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Abstract—A new stochastic ground motion model for gener-

ating a suite of ground motion time history with both temporal and

frequency nonstationarities for specified earthquake and site char-

acteristics is proposed based on the wavelet method. This new

model is defined in terms of 6 key parameters that characterize the

duration, evolving intensity, predominant frequency, bandwidth

and frequency variation of the ground acceleration process. All

parameters, except for peak ground acceleration (PGA), are iden-

tified manually from a database of 2444 recorded horizontal

accelerations. The two-stage regression analysis method is used to

investigate the inter- and intra-event residuals. For any given

earthquake and site characteristics in terms of the fault mechanism,

moment magnitude, Joyner and Boore distance and site shear-wave

velocity, sets of the model parameters are generated and used, in

turn, by the stochastic model to generate strong ground motion

accelerograms, which can capture and properly embody the pri-

mary features of real strong ground motions, including the

duration, evolving intensity, spectral content, frequency variation

and peak values. In addition, it is shown that the characteristics of

the simulated and observed response spectra are similar, and the

amplitude of the simulated response spectra are in line with the

predicted values from the published seismic ground motion pre-

diction equations (SGMPE) after a systematic comparison. The

proposed method can be used to estimate the strong ground

motions as inputs for structural seismic dynamic analysis in engi-

neering practice in conjunction with or instead of recorded ground

motions.

Key words: Stochastic method, strong ground motions,

wavelet packets, frequency nonstationarity, time–frequency plot.

1. Introduction

Performance-based seismic design requires seis-

mic ground motions, normally either recorded or

artificial accelerograms, as inputs for structural

dynamic time history analysis. However, it is known

that recorded motions are unevenly distributed in

space, are non-repeatable and rely closely on soil

conditions. Consequently, the available recorded

ground motions for specified design scenarios are still

insufficient. In these cases, engineers normally use

amplitude scaling and spectral matching with typical

recordings (e.g., records from the Loma Prieta,

Northridge, and Chi–Chi earthquakes) to generate

sufficient quantities of ground motions. However, the

characteristics of the original ground motion record-

ings will certainly be modified, and the results from

these operations could have different features from

the real recordings (LUCO and BAZZURRO 2007).

Improvements in the generation of acceptable and

reliable accelerograms have recently been developed.

It is now widely accepted that the new synthetic

ground motion models, particularly those that com-

bine engineering methods with seismology methods

(BOORE 2003; MOTAZEDIAN and ATKINSON 2005;

POUSSE et al. 2006), can generate large quantities of

more reasonable ground motions and meet the

requirements in engineering seismic design.

Generally speaking, the present ground motion

simulation methods can be classified into three cate-

gories, i.e., the deterministic method, the stochastic

method and the hybrid method. The deterministic

method, which includes the 3-D finite difference

method, the discrete wavenumber method and the

finite fault method (OLSEN et al. 1997; MAI and BER-

OZA 2002; GUATTERI et al. 2003), requires very precise

information about seismic faults, propagation paths

and soil conditions. It is not only difficult but also

computationally expensive to simulate high-fre-

quency motions. Stochastic process-based simulations

(POUSSE et al. 2006; REZAEIAN and DER 2010) and

stochastic point-source models (BOORE 1983, 2003;

BERESNEV and ATKINSON 1997) are empirical approa-

ches that simulate ground motion usually by adjusting

the Gaussian white noise processes in the frequency
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domain. Current stochastic methods are perceived as

equally applicable for high and low frequencies

(MOTAZEDIAN and ATKINSON 2005; YAMAMOTO and

BAKER 2013). The hybrid method, naturally, combines

both abovementioned methods to simulate broadband

seismic ground motions (HARTZELL et al. 1999;

GRAVES and PITARKA 2004; FRANKEL 2009; AMERI et al.

