ¼ 0:217 Hz.

The presence of an ocean current, with radial

velocity �Ur in the direction of the radar, induces a

Doppler shift that displaces the Bragg frequencies in

the radar Doppler spectrum by a value,

DfB ¼ � 2Ur

kEM

¼ �Ur

LB

: ð3Þ

When measuring this shift in the radar Doppler

spectrum computed over a specified ocean area: a so-

called ‘‘radar cell’’, Eq. 3 allows estimating the radial

component of the surface current, averaged over the

radar cell.

More specifically, STEWART and JOY (1974)

showed that the surface current actually measured

by the radar corresponds to an average over the radar

cell of the current in the near sub-surface region, to a

depth on the order LB=25 (that is on the order of

1.3 m for the radar frequency considered here).

This approach can in principle be applied to the

detection of the radial component of a tsunami-

induced current �Utr. Thus, from the frequency shift

obtained by processing radar data in a given radar cell

centered at x ¼ ðx; yÞ, we find the current magnitude
~Utrðx; tÞ, averaged over:

– (overbar) a radar cell of dimension Dr in the radial

direction and aperture D/r in the azimuthal

direction (for a monostatic configuration),

– and (tilde) a measuring (or integration) time

interval Ti (for the Doppler spectrum).

The area of each radar cell must be sufficiently large

to include a statistically meaningful sample of wind

waves of various wavelengths (i.e., Dr is a few

kilometers). The frequency resolution of the Doppler

spectrum near its peak is, DfD ¼ 1=Ti, which implies

that the inverted radial current has a resolution,
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DUr ¼ LB=Ti. Hence, to accurately infer weak sur-

face currents based on a Doppler shift, the measuring

time interval must be sufficiently long, typically at

least 2 min for a 12 MHz (DUr ¼ 10 cm/s), but as

much as 5–10 min for a 4.5 MHz (DUr ¼ 10 � 5 cm/

s), radar frequency. For instance, in their recent work,

BENJAMIN et al. (2015) reported a resolution

DUr ¼ 0:074 m/s for currents computed from the

Doppler spectra measured near Honolulu, HI, with a

16 MHz WERA HF radar, which limited the ability

of the radar to detect currents caused by the Tohoku

2011 tsunami in the deeper water areas of their

nearshore radar ranges, where they were smaller than

this threshold; or in other words to achieve an

accurate inversion, currents had to be at least 0.12–

0.15 m/s. However, the oscillatory nature, in space

and time, of an incoming tsunami wave train (and of

the surface current it induces) means that the larger Ti

the lower the maximum value of the estimated

current over a given radar cell, due to time averaging

of the tsunami signal. Hence, these conflicting

requirements must be carefully weighted when

selecting parameters of the radar signal processing

algorithm. In particular, in view of the long-crested-

ness of incident tsunami waves, one can reduce Ti and

compensate for the loss of resolution this causes by

applying a cell-averaging in the radar azimuthal

direction, on either side of a given radar cell.

In the most advanced study of tsunami detection

by HF radar to date, LIPA et al. (2012a) analyzed

measurements made during the Tohoku 2011 event,

at 14 radar sites in Japan and in the US, and proposed

a new detection algorithm based on a spatial pattern

recognition of the inverted tsunami current. They

noted that current velocities of an incoming tsunami,

inferred from the radar Doppler spectrum in neigh-

boring radar cells, will be both strongly correlated

and exhibit oscillations (associated with successive

crests and troughs in the tsunami wave train) that are

becoming increasingly significant above background

current values, as depth decreases. On this basis, they

proposed a multiple-step tsunami detection algorithm

based on correlations of average current velocities

inverted in neighboring radar bands. The main

limitation of this method, however, is that the

tsunami current must be detectable over background

current values, which depending on the area could be

as high as 0.10 m/s; hence, with the expected

resolution of the inverted radial current, the tsunami

current must be at least Ut � 0.10–0.15 m/s for this

method to reliably work (this will be illustrated later

in the paper). As shown in Fig. 3, tsunami current

velocities are typically very small in deep water, less

than 0.05 m/s and below the radar detection resolu-

tion, even for extreme tsunamis, and only start

increasing when the tsunami propagates into fairly

shallow water over the continental shelf. Hence, this

direct tsunami detection approach, based on currents

inverted from radar Doppler spectra, is limited to

shallower water areas (Lipa et al.’s group, for

instance, indicate that water depth must be less than

200 m for their method to work) and thus nearshore

areas where warning times will be small, unless there

is a very wide shelf; but the latter would also require

a radar with a large enough measuring range to detect

the tsunami early enough on the shelf.

2.3. Basic Tsunami Wave Physics

Although this is standard wave mechanics mate-

rial as well, in the following, we summarize the

salient tsunami wave physics and related equations in

the context of HF radar detection.

Except for very close to shore, where nonlinearity

becomes large, tsunami wave trains can be accurately

represented by linear long wave theory (DEAN and

DALRYMPLE 1984), since their characteristic wave-

length is typically large compared to depth and

verifies Lt � 20 h, with h(x, y) the local depth, and

they have a very small steepness gt=Lt � 1, with gt

the tsunami surface elevation. This also means that

the tsunami-induced horizontal current, Ut, can be

assumed to be nearly uniform over depth and thus

only function of the horizontal location (x, y) and

time t. Additionally, while phase speed is very large

in deep water, ct ¼
ffiffiffiffiffi

gh
p

, the induced current is small

and given by,

Ut ¼ gt

ffiffiffi

g

h

r

kt

kt

ð4Þ

(where gt � hðx; yÞ in deep water), with ktðx; y; tÞ ¼
j kt j¼ 2p=Lt the tsunami wavenumber, and kt ¼
kt ðcos/t; sin/tÞ the wavenumber vector, with /t the

local angle of the tsunami wave ray with respect to
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the x-axis (here typically orientated shoreward). [The

unit vector at the end of Eq. 4 thus points in the local

direction of tsunami propagation, /tðx; yÞ, i.e., the

local wave ray.] For linear long waves propagating

over a typical ocean bathymetry, the local tsunami

elevation gt can be predicted based on the initial deep

water tsunami elevation gt0 using Green’s law,

gtðx; yÞ ¼ gt0

ct0ðh0Þ
ctðhÞ

� �1
2

¼ gt0

h0

hðx; yÞ

� �1
4

; ð5Þ

where ct0 ¼
ffiffiffiffiffiffiffi

gh0

p
is the tsunami phase speed in ref-

erence depth h0.

Long waves refract as a function of depth even in

very deep water, based on changes in phase speed

ctðhðx; yÞÞ. Under the geometric optics approximation

and for a simple (nearly shore parallel) bathymetry

variation (e.g., as on the continental shelf of the Gulf

of Lion in Fig. 2), the tsunami direction of propaga-

tion can be estimated based on Snell’s law as,

/tðx; yÞ ¼ sin�1 sin/t0

ctðx; yÞ
ct0

� �� �

¼ sin�1 sin/t0

hðx; yÞ
h0

� �1
2

( )

; ð6Þ

from an initial direction /t0 in deep water. Since

phase speed gradually decreases /
ffiffiffiffiffiffiffiffiffiffiffiffiffi

hðx; yÞ
p

, Eq. 6

eventually yields, in all cases: /t � /t0, and Eq. 5,

gt � gt0, when the tsunami approaches the shore.

Hence, according to these simplified equations and

set-up, tsunami wave crests will gradually grow in

elevation and rotate to be orientated nearly parallel to

the local bathymetric contours, while their horizontal

current will increase in the direction normal to those

contours; this was the behavior observed in Figs. 2

and 3, based on a complete numerical modeling of

tsunami propagation. A consequence of this is that an

incoming tsunami, whatever its initial source location

and direction of propagation in a given ocean basin,

will eventually arrive in a direction nearly normal to

shore and thus propagate essentially straight towards

a shore-based radar, with a current magnitude grad-

ually increasing, as predicted by Eqs. 4–6, as

j Ut j¼ Ut / h�3=4. In their recent study, TEHRANIRAD

et al. (2015) confirmed this property, for tsunamis

propagating towards the US East Coast in the Atlantic

Ocean basin, by computing tsunami wave rays based

on the eikonal equation. Additionally, they showed

that results of the geometric ray approximation were

in very good agreement with results of tsunami

simulations using the long wave propagation model

FUNWAVE-TVD; besides providing an accurate

travel path for tsunami waves, they found that the

density of wave rays intersecting the coast, a measure

of energy flux concentration, could be used as a good

predictor of the coastal inundation predicted by

FUNWAVE-TVD.

One should note, however, that for an arbitrary

bathymetry, one must solve as a minimum the

‘‘eikonal’’ equation to compute wave rays (DEAN

and DALRYMPLE 1984); this will be detailed later. It

should also be noted that neither Green’s nor Snell’s

law (or their more elaborate form with the eikonal

equation) depend on bottom slope, which has been

shown to be accurate within the mild slope approx-

imation (BOOIJ (1983) showed that the bottom slope

could be up to a 1:3 for this approximation to hold,

which is much more than any oceanic slope).

According to these fundamental physical properties

of long wave propagation and induced currents, a

tsunami detection algorithm based on directly ‘‘invert-

ing’’ Doppler spectral shifts, such as proposed by LIPA

et al. (2012a), would only be applicable where

tsunami currents are sufficiently larger than back-

ground currents (also accounting for the inverted

current resolution), which typically means nearshore,

over the continental shelf; hence, warning times would

depend on shelf width and thus could be quite small in

some locations. Here, assuming an SWHFR HF radar

such as Stradivarius is used, which can sense ocean

properties as far as 200–300 km from shore, we are

proposing and validating a new type of tsunami

detection algorithm that is not based on inverted

currents, but instead on directly processing the radar

signal. We will show that this algorithm does not

require tsunami currents to reach large enough values

(e.g., [0.10–0.15 m/s), and rise above background

currents, to be detectable. With the new method, an

incoming tsunami with currents as low as 0.05 m/s can

be detected, even in the presence of larger background

currents, and thus tsunami detection can occur in

deeper water, beyond the continental shelf, which will

increase warning times. This would be particularly

important where there is a narrow shelf.
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Another advantage of the HF radar over standard

instruments, besides making it possible to detect an

incoming tsunami at a distance from shore large

enough to afford a reasonable warning time, is that it

provides a spatially dense set of measurements over a

broad oceanic area (Fig. 1), at a resolution commen-

surate with radar cell scales (i.e., a few km by a few

km). For a monostatic radar configuration, for which

the radar transmitter and receiver antennas are

collocated, measurements are made in radial direc-

tions from the radar location, while for a bistatic

configuration, where the transmitter and receiver

antennas are separated by a large distance (e.g., tens

of km; Fig. 1), measurements are made in directions

normal to the local ellipse whose focal points are the

antenna locations (GROSDIDIER et al. 2014); more

details are provided in a following section.

Because of this property of radar remote sensing,

one can thus only estimate the projection of local

tsunami currents on specific radar ray directions and,

unless at least two radars are used, it is necessary to

have a priori knowledge of tsunami propagation

patterns, and hence local wave ray directions j kt j
over the detection area, in order to infer the full

current magnitude and estimate local tsunami eleva-

tions gt in each radar cell, based on these using Eq. 5,

provided currents are strong enough to be reliably

inverted. As will be detailed later, this local knowl-

edge can be obtained by way of numerical

simulations of long wave propagation, given the

local bathymetry h(x, y) and the most probable

tsunami initial directions /t0 (which can be obtained

from local knowledge of the most probable tsunami

sources in the considered ocean basin).

In the following, in Sect. 3, we develop a

complete second-order model of both ocean waves,

in the presence of a varying surface current, and HF

radar scattering. In Sect. 4, we present two tsunami

detection algorithms, the first one is standard and

based on a direct detection by way of the current

inferred from the radar Doppler spectrum, similar to

earlier work discussed before, and the second one is a

newly proposed algorithm that alleviates the limita-

tion to a large enough current and/or shallow water of

the earlier approaches. In Sect. 5, we apply both

algorithms to cases with idealized tsunami waves and

bathymetry and identify in which situation each one

performs best. Based on these results, we discuss

what would entail applying the detection algorithms

to more realistic cases (such as shown in Figs. 2, 3).