2009); however, the hybrid method requires very

detailed source information and is computationally

expensive, and it therefore might not be suitable for

engineers. Moreover, it may not necessarily provide

Green’s functions, which satisfy both the amplitude

and phase information in the important intermediate

frequency range from 0.5 to 2 Hz (MOTAZEDIAN and

ATKINSON 2005).

The stochastic method has a long history of usage

because it performs well in terms of matching

observed ground motion characteristics. For example,

the point-source method and the finite fault method

(extended from the point-source method) have been

used to simulate ground motions successfully for

many years (BOORE 1983, 2000, 2003, 2009; OU and

HERRMANN 1990; ROVELLI et al. 1994; BERESNEV and

ATKINSON 1997, 1998; BERARDI et al. 1999; ATKINSON

and SILVA 2000; ATKINSON et al. 2009; EDWARDS and

FÄH 2013). These methods are popular because of

their simplicity, clear physical meaning and good

results in a relatively wide frequency range.

MOTAZEDIAN and ATKINSON (2005) even concluded

that the stochastic model performs better than the

hybrid models used by HARTZELL et al. (1999).

Ground motions have a spatial variability affected by,

e.g., source patterns and path and site effects, which

generally cannot be described in a deterministic

fashion (CACCIOLA and DEODATIS 2011). However, it is

well known that the dynamic response of non-linear

structures is highly influenced by the nonstationary

behavior of the input in both temporal and frequency

domains (YEH and WEN 1990; SPANOS et al. 2007).

The previous point and finite fault methods neglect

the frequency information because the limitation of

the Fourier transform is that it is inconvenient in

considering the frequency nonstationarities across

time, though the phase spectrum contains information

on frequency evolution.

For a more reliable representation of seismic

ground motions, both the amplitude and the

frequency variation of ground motion time histories

must be accounted for. This can be achieved by

separating the temporal and frequency nonstationary

characteristics properly, as suggested by REZAEIAN

and DER (2010). Nonstationarity is achieved by

modulating the intensity and varying the filter

properties in the time domain. The model can

characterize the variation of the intensity in time,

and the time-varying filter parameters define the

evolving frequency content of the process. Further-

more, the wavelet technique is a strong tool to

analyze the temporal and frequency information of

time history simultaneously. YAMAMOTO and BAKER

(2013) proposed a stochastic model (Yamamoto

model hereafter) based on the wavelet packets

method, which uses 13 parameters to capture all

characteristics of real earthquake ground motions.

The wavelet packets were separated into two

groups: a major group and a minor group. The

former was viewed as randomly distributed, and the

latter followed the logarithmic normal distribution

density (LNDD) function. HUANG and WANG (2015)

followed this method and further investigated the

spatial cross-correlations of wavelet packet param-

eters based on geostatistical analysis. Note,

however, that the wavelet method is more conve-

nient to inspect, analyze and modify the frequency

distribution across time, which is the main advan-

tage compared to other methods. Therefore, a deep

exploration of how frequency will change across

time is necessary.

In this paper, a new stochastic model for synthetic

ground motions that can capture and embody non-

stationarity characteristics using the wavelet packets

method is developed. In the previous Yamamoto

model, a single LNDD function was used to scale the

wavelet packet coefficients in both the time and fre-

quency domains, which might inherently make the

frequency uniform across time. Moreover, the ran-

domly assigned major group wavelet packets did not

clearly account for the frequency characteristics of

the observed ground motions. In the present model,

we separate the procedure into two steps, similarly to

the stochastic point-source method (BOORE 2003). In

the first step, randomly generated Gaussian white

noise is windowed to capture the nonstationarities in

the time domain. In the second step, different LNDD
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functions are used for wavelet packets along each

decomposition time point to characterize the fre-

quency distribution of simulated ground motions

based on observations to thousands of records. It is

found that only 6 parameters are required to capture

the characteristics of real recordings.