Finally, we offer some conclusions and perspective

for future work.

3. HF Radar Scattering Model

To simulate tsunami detection by HF radar, we

implement numerical models of both ocean wave

propagation and radar backscattering by these, in the

presence of a surface current. Upon interacting with a

rough, wave-covered, ocean surface of elevation

gðr; tÞ (with respect to a position vector rðx; yÞ
defined based on the radar location), EMWs diffract,

and a fraction of those propagates back to the radar

receiving antennas, to be measured as the backscat-

tered radar signal SðtÞ. In this process, because the

celerity of ocean waves is much less than that of

EMWs (cB ¼ LB=TB � cEM), the ocean surface can

be assumed to be stationary. To the first-order, the

two-sided power density spectrum of the radar signal,

referred to here as ‘‘Doppler spectrum’’, exhibits two

maxima at the Bragg frequencies �fB defined earlier;

each of those corresponding to waves propagating

toward or away from the radar, respectively. Higher-

order effects, however, cause secondary, lower-en-

ergy, peaks to appear in the Doppler spectrum, at

frequencies both lower and higher than the Bragg

frequency.

Here, we detail the equations and implementa-

tion of the two models used for simulating ocean

waves and radar scattering, up to second-order. In

the models, the total surface current is assumed to be

the sum of a: (1) spatially variable, but nearly sta-

tionary at the time scale of radar data acquisition

([OðTiÞ), background oceanic current, UbðrÞ; and

(2) spatially and temporally varying current, Utðr; tÞ
induced by the tsunami wave train (see, e.g., Eq. 4);

hence,

Uðr; tÞ ¼ UbðrÞ þ Utðr; tÞ: ð7Þ

The background current, also known as mesoscale

current, is spatially variable in a way that depends on

local and synoptic environmental ocean conditions.

During a tsunami event lasting on the order of 1 h,
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however, this current can be assumed to be randomly

fluctuating around stationary values, during the entire

duration of data acquisition by the radar. In a specific

case, the background current could be obtained from

an operational regional ocean model but, as we shall

see, this is not necessary to apply the newly proposed

tsunami detection algorithm.

3.1. Ocean Surface Model

Assuming a small steepness, the surface elevation

of random ocean waves is represented by a classical

second-order perturbation expansion,

gðr; tÞ ¼ g1ðr; tÞ þ g2ðr; tÞ, which is sufficient to

accurately simulate both the waves’ energy density

and resulting backscattered HF radar Doppler spectra

(LONGUET-HIGGINS 1963; WEBER and BARRICK 1977).

For first-order waves, the classical expression is

adapted to include effects of a surface current,

g1ðr; tÞ ¼
X

�¼�1

Z

a�ðKÞ eiðK:r��XðK;r;tÞtÞ dK; ð8Þ

where the integration is carried out over the

wavenumber vectors, K ¼ ðKx;KyÞ ¼ Kðcos h; sin hÞ,
and wave harmonic amplitudes are given by,

a�ðKÞ ¼ 1
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Wð�KÞ
p

Z�ðKÞ; ð9Þ

with W the directional wave energy density spectrum

and Z�ðKÞ a standard complex normal variable (with

unit variance and zero mean), independently for each

wave harmonic.

The angular frequency of each wave component,

XðK; r; tÞ, is modulated by the surface current Uðr; tÞ
resulting from both the tsunami wave train and the

background current. Assuming that the tsunami

current is slowly varying in time at the scale of

ocean waves, i.e., the tsunami characteristic period,

Tt � Tp, the peak spectral wave period, and that

waves are in the deep water regime, we have,

XðK; r; tÞ t ¼ ðXg þ K:UbðrÞÞ t þ
Z t

0

K:Utðr; sÞds;

ð10Þ

where the integral is a memory term representing the

cumulative effects of the tsunami current on the

instantaneous wave angular frequency, and,

Xg ¼
ffiffiffiffiffiffi

gK
p

ð11Þ

is the standard angular frequency of linear gravity

waves in deep water (DEAN and DALRYMPLE 1984).

Second-order waves are similarly expressed as,

g2ðr; tÞ ¼
X

�1;�2¼�1

Z

C�1;�2 a�1ðK1Þ a�2ðK2Þ eiðK1þK2Þ:r

	 e�iðX1þX2Þt dK1 dK2; ð12Þ

where Xj ¼ �jXðKj; r; tÞ; j ¼ 1; 2; and C�1;�2 is a

kernel whose expression is given in Appendix 2.

Note that assuming deep water ocean waves

implies that the dominant wavelength of ocean wind

waves is small with respect to depth. If not, modified

expressions of both the wave dispersion relationship

and the second-order kernels can be used to account

for limited water depth effects (see, e.g., LIPA and

BARRICK 1986).

In the applications presented hereafter, sea state is

assumed to be fully developed and represented by a

Pierson–Moskowitz (PM) directional wave energy

density spectrum WðKx;KyÞ, parametrized as a func-

tion of V10, the wind speed at a 10 m elevation, and

with a standard angular spreading function, which

includes the power s of a cosine function of direction

with respect to the dominant direction of wind waves

hp. This function is asymmetric, to model a fraction n
of the spectral wave energy associated with waves

propagating in the direction opposite to the dominant

wind direction; see Appendix 1 for details. For

instance, for V10 ¼ 10 m/s, s ¼ 5, and n ¼ 0:1, we

find a sea state with significant wave height,

Hs ¼ 1:71 m, peak spectral wavelength

Lp ¼ 127:4 m and, assuming deep water, peak period

Tp ¼ 9:04 s.

3.2. Definition of Doppler Spectra

The Doppler spectrum rðxÞ is defined as the

radar cross section per unit area and bandwidth.

Following Rice’s perturbation theory for shallow

rough surfaces, Barrick first established the classical

first- (BARRICK 1972a) and second-order (BARRICK

1972b) theory of HF radar Doppler spectra at near-

grazing incidence, in the absence of a background

current and for infinite water depth. To the first-order
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in vertical polarization, the Doppler spectrum is

expressed by1,

r1ðxÞ ¼ 26pK4
0

X

�¼�1

Wð�KBÞdðx� �XBÞ; ð13Þ

where K0 ¼ 2p=kEM is the electromagnetic wave

number, and the second-order expression is given by,

r2ðxÞ ¼ 26pK4
0

X

�1;�2¼�1

Z

CðKÞj j2Wð�1KÞWð�2K
0Þ

	 dðx� �1

ffiffiffiffiffiffi

gK
p

� �2

ffiffiffiffiffiffiffiffi

gK 0
p

Þ dK; ð14Þ

where K0 ¼ KB � K, and the kernel C is detailed in

Appendix 2.

Barrick’s original theory was more recently

extended to include a bistatic configuration and finite

radar cells, based on a rigorous electromagnetic

theory using pulsed dipole sources at finite distance

(GILL and WALSH 2000, 2001; GILL et al. 2006). In the

present analysis, we will discard cell truncation

effects, due to the choice of a particular incident

waveform, and work with a plane wave formalism,

which is valid to the limit of large radar cells.

3.3. Simulating Time Series of Radar Signal

The backscattered electric field (a.k.a., radar

signal) is denoted by SðtÞ ¼ S1ðtÞ þ S2ðtÞ, and esti-

mated up to second-order and normalized in such a

way that the Doppler spectrum can be expressed as,

rðxÞ ¼ 1

T

Z þT=2

�T=2

SðtÞ eixt dt

�

�

�

�

�

�

�

�

�

�

2* +

; T ! þ1

ð15Þ

According to Rice’s perturbation theory, the first- and

second-order backscattered fields are proportional to

the spatial Fourier transform at the Bragg vector KB,

of the first- and second-order ocean surfaces defined

by Eqs. 8 and 12, respectively, that is,

S1ðtÞ ¼
ffiffiffi

2
p

K2
B

X

�¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wð�KBÞ
p

e�i�XBt Z�ðKBÞ

S2ðtÞ ¼
ffiffiffi

2
p

K2
B

X

�1;�2¼�1

Z

CðKÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wð�1KÞWð�2K
0Þ

q

	 e�ið�1Xþ�2X
0ÞtZ�1ðKÞZ�2ðK0Þ dK; ð16Þ

where Z� again denotes a standard complex normal

variable (with unit variance and zero mean),

K0 ¼ KB � K, and the factor
ffiffiffi

2
p

K2
B ensures consis-

tency with Eq. 15. The circular frequencies X and X0

are obtained from the wave dispersion relationship in

the presence of a current, Eqs. 10 and 11, applied to K

and K0, respectively.

Given a directional wave energy density spectrum

WðKÞ and a set of random functions Z�ðKÞ (repre-

senting random phases), Eq. 16 allows simulating

time series of backscattered radar signal, up to

second-order, in a given radar cell located at distance

rðx; yÞ from the radar, for specified radar character-

istics (e.g., KB) and location, in the presence of a

surface current Uðr; tÞ in the cell, including a tsunami

current Utðr; tÞ. Note that this formulation does not

yet include effects of the signal attenuation with

range and environmental noise, which are discussed

in the next section.

3.4. Attenuation Model and Environmental Noise

With the exception of a constant coefficient

depending on the radar antenna system and the

emitted power, the normalized electric signal

received by the radar, from each radar cell, is

expressed as

VðtÞ ¼ ASðtÞ þ N ðtÞ with

AðrÞ ¼ FðrÞj j2r�2
ffiffiffiffiffiffiffi

DS
p

;
ð17Þ

a geometric attenuation factor function of range r, in

which DS ¼ r Dr D/r, with Dr and D/r the cells’

radial and azimuthal resolutions, respectively; N is

environmental noise, detailed below, and F represents

the EMW attenuation by the ocean surface, which is

computed here using the GRwave model (GROSDIDIER

et al. 2014).

For an integration time Ti, the (non-normalized)

radar Doppler spectrum is calculated at time ts by

applying Eq. 15 over a finite time window

1 Note that there is a misprint in equation (8) of the original

paper by BARRICK (1972a), where K0 should be replaced by K4
0 , and

a non-standard normalization of the directional spectrum resulting

in a missing 23 factor, as compared to subsequent stabilized ver-

sions of the theory (LIPA and BARRICK 1986).
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½ts � Ti=2; ts þ Ti=2
, to the received radar signal V(t)

defined above, that is,

IðfD; tsÞ ¼
1

Ti

Z tsþTi
2

ts�Ti
2

VðsÞ e2ipfDsds

�

�

�

�

�

�

�

�

�

�

2

; ð18Þ

with fD denoting a set of discrete Doppler frequencies

(with xD ¼ 2pfD). If the received radar signal is

simulated/(recorded) at a constant temporal sampling

rate Dt ¼ Ti=N, Eq. 18 can be easily computed as a

summation from �N=2 to N / 2.

When the Doppler spectrum is used to reconstruct

(invert) the ocean surface current in the cell, Uðr; tsÞ,
to achieve a sufficient resolution in time, the spec-

trum must be computed at a time interval, Dts � Tt,

the characteristic period of current variation; this also

means in general that we need, Dts � Ti. To meet

these requirements, in practice, one assumes some

overlap between time series of radar signal, based on

which each Doppler spectrum is computed. This is

detailed later.

In the ocean, the backscattered radar signal is

affected by thermal noise and various other environ-

mental sources of noise. Since noise is statistically

homogeneous and independent of range, the radar

signal attenuation with range makes the signal-to-noise

ratio (SNR) decrease, which limits the effective

measuring range of HF radar systems. To simulate

environmental noise, besides range attenuation and the

resulting varying SNR with distance, which is already

included in the simulated radar signal Eq. 17, in each

radar cell, we specify an independent Gaussian

distributed noise, with constant standard deviation rN ,

NðtÞ ¼ rN fGR
t ð0; 1Þ þ iGI

t ð0; 1Þg; ð19Þ

which, similar to the signal, is a complex number.

The subscript t indicates that different Gaussian

random values ½GR
t ð0; 1Þ;GI

t ð0; 1Þ
, with unit standard

deviation and zero mean, are being generated for each

time level t.

Diginext Ltd. field tested the Stradivarius radar

system in the Gulf of Lion area (Fig. 1) and measured

the main Bragg lines’ SNR (according to the noise

floor) at 200 km, during a typical day with wind

speed V10 ¼ 10 m/s and near surface temperature

17 �C. They found an average SNR of 30 dB, using

an integration time of 10 min. In the applications

presented hereafter, we use a value of rN (in dB) that

reproduces the same SNR at the same distance as

measured in the field for Stradivarius, when working

with a normalized amplitude V(t); other rN values

applicable to other radar systems, however, could be

easily used in our model. This leads to the param-

eterization of the noise standard deviation as,

rN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KBZ

2p
T 10ðfa=10Þ

r

ð20Þ

with KBZ ¼ 1:38 10�23 K�1 the Boltzmann constant,

T ¼ 290 K the absolute temperature, and fa a

parameter allowing to adjust the noise level, and

found to be 130 based on field experiments with

Stradivarius, yielding, rN ¼ 8:0 10�5. This value of fa

will be used in the applications of the tsunami

Detection Algorithms presented below, unless

specifically noted.

With this constant level of noise in the simulated

data, and in view of the attenuation of the radar signal

at large range, the simulated SNR decreases with

range in a realistic way, which makes the surface

current gradually less detectable by the HF radar as

distance increases, in a realistic manner.

4. Algorithms for Tsunami Detection by HF Radar

As detailed above, the ocean surface current

caused by an incoming tsunami (see Eqs. 4, 5) can be

reconstructed based on the shift it causes to the Bragg

frequencies of the HF radar signal Doppler spectrum.

The current can be computed at regular time intervals

in a series of radar cells, in directions either radial to

the radar for a monostatic deployment or normal to

the local radar ellipse for a bistatic deployment.

Several studies have already demonstrated the rele-

vance of this approach for detecting tsunamis

propagating in fairly shallow water, over the conti-

nental shelf, either by numerical modeling, or by a

posteriori analyzing data from HF radars deployed in

near- and far-field areas impacted by the Tohoku

2011 tsunami, the 2012 Indonesian tsunami, and the

2013 meteo-tsunami that impacted the US East Coast
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(LIPA et al. 2006, 2011, 2012a, b, 2014; DZVONKOVS-

KAYA et al. 2009a, b, 2011; GURGEL et al. 2011;

HINATA et al. 2011; DZVONKOVSKAYA 2012). Note that

all of these studies were based on HF radars with

frequency 3–4 times larger than that of Stradivarius,

which hence had detection ranges proportionally

shorter (i.e., 50–70 km).

In practice, however, such a direct reconstruction

of tsunami current can only be achieved when both

the radar signals rises sufficiently above environ-

mental noise, i.e., within the practical detection range

of the considered radar, and the tsunami current

magnitude is sufficiently larger than that of the

background current (also accounting for the typical

resolution of inverted currents, DU ¼ 5–10 cm; see

Eq. 7). Simulations of radar backscattering for syn-

thetic tsunamis presented later will show that the

tsunami current magnitude should be above 0.10–

0.15 m/s for a direct reconstruction to be meaningful,

which is consistent with the magnitude of tsunami

currents reliably detected with this method in existing

field studies. Using Eq. 4 and assuming an incoming

tsunami amplitude j gt j¼ Oð1Þ m, which is quite

extreme away from nearshore areas, and a current

magnitude j Ut j¼ Oð0:2Þ m/s, we find that the depth

range for detection is h� 245 m (a value close to the

h� 200 m mentioned by Lipa et al. for a reliable

detection); under the same conditions, a 0.5 m tsu-

nami would only be detectable for h� 61 m. Hence,

the direct reconstruction method, which linearly

relates the current to the HF radar Doppler spectrum

shift, can only detect tsunamis that have already

propagated over the continental shelf. Nevertheless,

this method can achieve an early detection of an

incoming tsunami when there is a wide shelf, over

which tsunami propagation to shore may still take on

the order of 1 h.

In this study, to achieve an early tsunami detec-

tion in the absence of a wide shelf, we propose a

complementary approach aimed at exploiting the

capability of lower frequency HF radars (such as

Stradivarius), of measuring ocean properties up to a

200–300 km, which clearly reaches beyond the con-

tinental shelf, in deeper water areas where tsunami

currents may typically be a few cm/s (Figs. 1, 2, 3).

The new approach does not rely on inverted currents,

but instead detects the effects of currents as low as

0.05 m/s on the radar signal V(t), even in the pres-

ence of much larger background currents, which

would otherwise not be reliably inverted from the

radar Doppler spectrum. For the two examples given

above, the detection depths of a 0.05 m/s tsunami

current would become h� 3; 924 and 981 m,

respectively. As discussed in the Sect. 1, there are

many locations where such a detection ability would

be desirable, or even required, in order to develop a

tsunami early warning system.

As pointed out by LIPA et al. (2012a), when a

tsunami wave train propagates over a typical shelf

bathymetry, the current it induces is oscillatory in

time and space and tsunami wave crests, due to

refraction, become increasingly parallel to the local

isobaths and the shore. Hence, the current recon-

structed from the Doppler spectrum in a given radar

cell should be highly correlated with that inferred in

other radar cells. LIPA et al. (2012a) exploited this

property to develop a detection algorithm based on

spatial correlations of the reconstructed current

between neighboring radar cells (in the crown/angu-

lar direction) reaching a specific threshold. However,

as discussed above, for this method to work, the

tsunami current magnitude must sufficiently rise over

that of the background current and thus, in practice,

the method is limited to shallower water over the

shelf (Lipa et al., indicate the need for h� 200 m).

As will be detailed below, in the newly proposed

approach we also exploit this property of high spatial

correlation of tsunami currents, but in the range

direction. Additionally, we use long wave physics

and the fact that tsunami wave crests (and corre-

sponding induced currents) propagate at the local

phase speed along a wave ray. Therefore, correlations

of time series of radar signal (modulated by the tsu-

nami current), between two distant radar cells located

along the same way ray, one closer and one further

away from the radar, should be high when shifting

one of the two time series by the tsunami propagation

time between the two cells; an elevated correlation

will thus signify that a tsunami is propagating

towards the radar.

In the following, we present the principles for two

tsunami detection algorithms and explain how each

algorithm can be entirely simulated numerically,

based both on computed time series of radar signal in
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a series of radar cells, from a representation of the

ocean surface including effects of a surface current,

as discussed above, and results of tsunami simula-

tions using a wave propagation model, that provide

synthetic tsunami currents in the radar cells, in lieu of

actual field measurements. We first briefly present

Tsunami Detection Algorithm 1 (TDA1), which is a

standard algorithm based on a direct reconstruction of

surface currents from HF radar measurements, by

inverting the radar Doppler spectrum; as discussed,

this algorithm requires currents to be large enough,

and thus TDA1 will work well for detection over the

continental shelf, whatever the actual radar range.

Then, we present Tsunami Detection Algorithm 2

(TDA2), which is based on the newly proposed

approach of time-shifted correlations of the radar

signal; we will show that this algorithm is able to

detect the presence of weak tsunami currents, even in

the presence of much larger background current, and

hence TDA2 can achieve tsunami detection in deeper

water, beyond the continental shelf. In a practical

situation, both algorithms could be simultaneously

run on the same radar data, and would thus be com-

plementary, with their ability to cover both shorter

and larger ranges.

In a simulation mode, for each tsunami detection

algorithm, we implement and run the radar scattering

model detailed above to simulate the HF radar signal

V(t). A series of radar cells are defined over the ocean

area covered by the radar EMWs, of radial resolution

Dr and azimuthal resolution D/r, each centered at rmn

from the radar (where n denotes the radial range and

m the azimuthal range). In each cell, sea state is

specified by its energy density spectrum WðKÞ as well

as a surface current Uðrmn þ xmn; tÞ [where xmn are

coordinates defined at the center of cell (m, n)]. This

current may include a background current plus a

simulated tsunami current, obtained from separate

numerical simulations. On this basis, random surface

elevations gðrmn þ xmn; tÞ are generated in each cell

using Eqs. 8–12 and the corresponding radar signal

VmnðtÞ is calculated using Eqs. 16–19. Both algo-

rithms can only be applied where the radar signal is

sufficiently above environmental noise (i.e., the SNR

is sufficiently large) and, hence, there is a range

limitation for practical detection, which is site

specific, as a function of radar characteristics and

atmospheric and stratospheric conditions. As detailed

before, both environmental noise and range effects

are included in the simulations of the radar signal in a

realistic manner.

Details of both algorithms are presented in the

following sections.

4.1. TDA1: Tsunami Detection Algorithm 1: Doppler

Spectrum ‘‘Inversion’’

In each radar cell (m, n), the radar signal Doppler

spectrum ImnðfD; tsÞ is calculated, at regular time

intervals Dts, using Eq. 18 (for an integration time Ti).

The primary peaks of the Doppler spectrum, located

at frequencies �f max
Dmn

ðtsÞ, will be shifted according to

Eq. 3 with respect to the Bragg frequency fB
proportionally to the radial component of the surface

current in the cell. Based on this property, the time-

and cell-averaged surface current can be recon-

structed along the local radial direction rmn, as

~Urmn
ðtsÞ ¼ LB ðf max

Dmn
ðtsÞ � fBÞ; ð21Þ

within a resolution DUr ¼ LB=Ti since, as mentioned

before, the Doppler spectrum frequency resolution is

Df ¼ 1=Ti; thus, Ti should be sufficiently large to

provide a good resolution of the inverted current. In

direct conflict with this requirement, however, the

reconstructed current based on Eq. 21 is time-aver-

aged over Ti and, hence, Ti should also be much less

than the tsunami characteristic period Tt. Otherwise,

the reconstructed currents could be significantly

underestimated, due to smoothing out by averaging

positive and negative values in the tsunami wave

train, and become undetectable with this algorithm. A

practical solution to this problem, assuming long-

crested tsunami wave trains in the azimuthal direction

(e.g., Figs. 2, 3), is to reduce Ti and compensate this

by averaging the Doppler spectra computed in a few

cells in the azimuthal direction; details will be pro-

vided in applications. It should be stressed, because

the reconstructed current ~Urmn
ðtsÞ also includes the

background current, that this algorithm will provide

good results only when the tsunami current is sig-

nificantly above background.

Finally, if the local direction of propagation of the

tsunami ktmn is known based on pre-existing tsunami
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modeling (e.g., using Snell’s law in the simplest

case), the tsunami elevation can also be estimated

from the reconstructed current using Eq. 4, by

performing a simple projection, as,

gtðrmn; tsÞ ¼
~Urmn

ðtsÞ
rmn

rmn
 ktmn

ktmn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

hðrmnÞ
g

s

; ð22Þ

where hðrmnÞ is the depth at the cell center.

4.2. TDA2: Tsunami Detection Algorithm 2: Shifted

Signal Correlations

TDA2 directly processes the radar signal V(t) to

detect an approaching tsunami and thus overcomes

the limitations of TDA1 to short range and/or shallow

water, where tsunami currents are sufficiently large to

rise above the background. It is based on the

fundamental property that, to the first-order, any

tsunami propagates at the long wave celerity ct,

which is entirely fixed by the local depth, along site-

specific wave rays that can be pre-computed based on

the bathymetry h(x, y) in a given area. Hence, radar

signals measured in two radar cells located on the

same wave ray will be highly correlated when shifted

in time by the tsunami propagation time between the

cells.

Let us first consider the simple case of a shelf and

nearshore area that have no longshore variation, i.e.,

with a depth given by h(x), where x is the cross-shore

coordinate (e.g., Fig. 4), and that there is no

background current (the effect of a background

current will be evaluated last). In this case, the

bathymetric contours are parallel to the straight

shoreline and any tsunami wave train, incident with

an angle /t0 in deeper water of depth h0, refracts in a

way that, for this simple case, is analytically

predicted by Snell’s law (Eq. 6); additionally, wave

shoaling is also accurately predicted by Green’s law

(Eq. 5), corrected by a refraction coefficient also

obtained from Snell’s law (DEAN and DALRYMPLE

1984). Furthermore, in the simplest possible case of a

normally incident tsunami on this bathymetry

(/t0 ¼ 0), all the wave rays are straight and shore

normal, and the refraction coefficient is 1. In this

idealized situation and assuming linear long wave

theory, the propagation time of an incoming tsunami

between two radar cells, say p and q, whose centers

are located at rp in deeper depth hðrpÞ and rq in

shallower depth hðrqÞ, respectively, along the radar

ray that is also normally incident to the bathymetry, is

given by,

Dtpq ¼ tðrqÞ � tðrpÞ ¼
Z rq

rp

dr
ffiffiffiffiffiffiffiffiffiffiffi

ghðrÞ
p , or

I sðrqÞ

sðrpÞ

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ghðsðrÞÞ
p

ð23Þ

for an arbitrary wave ray in a more general case,

where sðrðx; yÞÞ denotes the curvilinear abscissa

along the ray, with ds ¼ dx cos/t þ dy sin/t.