Compared with the previous models of Yama-

moto and Baker and Rezaeian and Kiureghian, the

proposed model has the following advantages: (a) it

has a small number of parameters to decrease the

amount of uncertainties of the model. (b) The tem-

poral and frequency nonstationary characteristics are

separable, and the evolving frequency content of the

ground motion process is characterized. (c) Similarly

to the point-source method (BOORE 2003), the model

provides physical insight, and its parameters can be

related to the characteristics of the earthquake and the

site considered. (d) It predicts the peak ground

acceleration (PGA) of ground motions rather than

energy, and it is compatible with existing seismic

ground motion prediction equations (SGMPE).

(e) The model simulates the frequency nonstationar-

ities in the global state of the time–frequency plot

based directly on global information of observed

ground motions, which make the model easy to

understand and use.

We begin this paper with the whole procedure of the

present method, which involves 6 parameters to sepa-

rate the temporal and frequency characteristics. Then,

the model is extended to parameter identification and

regression based on an earthquake database that

contains thousands of records. Finally, a validation and

a comparison of the presented model are performed by

comparing the intensity, duration, bandwidth and peak

value of the simulated ground motions with real

recordings within and without in the present database

and those generated by previous models.

2. New Stochastic Model

2.1. Method

In this paper, the wavelet packets technique is

employed because it separately accounts for both the

temporal and spectral nonstationarities of ground

motions. Several key parameters are used to control

and identify the duration, shape and frequency, and

variation features with the time of every accelero-

gram. Figure 1 illustrates the simulation procedure of

the proposed model. First, the white Gaussian noise is

windowed and transformed into wavelet packets by a

given frequency resolution (Fig. 1a–c). In this step,

Td controls the duration, and e and g control the

temporal nonstationary of the motions. Then, the

frequency vectors are scaled across time to account

for the frequency variation with parameters lwm and

rwm, which are the mean and standard deviation of

the LNND function, respectively (Fig. 1d). Finally, it

is transformed back to the time domain using the

wavelet reconstruction method to obtain the simu-

lated ground motion and scaled by the predicted PGA

(Fig. 1e).

Figure 1
Procedures for simulating ground motions using wavelet packet method
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As shown in Fig. 1, a total of 6 parameters are

chosen carefully by trial and error to control and

identify the temporal and frequency variations of the

accelerogram, which will be described in detail

below. Figure 1c, d contains the wavelet packet

coefficient (WPC) matrix that describes the ampli-

tude and frequency variations of a time history. For a

given decomposition depth, i.e., the given frequency

resolution, the WPC of process x(t) at scale i and

position k can then be computed as

ci
j;k ¼

Z 1

�1

Z 1

�1
xðtÞwðtÞwi

j;kðtÞ
� �

dt

¼
Z 1

�1

Z 1

�1
Aðx; tÞeixtdZðxÞ

� �
wi

j;kðtÞdt

¼
Z 1

�1

Z 1

�1
Aðx; tÞeixtwi

j;kðtÞdt

� �
dZðxÞ

ð1Þ

where x(t) is the time series, w(t) is the window

function, ci
j;k is the ith set of WPC at the jth scale

parameter, k is the translation parameter, and wi
j;kðtÞ

is the wavelet packet function that is localized around

central time tk and frequency fi. A(x,t) is the time-

and frequency-dependent modulating function, and
�ZðxÞ is a complex random process with orthogonal

increments such that

E½dZðxÞdZ�ðxÞ0� ¼ S
ff
ðxÞdx x ¼ x0

0 otherwise

�
ð2Þ

where E[�] is an expectation, and S
ff
ðxÞ is the two-

sided power spectral density (PSD) for the zero mean

stationary process, as follows:

xðtÞ ¼
Z 1

�1
eixtdZðxÞ ð3Þ

When the WPC matrix is obtained, as shown in

Fig. 1c, the column vectors that represent the

frequency distribution at certain time point are scaled

by LNDD functions, which can be expressed as

follows:

�cj;k ¼ c�j;k � Lkðf ; lwk; rwkÞ k ¼ 1; 2. . . 2
N

2 j

� �
ð4Þ

where �cj;k and c�j;k are the column vectors at tk after

and before scaling, Lk (f; lwk, rwk) is the kth LNDD

function, and 2N is the number of points in a time

series.