Now, for an approaching tsunami wave train, as

already pointed out in earlier work, the current

generated in cells p and q should be highly correlated

in time, but for two distant cells even more so when

shifted by this expected propagation time. Therefore,

corrf �Utqðs� Ds� DtpqÞ; �UtpðtÞg

¼ 1

Tc

Z tþTc
2

t�Tc
2

�Utqðs� Ds� DtpqÞ �UtpðsÞds ð24Þ

is maximum when time lag Ds ¼ 0, for a correlation

time Tc.

According to this property of long wave propa-

gation, the principle of TDA2 is that the angular

frequency changes (i.e., Doppler shifts) induced by

the tsunami current on the independent random

surface waves occurring in each radar cell, that cause

modulations of the radar signal V(t), should also be

highly correlated when shifted by the tsunami

propagation time between the cells. Hence, correla-

tions of the radar signals measured/simulated in two

radar cells p and q, Vp and Vq,

corrfVqðs� Ds� DtpqÞ;VpðtÞg

¼ 1

Tc

Z tþTc
2

t�Tc
2

Vqðs� Ds� DtpqÞV�
pðsÞds

�

�

�

�

�

�

�

�

�

�

ð25Þ

should be maximum when time lag Ds ¼ 0, with the

star indicating the complex conjugate.

Note that, to prevent border effects in the

computation of correlations with Eqs. 24 and 25,

which would produce an artificial decay of the

correlation function when dealing with finite-duration

signals, the correlation function is normalized by a

triangular function that compensates for the lack of
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coefficients at large time lags in the numerical

summation. This normalization ensures that a flat

correlation is obtained as a function of time lag, for a

constant signal with only random variations, as it

should be in the absence of a tsunami current, but

does not affect the shape of an actual correlation peak

close to its maximum near zero time lag, caused by a

tsunami current. Correlations of the radar signals

between two cells, computed using Eq. 25, will

increase with time Tc. Unlike with TDA1, where

increasing Ti improves the resolution of the Doppler

spectrum, but also reduces the time-averaged tsunami

current and hence smoothes it out, here, one can

select a longer correlation time, up to or even larger

Figure 4
Example of idealized ES tsunami wave train propagating over a ‘‘tanh’’ bottom topography, for At0 ¼ 1 m, h0 ¼ 2000 m, h1 ¼ 20 m,

Tt ¼ 300 s, and ez ¼ 0:05, based on the analytical model Eqs. 39–41, at times t ¼ a 0, b 1895, and c 5670 s. The horizontal axis is x (m) in the

three panels and the vertical axis represents variables defined in a’s legend: g and h (m), and Ut (m/s) (note, surface elevations are magnified

100 times and horizontal velocities 500 times)
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than the characteristic tsunami period Tt, without

causing any ill effect, because time series of radar

signal are shifted in time to compute the correlation.

Let us now consider the effects on the signal

correlations of a background current, resulting from a

spatially varying (but nearly stationary at the consid-

ered time scales) mesoscale current, plus local effects

of random environmental conditions (e.g., wind).

Because of its random fluctuations, there should not

be any significant correlation of such a current

between two arbitrarily selected cells, whether shifted

in time or not, and hence no influence on Eq. 24.

Likewise, the random or spatially incoherent changes

in the angular frequency of surface waves caused by

the background current, even if significantly influ-

encing the radar signal in each cell, are uncorrelated

and should thus not affect the correlation of the radar

signal computed with Eq. 25. Therefore, only the

spatially coherent surface current caused by the

tsunami, that propagates deterministically along the

selected wave ray, will affect the correlations of the

radar signals. This property will be verified in

numerical simulations and is the main reason why

TDA2 is able to detect effects on the radar signal of a

much weaker, but spatially coherent, tsunami current

than TDA1, even in the presence of a background

current of similar or even larger magnitude, without

need for doing any actual estimate of the current

itself.

In the absence of the spatially coherent current of

an incoming tsunami, numerical simulations will

show that correlations of radar signal between pairs

of cells, computed using Eq. 25, become independent

of time lag Ds (i.e., they are flat), whereas in the

presence of a tsunami current, these correlations

exhibit a strong maximum near the zero time lag

(representing the theoretical propagation time

between each pair of cell). This difference in

correlation pattern with Ds, around the expected

propagation time between two cells, can be exploited

to develop a tsunami detection threshold for the

algorithm. Thus, using TDA2 in a tsunami detection

mode (rather than simulation mode), for which the

radar signal is continuously measured in a large

number of radar cells, a peaked correlation suddenly

appearing near zero time lag, between the radar

signals in two cells located along the same wave ray,

will indicate that a tsunami is approaching the radar.

At the considered time scales, there is indeed no other

geophysical phenomenon that can create long wave

trains that are spatially coherent, with a current

magnitude sufficient to cause measurable Doppler

shifts in the radar signal. By computing correlations

between signals in all the relevant pairs of radar cells

along a given wave ray, and for multiple rays, one

would be able to track an incoming tsunami in time

from the displacement of peaked correlation patterns

from cell to cell.

For more realistic cases, with complex but

specified bathymetry h(x, y), tsunami wave rays can

still be pre-calculated for a series of incidence angles

/t0 in deep water, e.g., corresponding to known

tsunami source directions in the far- and near-field.

To do so, one can of course run a long wave model,

such as FUNWAVE-TVD (see Figs. 2, 3), but many

studies show that the less computationally demanding

solution of the complete equation of geometric optics,

the ‘‘eikonal’’ equation (of which Snell’s law is a

particular solution), can accurately predict tsunami

wave rays on the typical bathymetry of an ocean

margin and continental shelf (see, e.g., TEHRANIRAD

et al. 2015). The eikonal equation,

o/t

ox
þ f1ðx; yÞ tan/t

o/t

oy
¼ f2ðx; yÞ ð26Þ

is solved for /tðx; yÞ, with

f1 ¼ 1 þ N
1

h

oh

ox
and f2 ¼ N

1

h

oh

oy
ð27Þ

and

N ¼ ct

2ctg

� 1 ¼ � 1

2
ð28Þ

since for long waves, ct ¼ ctg ¼
ffiffiffiffiffi

gh
p

(with ctg the

group velocity).

The pre-computed wave rays will allow identifying

radar cells that are located along specific rays and the

expected tsunami propagation time between each pair

of such cells (p, q) will be calculated using the second

Eq. 23. Except for this more complicated way of

computing theoretical time lags between cells, TDA2

can be used unchanged for complex bathymetry cases.

Along a specific wave ray, an overall measure of

tsunami detection with TDA2 can be obtained by

Vol. 173, (2016) Tsunami Detection by High-Frequency Radar Beyond the Continental Shelf 3913



averaging the correlations given by Eq. 25 for np;q

pairs of cell from p to q, when applying the

appropriate Dtpq value of the time shift. This yields

a detection function,

DpðDsÞ ¼
1

np;q

X

q

corrfVqðt � Ds� DtpqÞ;VpðtÞg;

ð29Þ

which is expected to be maximum for Ds ¼ 0.

Additionally, the maximum of DpðDsÞ on a given

wave ray should become an increasingly narrow peak

near the zero time lag, as both np;q increases and p

corresponds to a cell closer to the radar, indicating

that a tsunami is propagating gradually closer to the

HF radar; by contrast, in the absence of a tsunami

current, DpðDsÞ will remain flat as a function of time

lag, whatever the np;q or p values; this will be illus-

trated in applications. In a specific geographic area,

an appropriate threshold for the detection of a peaked

maximum of DpðDsÞ near the zero time lag, beyond

which a warning should be issued, could be defined

by performing numerical simulations of tsunami case

studies. Such more realistic applications will be left

out for a future paper.

5. Validation of the Algorithms for Idealized

Tsunami and Bathymetry

In the following, we test and validate the two

proposed algorithms, TDA1 and TDA2, by applying

them to cases with an idealized tsunami wave train

propagating over a one-dimensional (1D) bathymetry

h(x), representing parallel bottom contours and a

straight coastline; it should be noted, in these

numerical simulations, the HF radar simulator is

based on the complete 2D model detailed above. In

the idealized 1D tsunami simulations, the cross-shore

seafloor depth varies between a deeper water depth h0

and a shallow water depth h1 on the shelf, and is

modeled as a hyperbolic tangent (Fig. 4). The tsu-

nami wave train is represented by a so-called

‘‘Envelope-Soliton’’ (ES), which is defined as a 1D

group of long periodic waves whose amplitude

envelope has a solitary wave shape (Fig. 4).

In the following sub-sections, we give equations

for the bathymetry and initial ES shape and kine-

matics, together with a simple analytical model that

can be used to simulate tsunami propagation and

transformation by shoaling over the specified

bathymetry. The latter is validated based on results

of a numerical model solving full potential flow

theory by a boundary integral equation method. We

then apply the two detection algorithms by HF radar

to the idealized tsunami case studies and assess

effects of various parameters such as tsunami

amplitude, wind speed/sea state, environmental

noise, and background current on their detection

ability.

In a follow-up paper, we will apply the algorithms

to simulations of more realistic tsunami case studies,

such as shown in Figs. 2 and 3, obtained using state-

of-the-art tsunami generation and propagation

models.

5.1. Equations of ES Tsunami

The ES tsunami is made of 1D waves that are

normally incident to shore in deep water and long-

crested in the along-shore direction (Fig. 4). Because

of the idealized bathymetry, the ES will be propa-

gating along wave rays that are normally incident to

shore. At time t ¼ 0, the ES middle location is at

xtð0Þ ¼ xt0, in depth ht0 ¼ hðxt0Þ; the wave train is

made of a series of sinusoidal long waves of initial

maximum amplitude At0, period Tt, and wavelength

Lt0 ¼ Tt ct0, whose amplitude (i.e., envelope) is

modulated as a solitary wave. Assuming linear long

wave theory, the initial celerity of the wave train at

the ES center is, ct0 ¼
ffiffiffiffiffiffiffiffi

ght0

p
.

At time t ¼ 0, the ES wave train elevation is

analytically defined as,

gtðx; 0Þ ¼Atðx; 0Þ cos fktðx � xt0Þg

Atðx; 0Þ ¼ At0

1 � ez

sech2 j
ht0

ðx � xt0Þ
� �

� ez

� �

;

ð30Þ

where kt ¼ 2p=Lt and the ES peakedness parameter is

the standard value for a solitary wave,
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j ¼
ffiffiffiffiffiffiffiffiffi

3At0

4 ht0

r

; ð31Þ

which is a function of the maximum amplitude At0

and depth ht0 at the middle of the ES. The equivalent

initial wavelength Lsð0Þ of the ES is controlled by the

truncation parameter, ez � 1, such that,

gt � Ls

2
; 0

� �
�

�

�

�

�

�

�

�

¼ 0: ð32Þ

Based on Eq. 30, this requirement yields,

Lsð0Þ ¼
2ht0

j
Cz with Cz ¼ acosh

ffiffiffiffiffiffiffiffi

ez
�1

p

: ð33Þ

Finally, applying Eq. 4, the initial tsunami current is

found as,

Utðx; 0Þ ¼ gtðx; 0Þ
ffiffiffiffiffiffiffiffiffi

g

hðxÞ

r

: ð34Þ

For later times, when the ES wave train propagates

over a decreasing depth, its instantaneous dominant

wavelength decreases as,

LtðtÞ ¼ Ttct with ct ¼
ffiffiffiffiffiffiffi

ght

p

ð35Þ

while the maximum wave amplitude in the ES

increases according to Green’s law (Eq. 5) as,

Att ¼ At0

h0

ht

� �1
4

: ð36Þ

As these transformations take place, the instanta-

neous ES equivalent wavelength decreases as,

LsðtÞ ¼ Lsð0Þ
Lt

Lt0

¼ Lsð0Þ
ffiffiffiffiffi

ht

h0

r

: ð37Þ

The instantaneous position of the ES wave train

middle location can be computed from its initial

position xt0 as,

xtðtÞ ¼ xt0 þ
Z t

0

ctifhðxtðsÞÞgds ð38Þ

which can be computed as a function of a specified

bathymetry.