Note that different LNDD functions have been

used for each column vector in the present model.

This is important because it will be shown below that

real earthquake recordings have a changing predom-

inant frequency along time.

Finally, the simulated acceleration time history

can be generated by wavelet packet reconstruction

using the following equation:

xðtÞ ¼
X2 j

i¼1

X2N�j

k¼1

ci
j;kw

i
j;kðtÞ ð5Þ

The simulated time history is then scaled by the

predicted PGA.

2.2. Ground Motion Database

The ground motion recordings used in this study

are from the Pacific Earthquake Engineering

Research (PEER) Center compiled in the PEER–

Next Generation Attenuation (NGA) project (POWER

et al. 2006). All accelerograms in this database are

recorded on free-field conditions, and no aftershock

recordings are included. We use only the recordings

with the following four basic parameters available for

most earthquakes: Ft, Mw, RJB and VS30. Ft represents

the type of faulting, such as reverse slip, strike slip,

and normal slip; Mw corresponds to the moment

magnitude of the earthquake; RJB, the Joyner–Boore

distance, is defined as the horizontal distance to the

surface projection of the rupture and is available for

most stations in the NGA database; and VS30

represents the soil conditions, described as the time-

averaged shear-wave velocity within a 30-m depth.

Our database selection criteria can be summarized

clearly, as follows: (1) each recording must contain

full information of F, Mw, RJB and VS30. (2) The

moment magnitude (Mw) is larger than 4.5. (3) The

ground motion records must be from the main shock

of an earthquake. (4) Accelerograms of very low

quality are excluded, such as extreme short motions

and white noise-like motions. Thus, a total of 2444

horizontal components from 1222 records in 23

earthquakes have been collected and listed in

Table 1. As seen, the numbers of records from

different earthquakes are different, and most earth-

quakes have strike-slip and reverse fault mechanisms.
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2.3. Model Parameterization and Parameter

Identification

As shown above, the first step in our simulation

process is to window the Gaussian white noise via

variable parameters. Variable Td, which represents

the seismic duration, should be discussed first

because it determines the length of the white noise

generated. In the Yamamoto Model, the duration is

defined as the time interval between the first and last

absolute values that cross 1 % of PGA. However, this

definition is not perfect; it has a strong influence on

the parameters that define the rise and attenuation of

ground motions in the time domain. In Fig. 2, there

are two records from the 1992 Big Bear earthquake

(hereafter, Big Bear 1 and Big Bear 2 recordings) that

have a similar S wave duration. The first one has a

wave of period of P, and the second one has a long

tail. Obviously, the parameters that control the

nonstationarities in the time domain are much

different but are similar in simulations. Another

widely used seismic duration at present is energy-

controlled duration (TRIFUNAC and BRADY 1975),

which defines the time range between certain per-

centages of Arias intensities as the duration. For

example, T5–95 represents the time interval between

the instants at 5 and 95 % of the Arias intensities.

However, this duration also cannot properly account

for the portion of the S wave for the simulation

Table 1

Selected earthquakes from NGA database and the basic information

Earthquake name Year Earthquake ID Faulting mechanism Moment magnitude Number of records