With these properties of the ES, and assuming the

seafloor has a mild slope (thus reflection is negligi-

ble), we define a set of simplified first-order

analytical equations to iteratively propagate the ES

wave train over a given bathymetry, from time t to

t þ Dt (with Dt small time step). In this analytical

model, the ES is initially defined by a set of points

xið0Þ (i ¼ 1; . . .), spaced out by Dx over the free

surface; these are propagated as follows,

x0iðt þ DtÞ ¼ xiðtÞ þ cti Dt with cti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ghðxiðtÞÞ
p

ð39Þ

g0tiðx
0
iðt þ DtÞÞ ¼ gti

ðxiðtÞÞ
hðxiðtÞÞ

hðx0iðt þ DtÞÞ

� �1
4

: ð40Þ

At a given time step, once the ES has propagated to

locations x0i with elevations g0tiðx
0
iÞ, these values are

reinterpolated over the initial grid points and the ES

wave train is truncated by applying Eq. 32. At each

time step, the tsunami horizontal current velocity is

finally computed as,

Utðxiðt þ DtÞÞ ¼ gti
ðxiðt þ DtÞÞ

ffiffiffiffiffiffiffiffiffiffi

g

hðxiÞ

r

: ð41Þ

This process is repeated for the next time step, and so

forth.

5.2. Numerical Validation of Simplified ES Tsunami

Propagation Model

Before applying the tsunami detection algorithms

by HF radar to the simulated ES wave trains, we

assess the relevance of the simplified propagation

model based on linearized analytical Eqs. 39–41, for

modeling tsunami propagation and transformation, by

comparing its predictions to those of a numerical

solution of fully nonlinear potential flow theory. The

latter is performed using the higher-order Boundary

Element Method (BEM) of GRILLI et al. (1989),

which was implemented as a two-dimensional (2D)

Numerical Wave Tank (NWT), in the vertical plane

(x, z), by GRILLI and SUBRAMANYA (1996) and GRILLI

and HORRILLO (1997) (note that a nonlinear model

was not strictly necessary for the tested waves, that

all have a small wave steepness, but this was the

model that we had available).

The initial geometry of the NWT is that shown in

Fig. 4. Boundary conditions on both the bottom and

lateral boundaries are no-flow conditions,
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u nx þ w nz ¼
ou
on

¼ 0; ð42Þ

where u is the velocity potential, such that

u ¼ ðu;wÞ ¼ ru, and n ¼ ðnx; nzÞ is the outward

unit vector to the boundary. In the NWT, the required

initial conditions are the wave elevation and the value

of the potential on the free surface, as a function of

the curvilinear abscissa s. Based on the known

velocity field of the ES, the latter is obtained as

uðsÞ ¼
Z s

0

ou
ov

dv with

ou
ov

¼ uðvÞnzðvÞ � wðvÞnxðvÞ;
ð43Þ

where u ¼ Ut, is the initial horizontal particle

velocity induced by the ES, given by Eq. 34. Based

on linear long wave theory (DEAN and DALRYMPLE

1984), the initial vertical particle velocity on the free

surface ðz ¼ 0Þ is found as

w ¼ Wt ¼ Atðx; 0Þ kt ct sin fktðx � xt0Þg ð44Þ

(note, if h ¼ h0 under the entire initial ES, then we

have ct ¼ ct0 in this equation). Moreover, based on

the ES initial elevation (Eq. 30) the surface slope is

found as

dg
dx

¼ dAt

dx
cos fktðx � xt0Þg � kt At sin fktðx � xt0Þg

ð45Þ

with dg=dx ¼ tan a, nx ¼ � sin a, ny ¼ cos a, and

dAt

dx
¼ �2At0

j
ht0

sinh f j
ht0
ðx � xt0Þg

cosh3 f j
ht0
ðx � xt0Þg

: ð46Þ

The numerical validation is performed for the ES

tsunami case shown in Fig. 4, which has a maximum

initial amplitude At0 ¼ 1 m and a dominant period of

the wave train, Tt ¼ 300 s. The bottom bathymetry is

idealized with a hyperbolic tangent shape, varying

between h0 ¼ 2000 m and h1 ¼ 20 m on the conti-

nental shelf. The ES is initially truncated using

ez ¼ 0:05 and specified as far left as possible in the

NWT domain. Based on the specified bottom topog-

raphy, we find the initial location of the ES maximum

at, xt0 ¼ Lsð0Þ=2 ¼ 197:93 km in depth

ht0 ¼ 1829 m (j ¼ 0:0202), with a maximum current

Umax
t ðxt0; 0Þ ¼ 0:07 m/s, as shown in Fig. 4a.

The computational domain, for both the analytical

and numerical models varies between x ¼ 0 and

x ¼ 600 km. Whereas a fine spatial mesh with

Dx ¼ 30 m is used throughout in the analytical

solution, with a constant time step Dt ¼ 5 s, to

reduce the computational effort, the NWT domain is

discretized only using 1212 nodes and 1004 BEM

elements. On the free surface these are cubic sliding

elements (GRILLI and SUBRAMANYA 1996), with nodes

initially spaced out by Dx ¼ 750 m; on the bottom,

these are 3-node, quadratic isoparametric elements,

with nodes spaced out by Dx ¼ 1500 m. The time

step in the numerical solution is Dt ’ 2:4 s, but is

dynamically adjusted based on a mesh Courant

number of 0.5 and thus gradually decreases with

depth; also, as depth decreases on the shallower part

of the domain representing the continental shelf,

adaptive integrations are used in the BEM to provide

sufficient accuracy, which significantly increases

computational time (GRILLI and SVENDSEN 1990).

Both the initial elevation and horizontal current of

this idealized ES tsunami are shown in Fig. 4a. The

analytical model is applied first, to propagate the ES

tsunami until its front reaches x ¼ 600 km, which

occurs at t ¼ 10;800 s (3 h). Instantaneous values of

free surface elevation and current are shown in

Fig. 4b, c, at t ¼ 1895 and 5670 s, respectively. At

these times, the ES maximum is at xt ¼ 377:6 and

493.7 km, in depth ht ¼ 302:48 and 40.73 m, with a

maximum amplitude At ¼ 1:57 and 2.49 m, and a

maximum current Umax
t ¼ 0:28 and 1.22 m/s, respec-

tively. As expected, as depth decreases, we observe a

gradual increase (accelerated on the shelf) of both the

ES tsunami elevation and current, while the tsunami

dominant wavelength Lt decreases, as a result of the

decreasing phase velocity ct; hence, the ES tsunami

wave train becomes gradually shorter. The key

parameters of the ES are plotted as a function of

time in Fig. 5a.

To limit the computational effort in the NWT, the

validation was limited to t ¼ 2234 s, which corre-

sponds to the ES maximum arriving at xt ¼ 408 km

in depth ht ¼ 170:4 m over the shelf. Figure 5b

shows the comparison of the ES tsunami horizontal

current Utðx; tÞ computed with the analytical model

and in the NWT (on the free surface). The agreement

between both methods is found to be reasonable, with
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only a slightly larger value of the dominant wave-

length and slightly lower value of the current in the

NWT solution. This can be explained by mild

nonlinear amplitude dispersion effects in the BEM

solution, which attenuate the decrease of tsunami

phase speed with depth. In very shallow water, one

would expect the same nonlinear effects to gradually

affect wave shoaling and current magnitude, more

significantly.

Nevertheless, it can be concluded from this

comparison, that the analytical model is sufficiently

accurate to simulate the key physical features of the

ES tsunami propagation and transformations over the

specified bathymetry, for the purpose of validating

the tsunami detection algorithms by HF radar. In the

latter, the simplified analytical model will allow to

rapidly compute simulated data sets of tsunami

elevation and current, to be used to simulate Doppler

effects on shorter wind waves, in a series of radar

cells with their center located at j rm j¼ xm

(m ¼ 1; . . .;M). In particular, in the analytical model,

we will compute as a function of time the spatially

averaged surface current in each cell UtmðtÞ, as well

as the current memory term required in the wave

angular frequency Eq. 10.

5.3. Numerical Validation of the HF Radar Tsunami

Detection Algorithms Based on Idealized Case

Studies

The numerical implementation and application of

the 2D radar scattering model equations presented

earlier (Eqs. 16–19) to a random sea state modulated

by a surface current (Eqs. 7–12), provides a simulator

of the backscattered HF radar signal, whose results

can be used in lieu of actual field data, as a data base

Figure 5
Case of Fig. 4. a Values of ES tsunami key parameters calculated with the analytical model, as a function of time. b Comparison of linearized

analytical solution (solid), with numerical BEM solution of potential flow theory (dash), for the horizontal current value Utðx; tÞ (m/s)

computed at t ¼ 2234 s (on the free surface in the NWT)
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of radar data to test and validate the two proposed

tsunami detection algorithms.

In the simulator, for illustration, we use the

characteristics of the 4.5 MHz Stradivarius radar

system (see parameters in Sect. 1) in a monostatic

configuration (or in a bistatic configuration where

remote sensing takes place far enough from the radar

for the signal to become nearly monostatic); other

types of radars could be easily substituted and

simulated. We apply the simulator to cases for which

the tsunami-induced current is that of the 1D

idealized ES tsunami wave train introduced before,

which is long-crested in the y direction and shoals up

in the x direction, normally incident to shore

(/t0 ¼ 0) over a simple bathymetry (cylindrical

beach), with parallel bottom contours in the y

direction (Fig. 4). Although this might seem very

idealized, as seen in tsunami case studies in the Gulf

of Lion, off of Camargue, in the Mediterranean Basin

(Figs. 2, 3), this is in fact quite a realistic hypothesis

in many locations, and thus relevant for the purpose

of validating the algorithms, pending their application

to more complete and realistic tsunami case studies,

simulated or from actual field data. Note that with

minor changes to the approach presented below, one

could also consider tsunamis that are approaching

from an arbitrary direction /t0 over the same

idealized bathymetry, by applying Snell’s law

(Eq. 6); this will be left out for future work.

For a monostatic radar configuration, the signal is

simulated in a series of cells, whose centers are

located at radial directions rmn from the radar

location, with azimuth /rn
measured from x

(m ¼ 1; . . .;M; n ¼ 1; . . .;N), for a radar located at

(0,0) (e.g., Fig. 1). The radar signal will be modulated

by the approaching tsunami, based on the magnitude

of its current projected on these radial directions

(assuming to start with that there is no background

current, Ub ¼ 0; see Eq. 7),

Utrðt; rmnÞ ¼ Utðt; xmn; ymnÞ  rmn ð47Þ

with rmn ¼ xmnex þ ymney, j rmn j¼ rmn and (ex; ey)

being unit vectors in the x- and y-directions.

We will first present results obtained for both first-

order waves g1 and radar signal V1ðtÞ, and then show

how these are modified when including the second-

order contributions, g2 and V2ðtÞ. In the HF radar

simulator, the effects of environmental noise and

range decay on the radar signal are simulated by

adding N mnðtÞ to the signal VmnðtÞ computed in each

cell (Eqs. 17, 19).

Although the 2D radar simulator provides results

for any azimuth, for clarity, all results resented here

will only be shown for a single azimuth of direction,

/r1
¼ 180� (n ¼ 1), i.e, looking directly away and

normally to shore, with an angular spacing D/r ¼ 6�;

hence, Utrðt; rm1Þ ¼ �Utðt; xmÞ. For these simula-

tions, we will use radar cells spaced out by

Dr ¼ 3 km, at a distance, rm1 ¼ �xm ¼ 80–230 km

from the radar.