1 San Fernando 1971 0030 Reverse 6.61 29

2 Imperial Valley-06 1979 0050 Strike slip 6.53 28

3 Coalinga-01 1983 0076 Reverse 6.36 45

4 Morgan Hill 1984 0090 Strike slip 6.19 26

5 N. Palm Springs 1986 0101 Reverse 6.06 23

6 Whittier Narrows-01 1987 0113 Reverse 5.99 110

7 Loma Prieta 1989 0118 Reverse 6.93 54

8 Landers 1992 0125 Strike slip 7.28 36

9 Big Bear-01 1992 0126 Strike slip 6.46 39

10 Northridge-01 1994 0127 Reverse 6.69 140

11 Kobe, Japan 1995 0129 Strike slip 6.9 10

12 Kocaeli, Turkey 1999 0136 Strike slip 7.51 24

13 Chi–Chi, Taiwan 1999 0137 Reverse 7.62 297

14 Duzce, Turkey 1999 0138 Strike slip 7.14 21

15 Hector Mine 1999 0158 Strike slip 7.13 76

16 Yountville 2000 0160 Strike slip 5 25

17 Big Bear-02 2001 0161 Strike slip 4.53 41

18 Anza-02 2001 0163 Normal 4.92 62

19 Gulf of California 2001 0164 Strike slip 5.7 10

20 Gilroy 2002 0166 Strike slip 4.9 34

21 Nenana Mountain, Alaska 2002 0168 Strike slip 6.7 36

22 Denali, Alaska 2002 0169 Strike slip 7.9 22

23 Big Bear City 2003 0170 Strike slip 4.92 34

Td(present study)T15-85T5-95

(b)

(a)

T1-99

Figure 2
Acceleration time history from 1992 Big Bear earthquake recorded

by Seal Beach—Office Bldg. (a) and Silent Valley—Poppet Flat

station (b). Different energy durations are denoted by the time

interval between lines with the same color
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method, as shown in Fig. 2. T5–95 and T15–85 are

shorter than the observed duration, and T1–99 includes

either a long P wave (Fig. 2a) or a long wave tail

(Fig. 2b). Most ground motion simulation methods

focus primarily on the simulation of the S wave.

Boore’s point-source method considers T15–85 to

capture the most important part of the whole S waves

in one accelerogram, but he uses the duration factor

to prolong the whole simulated time history in the

post-process. Based on such valuable research results,

we define the duration in the present study as the time

interval between the start of the S wave and the last

absolute value that crosses 1 % of PGA, where the

start time is decided manually because the S wave

start time is subjective and difficult for programs to

locate.

To capture the amplitude and distribution of the

content in the time domain, the following Saragoni

window function (SARAGONI and HART 1974) is used:

wðtÞ ¼ aðt=TdÞb
expð�c � t=TdÞ ð6Þ

b ¼ �e ln g= 1þ eðln g� 1Þð Þ ð7Þ

c ¼ b=e ð8Þ

a ¼ ðexpð1Þ=eÞb ð9Þ

where w(t) is the Saragoni window for shaping the

acceleration in time domain, the peak value of the

window envelope occurs at fraction e of specified

duration Td, and the amplitude at time Td is reduced

to fraction g of the maximum amplitude. a, b and

c are intermediate parameters.

The normalized window functions with different e
and g are shown in Fig. 3a, b illustrates the way to

make parameter identifications of e and g for each

recording.

The window function is able to reflect the

nonstationary of ground motions in the time domain

conveniently. Nonstationary also refers to the varia-

tion of the frequency content in the frequency

domain. It is found that most recordings have a

relatively high frequency with increasing acceleration

values; then, the frequency gradually becomes lower

with the decrease in the acceleration amplitude. This

characteristic is clearly shown in Fig. 4, in which the

Big Bear 1 record is decomposed into WPCs, and the

wavelet decomposition depth is 9 so that the

frequency resolution is 0.194 Hz and the time

resolution is 2.56 s. The WPCs are squared numbers

to show peak points clearly. Each single curve

represents the column vector of WPCs, which

displays the frequency distribution at the correspond-

ing time, with a circle denoting the position of the

maximum frequency (Fig. 4a). The black filled circle

represents the total predominant frequency when all

column vectors are summed. It is, therefore, neces-

sary to use different LNDD functions for each WPC

frequency vector (Fig. 4b) rather than only one

LNDD for all WPCs.