To compute the radar signal within each cell, the

random sea state is spatially discretized over a

Dx ¼ Dy ¼ 3 m resolution grid, when only consider-

ing linear waves, and a 0.5 9 0.5 m resolution grid

when including second-order wave effects (this is

because the Bragg wavelength is LB ¼ 33:3

(kB ¼ 0:119 m�1) and requires 10–12 points to be

finely enough discretized, which yields a 3 m spac-

ing; by contrast, second-order waves, which are much

shorter, require a minimum spatial spacing of order

0.5 m). Based on this discretization, the wind waves

wavenumber vectors, K ¼ ðKx;KyÞ, are defined with

a module varying in between ½�Kmax;Kmax
 by steps

DK ¼ 2p=1000, with Kmax ¼ 2p=ð2DxÞ. Therefore,

for linear simulations, waves are discretized in each

radar cell by 333 	 333 wavenumbers, and

2000 	 2000 wavenumbers for nonlinear

simulations.

In each radar cell, wind waves are generated

based on a directional PM energy spectrum WPM

(Eqs. 48–52), assuming to start with V10 ¼ 10 m/s

and hp ¼ 0� (i.e., the radar looks in a cross-wind

direction); the spectrum obtained in this case is

shown in Fig. 24 and corresponds to, Hs ¼ 1:71 m,

kp ¼ 0:0493 m�1, Lp ¼ 127:4 m, and Tp ¼ 9:04 s in

deep water. The environmental noise is computed in

each cell based on Eqs. 19 and 20, with the standard

noise coefficient, fa ¼ 130. Waves in each cell are

modulated by the current induced by the ES tsunami,

which propagates over the bathymetry shown in

Fig. 4, varying as a ‘‘tanh’’ between h0 ¼ 2000 m and

h1 ¼ 20 m, as detailed in the previous section. We

specify an ES with amplitude At0 ¼ 1 m and period-

icity Tt ¼ 300 s (with ez ¼ 0:05) and, as indicated,
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we initially assume that there is no background

current (Ub ¼ 0).

We first apply tsunami detection algorithm TDA1

to the simulated HF radar signal, by computing the

Doppler spectra over a frequency range

½�fDmax; fDmax
, with fDmax ¼ 2:3fB ¼ 0:5 Hz. This is

done by applying Eq. 18 over the integration interval

½ts � 0:67Ti; ts þ 0:33Ti
, using an integration time,

Ti ¼ 120 s (\Tt=2); new spectra are thus computed

at a Dts ¼ 0:33Ti ¼ 40 s time interval. We then apply

the second algorithm TDA2 and compute correlations

of the simulated radar signal between two cells,

shifted in time, using Eq. 25; here, we use a

correlation time, Tc ¼ 300 s.

5.3.1 Test of Tsunami Detection Algorithm 1 (TDA1)

In a first validation test, the HF radar simulator is

used to compute the linear signal V1ðtÞ during

7200 s, in 51 cells located at distances rm1 ¼ 80–

230 km from the radar, corresponding to depths

varying between 30.5 and 348.5 m.

Doppler spectra computed to apply TDA1 are

plotted in Fig. 6, as a function of the distance to the

radar (range) rm, after 30, 60, 90 et 120 min of

propagation and shoaling of the ES tsunami. Because

of the asymmetric and directional PM spectrum used

to generate wind waves in each cell, Doppler spectra

have two maxima near the theoretical Bragg fre-

quencies fB ¼ �0:217 Hz. Outside of the

neighborhood of these frequencies, the spectral

intensity rapidly decreases to the level of the

environmental noise. The effect of the ES tsunami

current on the Doppler spectra is to cause an

oscillatory shift of the spectral maxima around the

Bragg frequencies. More specifically, in the time

sequence of spectra in Fig. 6, we see that the

propagation of the ES tsunami gradually displaces the

oscillations from large ranges (depth) towards shorter

ranges and shallower depth, in the radar direction.

Also, as this occurs, as a result of the increasing

tsunami current magnitude in shallower water, the

amplitude of these oscillatory shifts increases and,

due to the decreasing tsunami phase speed with

Figure 6
Test of tsunami detection algorithm 1 (TDA1) based on data from the linear HF radar simulator for ES tsunami (Fig. 4) with At0 ¼ 1 m,

Tt ¼ 300 s, and ez ¼ 0:05, using 51 cells located at rm1 ¼ 80–230 km from the radar (with /r1
¼ 180�). Doppler spectra (color scale in dB)

computed with Ti ¼ 120 s after: a 30, b 60, c 90, et d 120 min of tsunami propagation
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depth, the wavelength of the oscillations also

decreases.

This is confirmed in Fig. 7, which plots the

inverted tsunami current as a function of range,

obtained by applying Eq. 21 to the most intense

maximum in each Doppler spectrum of Fig. 6, and

compares it to the known instantaneous ES tsunami

current and its space- and time-average in each radar

cell (over time Ti). Despite the coarse 3 km dis-

cretization size of the radar cells, overall, one

recovers well both the expected cell-averaged current

magnitude and its variability, consistent with the

observed patterns in Doppler spectra. Note, however,

that the cell-averaged current magnitude is

significantly smaller than the actual current, since

the integration time Ti ¼ 120 s is a significant

fraction of the tsunami current periodicity,

Tt ¼ 300 s. As the ES tsunami propagates towards

shallower depth, the current magnitude (both actual

and cell-averaged) increases and the ES dominant

wavelength decreases, as a result of shoaling. Despite

the environmental noise and the fairly large depth in

the most distant cells (while still being on or very

near the shelf), the figure shows that the current is

accurately inverted by this method, for the considered

ES tsunami case (also compare Figs. 5b and 7b).

The same case is recomputed using the nonlinear

HF radar simulator, that includes both second-order

waves and radar signal. Since this computation takes

much longer, for sake of efficiency, it is limited to

cells located within the range rm1 ¼ 120–200 km

from the radar (i.e., 27 radar cells) and an ES current

duration of 6300 s. Figure 8 shows the Doppler

spectra computed at 30, 60 and 90 min of propaga-

tion of the ES tsunami and Fig. 9 shows the

corresponding inverted currents, both as a function

of range. Up to a range of 180 km, results appear to

be fairly similar with those of the linear simulator in

Figs. 6 and 7, for both the computed Doppler spectra

and the inverted currents. Beyond that range, how-

ever, some artifacts start appearing in the inverted

currents, that would indicate that second-order effects

make it more difficult estimating the shift of the

Doppler frequencies (and hence the currents) in some

stages of the ES tsunami shoaling when the average

current is weaker. In the present case, a 180 km range

corresponds to a depth of 136 m, where maximum

tsunami currents still reach 0.52 m/s (see Eqs. 4, 5),

but spatially and temporally averaged tsunami cur-

rents in the tail of the ES tsunami have a smaller

magnitude of � 0.2 m/s or less.

5.3.2 Test of Tsunami Detection Algorithm 2 (TDA2)

We apply TDA2 to the same case as above, assuming

both linear wind waves and simulated HF radar signal

V1ðtÞ. Figure 10a shows the space-averaged current

UqtðtÞ, computed in radar cells q ¼ 2; . . .; 51 for the

incoming ES tsunami, shifted in time by the theoret-

ical tsunami travel time to cell p ¼ 1, computed with

Eq. 23, Dt1q ¼ 176–5337 s. For these currents,

Figure 7
Test of tsunami detection algorithm 1 (TDA1) based on data from

the linear HF radar simulator, for the cases and Doppler spectra of

Fig. 6: blue inverted mean currents in each radar cell; green cell-

averaged ES tsunami current; and red ES tsunami current, after:

a 30, b 60, c 90, and d 120 min of ES tsunami propagation (Fig. 4)
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Fig. 10b shows that, as expected, the correlation,

corrfUtqðt � Ds� Dt1qÞ;Ut1ðtÞg, computed with

Eq. 24 (for Tc ¼ 300 s), between cell 1 and

q ¼ 2; . . .51, as a function of an additional time lag

Ds, is close to one near the zero time lag for all the

radar cells, even the most distant ones. Similar results

would be obtained along wave rays of more complex

geometry (this will be shown in a follow-up paper).

Figure 11a then shows the time-shifted correla-

tions of the simulated radar signal,

corrfV1
qðt � Ds� Dt1qÞ;V1

1ðtÞg, computed with

Eq. 25 (for Tc ¼ 300 s), as a function of an additional

time lag Ds, for the same cells. Despite some high-

frequency oscillations in the results, correlations are

high for lag times [�50, 50] s, up to a 160 km range

and for [�50, 150] s beyond that. Outside of these

intervals, correlations quickly become negligible.

Figure 12a shows the mean correlation D1ðDsÞ
computed with Eq. 29 over n1;51 ¼ 50 pairs of cells.

We see a strong peak of the mean correlation near

zero time lag and, in the absence of a surface current,

Fig. 12c shows that there is no trend of the mean

correlation with time lag. As indicated before, such a

significant change in correlation pattern with and in

the absence of a tsunami current could be used as a

threshold for tsunami detection. These results confirm

the relevance of the proposed detection algorithm.

Second-order effects. To further confirm the above

results, which were obtained using the linear 2D HF

radar simulator, the same computations are repeated

using the nonlinear 2D simulator. As for the earlier

application of the nonlinear simulator in Figs. 8 and 9, to

reduce the computational effort, the range is limited to

cells located rm1 ¼ 120–200 km from the radar (i.e., 27

radar cells). Figure 11b shows the radar signal corre-

lations, corrfVqðt � Ds� Dt1qÞ;V1ðtÞg, computed

between cells as a function of range, and Fig. 12b

shows the mean correlation. Overall, we see a very

good agreement with the first-order results shown in

Figs. 11a and 12a, which implies that one can continue

validating TDA2 using the less computationally

demanding linear 2D HF radar simulator.

Figure 8
Test of tsunami detection algorithm 1 (TDA1) based on data from the nonlinear HF radar simulator, for ES tsunami (Fig. 4) with At0 ¼ 1 m,

Tt ¼ 300 s, and ez ¼ 0:05, using 27 cells located at rm1 ¼ 120–200 km from the radar (with /r1
¼ 180�). Doppler spectra (color scale in dB)

computed with Ti ¼ 120 s after: a 30, b 60 and c 90 min of tsunami propagation
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Analytical signal. High-frequency oscillations

were observed in both the linear and nonlinear

correlations of Fig. 11, calculated as a function of

range, and the mean of these plotted in Fig. 12a, c. It

can be shown theoretically that, for a simplified radar

signal with a single harmonic with K ¼ KB, the

backscattered signal can be represented by the sum of

two contributions, SðtÞ ¼ SBðtÞ þ SB0 ðtÞ, where: (1)

SBðtÞ� exp ð�ixB tÞ, oscillates at the Bragg fre-

quency; and (2) SB0 ðtÞ, has a spatial modulation with

periodicity 2KB and is proportional to exp ðixB tÞ. We

show that the latter contribution is responsible for the

observed oscillations of signal correlations, by elim-

inating negative frequencies from the Fourier

transform of the total signal ŜðxÞ, and then applying

an inverse Fourier transform to reconstruct the signal

in the time domain; this operation consists in

computing the so-called analytical signal.

Figure 13a shows the correlations recomputed as

a function of range, between pairs of cells, based on

the linear analytical signal V1ðtÞ, with environmen-

tal noise and range attenuation, in the presence of

the ES tsunami current. Comparing these results to

Fig. 11a, while we see overall a similar pattern of

the correlations as a function of range and time lag,

high-frequency oscillations have clearly been elim-

inated when using the analytical signal, and the peak

in correlation is now narrower for lag times [�20,

20] s, up to a 160 km range and for [�20, 50] s

beyond that. Moreover, looking more closely we see

that the magnitude of correlations has been

increased by 0.1–0.25, and is close to one near the

zero time lag. The same observation can be made

for the mean correlation D1ðDsÞ computed based on

the linear analytical signal, which is shown in

Fig. 13b: the high-frequency oscillations have been

eliminated and the maximum of the curve is close to

one near the zero lag time. Hence, with the

analytical signal, the time-shifted correlations are

both higher and more monotonous than when using

the raw signal. Since it is easy to compute the

analytical signal for an actual backscattered HF

radar signal (either based on numerically applying

an FFT/IFFT operator to the digitized radar signal or

by modifying the raw signal with an analog circuit),

from now on, we will use the analytical signal in the

following applications and validation of the detec-

tion algorithms.

Sensitivity to a weakened radar signal/SNR.

Here, we perform a sensitivity analysis of the above

results and application of TDA2 to the case of

Fig. 11a, for the ES tsunami of deep water maximum

amplitude At0 ¼ 1:0 m, in the presence of wind

waves based on a V10 ¼ 10 m/s wind speed, and with

the standard environmental noise of Stradivarius,

with a noise coefficient fa ¼ 130. The latter param-

eters were first modified one at a time, in a manner

that weakens the radar signal (or decreases its SNR),

i.e., by assuming:

1. A deep water tsunami amplitude reduced to

At0 ¼ 0:5 m, with ez ¼ 0:1, which proportionally

decreases the current magnitude to about half the

earlier values and thus the radar signal modulation

and Doppler shift (Fig. 14).
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Figure 9
Test of tsunami detection algorithm 1 (TDA1) based on data from

the nonlinear HF radar simulator. Inverted mean currents for the

case and Doppler spectra of Fig. 8 computed after: a 30, b 60, and

c 90 min of ES tsunami propagation (Fig. 4)
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2. A wind speed decreased to V10 ¼ 5 m/s, which

decreases the sea state’s significant wave height to

Hs ¼ 0:42 m (with a spectral peak wavelength

kp ¼ 31:9 m and deep water period Tp ¼ 4:52 s)

and thus the backscattered signal strength and

Doppler spectrum level (Fig. 15).

3. An environmental noise increased by a factor of

3.2, with a noise coefficient fa ¼ 140 (which

decreases the SNR in all radar cells; Fig. 16).

4. A similar case where all three above effects of

SNR reduction are included at once and combined

to very much reduce the SNR in all the radar cells.

These results are discussed below.

First, in Fig. 14, we see that reducing the tsunami

elevation and current by a factor of two does not

significantly affect results of applying TDA2; the

maximum average signal correlation near the zero

time lag is still nearly 1 and represents a strong peak

as compared to values obtained at larger time lags.

This is expected since currents are still strong, with

maxima of 0.2–0.3 m/s in each time snapshot similar

to those in Fig. 7. In fact, one could show that for this

case, in which the SNR is still large, currents at those

locations could still be accurately inverted from the

Doppler spectra by applying TDA1.

Second, in Fig. 15 we see that, although the effect

of reducing wind speed is more significant on

correlations, particularly for large ranges, beyond

180 km, the average correlation still has a strong

peak around 0.9 near the zero time lag and hence the

ability of the TDA2 to detect currents is not

significantly affected by this factor alone.

Figure 10
Test of tsunami detection algorithm 2 (TDA2) for ES tsunami (Fig. 4) with At0 ¼ 1 m, Tt ¼ 300 s, and ez ¼ 0:05: a space-averaged ES

tsunami current UqtðtÞ in radar cells q ¼ 1; . . .; 51, shifted in time by tsunami travel time to cell 1, Dt1q ¼ 176–5337 s; b correlation of shifted

tsunami currents between cells 1 and q ¼ 2; . . .51, as a function of an additional time lag, with Tc ¼ 300 s
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Third, in Fig. 16 we similarly see that, although

the effect of increasing environmental noise is quite

significant on correlations, particularly for large

ranges, beyond 160 km, the average correlation still

has a strong peak around 0.9 near the zero time lag

and hence, once again, the ability of TDA2 to detect

currents is not significantly affected by this factor

alone.

Finally, in Fig. 17a, when all three sources of

SNR weakening are simultaneously included in the

simulations, we see that increased signal correlations

only occur up to about a 170 km range, in the time lag

interval [�50, ?50] s. In Fig. 17b, the average

correlation for those still shows a peak, but only

about 0.6 near the zero time lag, as compared 0.3–

0.35 on either side of it, while in the absence of a

tsunami surface current, the mean correlation in

Fig. 17c again does not show any trend as a function

of time lag. Hence, although less discriminant than

when the SNR is higher, the ability of TDA2 to detect

currents based on a change in pattern of mean

correlations is still intact. In the present situation,

TDA1 would of course be unable to invert any

current on the basis of such a noisy signal and weak

SNR (this will be further illustrated in the last

application). Note, however, that assuming a factor 3

increase in environmental noise is both extreme and

unlikely, since the simulator already uses a fa value

based on field data that is realistic for the Stradivarius

Figure 11
Test of tsunami detection algorithm 2 (TDA2), based on data from

the HF radar simulator, for ES case of Figs. 4 and 10 (wind speed

V10 ¼ 10 m/s, deep water tsunami amplitude At0 ¼ 1:0 m, and

noise coefficient fa ¼ 130): a Linear signal correlation (color

scale) between cells 1 and q ¼ 2; . . .51 (Eq. 25), shifted by tsunami

travel time to cell 1, Dt1q ¼ 176–5337 s, as a function of an

additional time lag, with Tc ¼ 300 s; b same as a for the nonlinear

signal (27 cells)

Figure 12
Test of tsunami detection algorithm 2 (TDA2) for cases of Fig. 11.

Mean over 50 pairs of cells ð1; q ¼ 2; . . .; 51Þ, D1ðDsÞ, of signal

correlations calculated with: a linear signal correlations of

Fig. 11a, with tsunami current; b nonlinear signal correlations of

Fig. 11b (27 cells); c same as a, linear signal in the absence of a

surface current caused by the tsunami
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system in the environment it is deployed. Hence, in

the last application in the next section, we no longer

vary the noise factor and use fa ¼ 130, and only

consider changes in tsunami amplitude and sea state

height, together with the presence of a background

current.

5.3.3 Test of Tsunami Detection Algorithms 1 and 2

with a Background Current

The previous sensitivity study established that TDA2

can still perform well in the presence of a weaker

tsunami and lower wind speed, i.e., sea state. A very

large increase in environmental noise has more effect,

although the algorithm still performs adequately, but

is deemed unrealistic. On this basis, here, we further

assess the performance of the TDA1 and TDA2

algorithms in the presence of a random background

current, which so far has been neglected, but would

of course occur in an oceanic environment. We

expect a strong effect of such a current on the direct

inversion done with TDA1, in areas where the

tsunami current is too weak to rise above background

current. However, because of the nature of TDA2, we

expect the background current to only have marginal

effect on signal correlations and thus on the detection

ability of this algorithm, even in areas where the

tsunami current is on the same order of magnitude or

even less than the background current.

These predictions will be verified in a last set of

applications of the simulator, which are detailed

below. In each case, we will assume the presence of a

normally distributed background current of zero

mean and standard deviation rUb
. Note that uncorre-

lated realizations of this current are generated in the

model, for each time level and in each radar cell. In

all cases shown here, we use a large value of rUb

equal to 0.15 m/s; with this value, the instantaneous

current has a 95 % chance to vary within the interval

[�0.3, ?0.3] m/s, with larger values occasionally

occurring.

Figure 13
Test of tsunami detection algorithm 2 (TDA2): a same case as

Fig. 11a for the linear analytical signal; b same as Fig. 12a for the

linear analytical signal
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Figure 14
Test of tsunami detection algorithm 2 (TDA2). Same case as

Fig. 11a, for the analytical linear signal, but for an ES tsunami with

reduced maximum amplitude in deep water to, At0 ¼ 0:5 m

(Tt ¼ 300 s, ez ¼ 0:1) (V10 ¼ 10 m/s and noise coefficient

fa ¼ 130): a correlation between cells 1 and q ¼ 2; . . .51

(Tc ¼ 300 s), shifted by tsunami travel time to cell 1, as a function

of an additional time lag; b mean of signal correlations over 50

pairs of cells, D1ðDsÞ
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Thus, in Fig. 18, for the ES tsunami case

considered so far, with At0 ¼ 1:0 m and wind speed

V10 ¼ 10 m/s, we first see the effect this background

current has on the spatially averaged current UptðtÞ in

each radar cell, shifted by the tsunami travel time to

cell 1, Dt1q ¼ 176–5337 s. Figure 18a corresponds to

the same tsunami current as in Fig. 10a, but we see

now that the presence of a strong background current

makes it impossible to visually observe any pattern in

currents. Nevertheless, although smaller, Fig. 18b

still shows elevated values of current correlations

near the zero time lag. Figure 19 shows results of

applying TDA2 to this case, and we still see: in panel

(a) the same high correlation of the signal around the

zero time lag, even at a range as large as 230 km; and

in panel (b) a mean correlation near 1 at zero time

lag, with much lower values on either sides, similar to

results obtained without a background current. In

Fig. 19c, we see again in the absence of the tsunami

current, but in the presence of the background

current, that there is no pattern in the mean correla-

tion as a function of time lag. Hence, results of

applying TDA2 are still as expected and the detection

ability of the algorithm is intact in the presence of a

background current, with the caveat that both a strong

tsunami and sea state were used here.

Therefore, to fully confirm this conclusion, we

repeated simulations in the presence of the same

background current, but with a reduced tsunami

(and current) deep water amplitude to At0 ¼ 0:5 m

and wind speed reduced to V10 ¼ 5 m/s, and tested

both TDA1 and TDA2. The time-shifted space-

averaged tsunami currents for this case are shown

in Fig. 20a, and vary from �0.1 to 0.065 m/s, while

those combined to the background current are shown

in Fig. 20b, and vary between �0.4 and 0.4 m/s;

clearly, the tsunami current is much weaker than the

background current. The correlations of the time-

shifted currents are shown in Fig. 20c for this case;

Figure 16
Test of tsunami detection algorithm 2 (TDA2). Same case as

Fig. 11a, for the analytical linear signal, but with increased

environmental noise by a 3.2 factor, using a noise coefficient fa ¼
140 (V10 ¼ 10 m/s and At0 ¼ 1:0 m): a correlation between cells 1

and q ¼ 2; . . .51 (Tc ¼ 300 s), shifted by tsunami travel time to cell

1, as a function of an additional time lag; b mean of signal

correlations over 50 pairs of cells, D1ðDsÞ

Figure 15
Test of tsunami detection algorithm 2 (TDA2). Same case as

Fig. 11a, for the analytical linear signal, but with a reduced wind

speed to V10 ¼ 5 m/s (At0 ¼ 1:0 m and noise coefficient fa ¼ 130):

a correlation between cells 1 and q ¼ 2; . . .51 (Tc ¼ 300 s), shifted

by tsunami travel time to cell 1, as a function of an additional time

lag; b mean of signal correlations over 50 pairs of cells, D1ðDsÞ
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these are even lower than those in Fig. 18b, but still

show elevated values near the zero time lag.

Next, Fig. 21 shows two Doppler spectra computed

for this case, after 45 and 90 min of tsunami propaga-

tion, which clearly have a lower level than before and

exhibit oscillations around the theoretical Bragg fre-

quencies that no longer have the clean pattern of the ES

tsunami. This is confirmed in Fig. 22, which shows the

inverted currents using TDA1 for those two and two

additional Doppler spectra, after 60 and 75 min of

propagation time. Now, beyond a 120 km range, TDA1

can no longer properly invert currents and, even at

shorter ranges, the pattern is no longer fully similar to

that of the ES tsunami. By contrast and to conclude, in

Fig. 23a we see that TDA2 is still performing well, even

at large range where we have very elevated correlations

of the time-shifted signal near and around the zero time

lag. In Fig. 23b, c, the mean signal correlations with

and without tsunami current, but in the presence of the

background current in both cases, still show the familiar

pattern; hence, the detection ability of TDA2 is

unaffected by the background current, even when the

radar SNR is weaker.