The frequency distribution follows the LNDD

function, i.e.,

Lkðf ; lwk;rwkÞ ¼
1

frwk
ffiffiffiffiffiffi
2p

p e�ðln f�lwkÞ2=2r2wk k ¼ 1; 2. . . 2
N

2 j

� �

ð10Þ
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Figure 3
Saragoni window function with different parameters (left) and a Husid plot of Big Bear 2 against simulation (right)
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where Lk(�) is the function for shaping the kth fre-

quency vector, f is the frequency series, and lwk and
rwk are the mean and variance of the kth LNDD

function.

The next problem is determining how to define

lwk and rwk. Two typical characteristics for most

recordings are summarized below: (1) the total

predominant frequency (the black circle in Fig. 4)

is a critical frequency that can have a significant

effect on the acceleration response spectra of ground

motions. (2) This total predominant frequency occurs

around the midpoint of the duration of each accelero-

gram, as shown in Fig. 2a, in which the time history

has a clear dividing point that separates high and low

frequencies. A statistical analysis of the present

earthquake database shows that 79 % of the record-

ings have the above characteristics. The algorithm for

lwk and rwk can thus be defined as follows: for

k\m,

lwk ¼ lwm � ð1þ 1� pÞm�k

rwk ¼ rwm � ð1� 2� pÞm�k

�
ð11Þ

for k C m

lwk ¼ lwm � ð1� 0:5� pÞk�m

rwk ¼ rwm � ð1þ 2� pÞk�m

�
ð12Þ

where lwm and rwm are the mean and variance of the

mth LNDD function, which follow the total pre-

dominant frequency distribution, and p is the variance

rate. Here, m = int(2N/2j), int is a rounding function.

The parameter identification for lwm and rwm is

conducted by selecting proper values that match the

acceleration response spectra of real ground motions,

as Fig. 5 shows. It is computationally expensive if

this identification is performed by a computer

program because it is not a normal optimization

problem that can be quickly solved by a computer.

For the stochastic method, the white Gaussian noise

generated each time is different so that the acceler-

ation response spectrum will be slightly different,

even if the same lwm and rwm are used. However,

these parameters define a trend or a range of certain

response spectra. Therefore, the identification can

also be conducted manually by comparing simulated

and observed response spectra. Note that p is also a

parameter to be identified, and it is fixed here because

its value has a strong influence on lwm and rwm. In
other words, if p is also set as a parameter to be

predicted, it will be difficult and possibly impossible
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to simulate the ground motions, whose acceleration

response spectra can match the real ground motion.

Therefore, p is determined by the following equations

through trial and error for hundreds of recordings:

p ¼ 0:08;
p ¼ 0:04;
p ¼ 0:02;

if

if

if

Td � 90s

90s� Td � 150s

Td � 150s

8<
: ð13Þ

The above identification process is reasonable

because if the duration of the ground motion is long,

there will be more time points whose frequency

distribution is to be scaled. In this case, a large

p would cause a very high frequency at the beginning

and a very low frequency at the end of the simulated

ground motion. For a time history that is less than

90 s long, p equals 0.08 is optimal.

The last parameter is Apga, which determines the

amplitude of the ground motions. In the Yamamoto

model, parameter Eacc is defined to represent the

energy of the acceleration time history, which is as

follows:

Eacc ¼
Z 1

�1
xðtÞj j2dt ¼

X
i

X
k

ci
j;k

���
���2 ð14Þ

Furthermore, in the Rezaeian and Kiureghian

model, the Arias intensity is used to define the energy

of simulated motions. In most cases, PGA is an

important parameter in both engineering and seis-

mology fields, although it is only one parameter

among many that can characterize a ground motion.

However, energy is a parameter that related to both

amplitude and duration. As illustrated in Fig. 6, the

correlation coefficient of Eacc and PGA 9 Td is larger

than that of Eacc and PGA, indicating that Eacc is a

parameter determined both by PGA and Td. Because

the model parameters are generated by regression

equations (described in the next section), it would

increase uncertainties by regression residuals if both

Eacc and Td are predicted. It is, therefore, better to set

PGA as a model parameter directly to determine the

amplitude of the simulated acceleration time history

and then investigate the correlation of residuals

between all model parameters. Thus, a good regres-

sion model is critical for the accuracy of the

presented simulation models.