6. Conclusions

In geographic areas where near-field tsunami

sources, such as submarine mass failures (SMFs) or

Figure 18
Test of tsunami detection algorithm 2 (TDA2) in the presence of a

background current. Same case as Fig. 10 with rUb
¼ 0:15 m/s: a

space-averaged total current UqtðtÞ in radar cells q ¼ 1; . . .; 51,

shifted in time by tsunami travel time to cell 1, Dt1q ¼ 176–5337 s;

b correlation of time-shifted currents between cells 1 and

q ¼ 2; . . .51, as a function of an additional time lag, with

Tc ¼ 300 s

Figure 17
Test of tsunami detection algorithm 2 (TDA2). Same case as

Fig. 11a, for the analytical linear signal, but with increased

environmental noise by a 3.2 factor, using a noise coefficient

fa ¼ 140, reduced wind speed to V10 ¼ 5 m/s, and smaller

maximum tsunami amplitude in deep water At0 ¼ 0:5 m: a signal

correlation between cells 1 and q ¼ 2; . . .51 (Tc ¼ 300 s), shifted

by tsunami travel time to cell 1, as a function of an additional time

lag; b mean of signal correlations over 50 pairs of cells, D1ðDsÞ;
c same as b but in the absence of a surface current caused by the

tsunami
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meteo-tsunamis, may occur, tsunami propagation

times may be too small to ensure a timely detection

based on deep or shallow water buoys. To offer

sufficient warning time, it has been proposed to

implement early warning systems relying on high-

frequency (HF) radar remote sensing, that can pro-

vide a dense spatial coverage, as far offshore as

200–300 km (e.g., for Diginext Ltd.’s Stradivarius

radar). However, long wave physics is such that

tsunami currents will only rise above noise and

background currents (i.e., be at least 10–15 cm/s),

and become detectable, in fairly shallow water, which

would limit the direct detection of tsunami currents

by HF radar to nearshore areas, unless there is a very

wide shallow shelf.

In this work, we used numerical simulations of

both HF radar remote sensing and (idealized) tsunami

propagation to develop and validate a new algorithm

that is able to detect an approaching tsunami in the

presence of environmental noise and a strong

Figure 19
Test of tsunami detection algorithm 2 (TDA2) in the presence of a

background current. Same case as Fig. 13 with rUb
¼ 0:15 m/s: a

signal correlation between cells 1 and q ¼ 2; . . .51 (Tc ¼ 300 s),

shifted by tsunami travel time to cell 1, as a function of an

additional time lag; b mean of signal correlations over 50 pairs of

cells, D1ðDsÞ; c same as b but in the absence of surface current

caused by the tsunami

Figure 20
Test of tsunami detection algorithm 2 (TDA2) in the presence of a

background current. Same case as Fig. 10 but with a tsunami

amplitude reduced to At0 ¼ 0:5 m and rUb
¼ 0:15 m/s: a space-

averaged ES tsunami current UqtðtÞ in radar cells q ¼ 1; . . .; 51,

shifted in time by tsunami travel time to cell 1; b same as a for the

total current UqðtÞ; c correlation of time-shifted total currents of b,

between cells 1 and q ¼ 2; . . .51, as a function of an additional time

lag, with Tc ¼ 300 s
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background current, in deeper water (i.e., for weaker

tsunami currents) than when using a more standard

algorithm based on directly inverting tsunami cur-

rents from the radar signal Doppler spectrum.

To simulate the radar backscattered signal, we

developed a numerical model including second-order

effects in both wind waves and radar signal, with the

wave angular frequency being modulated by a time-

varying surface current, combining tsunami and

background currents. In the presented developments

and validations, we only considered idealized tsu-

nami wave trains and bathymetry, but verified that

such idealized case studies captured well the salient

tsunami wave physics. In future work, the same

methodology will be applied to actual tsunami case

studies, such as was briefly presented here in the

Mediterranean Basin. In those case studies, a state-of-

the-art tsunami propagation model (such as FUN-

WAVE-TVD) will be used to create a data base of

time series of synthetic tsunami elevation and current,

over a computational grid, using the geography and

bathymetry of a selected site.

The principle of the new algorithm is to compute

correlations of HF radar signals measured/simulated

in many pairs of distant radar cells located along the

same tsunami wave ray, shifted in time by the tsu-

nami propagation time between these cell locations.

Both rays and travel times can easily be computed as

a function of long wave phase speed and local

bathymetry (e.g., using the long wave model or, more

easily, by solving the geometric optic eikonal

equation or one of its simplified formulations). In a

series of applications, some including a strong

background current and a weaker radar signal, we

showed that, in the presence of a tsunami current, the

time-shifted correlations of the radar signal, com-

puted as a function of range and an additional time

lag, exhibit a narrow elevated peak near the zero time

lag; whereas, no pattern in correlation is observed in

the absence of a tsunami current. This is because both

surface waves and background current are uncorre-

lated between pair of cells, and even more so when

time-shifted by the long-wave propagation time. For

smaller tsunami amplitude, smaller wind and larger

environmental noise, although the maximum range

for detection was slightly decreased, we showed that

a peak of correlation still occurred in a

detectable manner near the zero time lag. Hence this

algorithm is robust.

In applications having either a weaker radar SNR

or a strong background current, we showed that a

standard algorithm based on currents directly inverted

from the signal Doppler spectra fails to properly

detect tsunami arrival, except at short range where the

tsunami current is large. In the best case scenarios,

with stronger tsunamis and surface waves (and hence,

SNRs), such an algorithm still can only detect the

tsunami once it has propagated in sufficiently shallow

water for its current to rise above background (i.e.,

[ 0.10–0.15 m/s). By contrast, the new algorithm

was shown to have the potential to detect tsunami

arrival in areas where its current is as low as 0.05 m/
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Figure 21
Test of tsunami detection algorithm 1 (TDA1), in the presence of a background current, based on data from the linear HF radar simulator, for

51 cells located at rm1 ¼ 80–230 km from the radar (with /r1
¼ 180�). Doppler spectra (color scale in dB) using Ti ¼ 120 s, for ES tsunami

propagation (Fig. 4), but computed for a tsunami amplitude reduced to At0 ¼ 0:5 m, wind reduced to V10 ¼ 5 m/s, and with rUb
¼ 0:15 m/s,

after propagation of: a 45 and b 90 min
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s, in the presence of much stronger background cur-

rents; this implies that tsunami detection and warning

could take place in deeper water, further away from

the shorelines where the HF radar is deployed.

Because the standard detection of tsunami currents

works well at short range, we envision that both

algorithms, referred to as TDA1 and TDA2 here,

could be simultaneously run in a field situation, with

TDA2 being able to first detect an approaching tsu-

nami, at larger range and in greater depth, and issue a

warning without being able to estimate the tsunami

magnitude, and TDA1 taking over at shorter range,

confirming the warning and providing an additional

estimate of tsunami currents and elevations. Hence,

both algorithms would be complementary.
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Figure 22
Test of tsunami detection algorithm 1 (TDA1), in the presence of a

background current, based on data from the linear HF radar

simulator. Inverted mean currents in each radar cell, for the cases

and Doppler spectra of Fig. 21, after: a 45, b 60, c 75, and d 90 min

of ES tsunami propagation (Fig. 4)

Figure 23
Test of tsunami detection algorithm 2 (TDA2) for a tsunami

amplitude reduced to At0 ¼ 0:5 m and wind reduced to V10 ¼ 5 m/

s, in the presence of a background current with rUb
¼ 0:15 m/s.

Same case as Figs. 20, 21, 22: a signal correlation between cells 1

and q ¼ 2; . . .51 (Tc ¼ 300 s), shifted by tsunami travel time to cell

1, as a function of an additional time lag; b mean of signal

correlations over 50 pairs of cells, D1ðDsÞ; c same as b but in the

absence of a tsunami current
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Based on results reported here, it appears that in

practice, detection of tsunami arrival with TDA2

would be based on the change in correlation pattern

of the mean correlation between pairs of radar cells

located along site-specific precalculated wave rays.

Unlike the simple illustrations presented here, where

only the mean correlation D1ðDsÞ of signals in pairs

of cells between cell 1 and other cells was used, a

fully operational algorithm would compute the mean

Dp for all pairs of cells, with p varying from distant to

nearshore cells along many wave rays. This way,

once the detection threshold in mean correlation is

met, one could warn of tsunami arrival further off-

shore, over the broad geographic area of radar

coverage (see, e.g., Fig. 1).

In future work, we will generalize the algorithm to

arbitrary bathymetry and tsunami wave trains, and

perform more realistic case studies of tsunami

detection using state-of-the-art tsunami generation

and propagation models (see, e.g., Figs. 2, 3).
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Appendix 1: Directional Wave Number Spectrum

In the present simulations of the radar signal,

we will use a standard analytical form of the

directional wave energy density spectrum WðKÞ, as

a function of the wavenumber vector. Assuming a

fully developed sea, the spectrum will be constructed

based on the one-parameter Pierson–Moskowitz fre-

quency spectrum, which depends solely on wind

speed, for instance V19:5 measured at 19.5 m above

the sea level, and an analytical angular spreading

function.

A commonly used angular spreading function of

direction h, given the dominant direction of wind

waves hp is,

Dðh; hp; s; nÞ ¼
nþ ð1 � nÞ coss fh�hp

2
g

Nðs; nÞ ; ð48Þ

where n 2 ½0; 1
 represents the (asymmetric) fraction

of the spectral wave energy associated with waves

propagating in the opposite direction and s is an

exponent controlling the peakedness of the spreading

function. We use n ¼ 0:1 and s ¼ 5 in the present

applications. The denominator of Eq. 48 is a nor-

malization factor such that the integral of D over

½0; 2p
 is equal to 1,

Nðs; nÞ ¼ 2p nþ 2
ffiffiffi

p
p

ð1 � nÞ Cð0:5ðs þ 1ÞÞ
Cð0:5s þ 1Þ ð49Þ

The directional PM spectrum used here is thus

defined as,

WPMðKÞ ¼
a

2K3
e�

Kp
Kð Þ2

Dðh; hp; s; nÞ ð50Þ

with / ¼ atanðKy=KxÞ, Phillips’ constant a ¼ 0:0081,

and the spectral peak wavenumber is given by,

Kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b g2

2 V4
19:5

s

ð51Þ

with b ¼ 0:74.

The V19:5 value can be converted into the more

standard parameter, V10 (i.e., the wind speed at a

10 m elevation) by representing wind speed as a

function of height, V(z), as a classical von Karman

logarithmic atmospheric boundary layer profile,

which yields the relationship,

V19:5 ’ V10ð19:5=10Þ1=7 ’ 1:10V10. Figure 24 shows

an example of a directional PM spectrum computed

for V10 ¼ 10 m/s.

In deep water, the significant wave height corre-

sponding to a given spectrum is obtained as a

function of the zero-th moment of the spectral energy

density, that is,

Hs ¼ 4

Z Z

WðKx;KyÞdKx dKy

� �1
2

ð52Þ

For the PM spectrum in Fig. 24, we find

Hs ¼ 1:71 m, with Kp ¼ 0:0493 m�1 or

Lp ¼ 127:4 m, and in deep water (see Eq. 2),

Tp ¼ 9:04 s.
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Appendix 2: Second-Order Bragg Kernel and Radar

Scattering

The second-order Bragg kernel is given by

B
�1;�2

2 ðK1;K2Þ ¼ B1 CeðK1;K2Þ þ C�1;�2

h ðK1;K2Þ
� 	

;

ð53Þ

in which Ce is the electromagnetic, and C�1;�2

h the

hydrodynamic, coupling coefficient. The latter is

defined as

C�1;�2

h ðK1;K2Þ ¼
1

2
K1 þ K2 þ

g

x1x2

ðK1K2 � K1  K2Þ



	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gjK1 þ K2j
p

þ ðx1 þ x2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gjK1 þ K2j
p

� ðx1 þ x2Þ2

 !#

;

ð54Þ

with x1 ¼ �1

ffiffiffiffiffiffiffiffi

gK1

p
and x2 ¼ �1

ffiffiffiffiffiffiffiffi

gK2

p
and the former

is defined as

CeðK1;K2Þ

¼ ðK1  uiÞðK2  ðK1 � K0uiÞ
2K0cos2ð/biÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K1  ðK1 � 2K0uiÞ
p

þ iK0D
� 	 ;

ð55Þ

where ui is an unit vector from pointing from the

transmitter to the radar cell, D is the normalized

surface impedance, and /bi is the bistatic angle (equal

to zero in the monostatic case). See the appendix in

GROSDIDIER et al. (2014) for more details.
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