3. Regression Analyses

3.1. Regression Model

SGMPEs are derived from a strong-motion

dataset by regression methods, such as the ordinary

least squares method and the multivariate Bayesian

method (ARROYO and ORDAZ 2010). For the sake of

simplicity, a linear form of a regression equation is

employed for each model parameter in terms of

explanatory functions representing the type of fault-

ing (Ft), earthquake magnitude (Mw), source-to-site

distance (RJB) and soil effect (VS30). To address the

residuals between earthquakes and between records, a

two-stage regression analysis is employed (JOYNER

and BOORE 1993), and the function follows the BOORE

and ATKINSON (2008) in the following form:
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Correlation of PGA, Eacc and PGA 9 Td with correlation coefficient and residual standard deviation
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logðYÞ ¼ FMðMWÞ þ FDðRJB;MWÞ þ FSðVS30Þ þ d
þ n

ð15Þ

In the equation, Y is the model parameters

introduced in Sect. 2.3, FM, FD and FS represent

the magnitude scaling, distance function, and site

amplification contribution, respectively, and d and n
are inter-event and intra-event residuals with mean

zero and variances s2 and r2, respectively.
The magnitude scaling is given by:

FMðMÞ ¼ e1SSþ e2NSþ e3RSþ e4CCþ e5

� ðMW � MhÞ þ e6ðMW � MhÞ2 if Mw �Mh

ð16Þ

FMðMÞ ¼ e1SSþ e2NSþ e3RSþ e4CC

þ e7ðMW � MhÞ if Mw [Mh

ð17Þ

where e1, e2, e3, e4, e5, e6 and e7 are coefficients, and

SS, NS, RS and CC are dummy variables that denote

strike slip, normal slip, reverse slip and the Chi–Chi

earthquake, respectively, as represented by the values

in Table 2. Note that although the Chi–Chi earth-

quake is also a reverse slip, it is assumed to be a

different fault type because it contributes to 297

records. Therefore, the results might be overly

influenced. Furthermore, it is an earthquake recorded

in Asia; most earthquakes in Table 1 occurred in the

United States. ATKINSON and BOORE (2007) also con-

cluded that the Chi–Chi earthquake might affect the

ground motion prediction equations (GMPEs), par-

ticularly for the PSA at periods of greater than 5 s.

Therefore, CC is used here to represent the Chi–Chi

earthquake.

The distance function is given by:

FDðRJB;MWÞ ¼ c1 þ c2ðM � MrefÞ½ � lnðR=RrefÞ
þ c3ðR � RrefÞ ð18Þ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
JB þ h2

q
ð19Þ

and c1, c2, c3 and h are coefficients to be determined.

The site amplification function is simplified here

in the form:

FSðVS30Þ ¼ b lnðVS30=VrefÞ ð20Þ

where b is the parameter to be determined.

In this model, there are several parameters that

follow the Boore and Atkinson model: Mh is 6.9, Mref

is 4.5, Rref is 1.0 km and Vref is 760 km/s, respectively.

3.2. Regression Results

The two-stage regression method is a maximum

likelihood estimation for parameters, which is pro-

gramed in MATLAB software in the present study.

Table 3 provides the estimated parameters and stan-

dard error components. There are some interesting

insights gained from Table 3. For example, the

seismic duration (Td) tends to increase with the

increasing of magnitude and distance (see e7 and c1)

but decrease as site stiffness increases (see b). This

finding is consistent with observations that more

distant sites tend to experience longer motions.

Acceleration attenuation parameter g and bandwidth

parameter rwm decrease with the increasing of site

stiffness, as expected (see b). For the soft soil site,

seismic acceleration tends to attenuate slower than

the hard soil site; therefore, the value of g is large.

Meanwhile, the high-frequency wave will be filtered

in the soft soil site so that rwm becomes larger. (A

larger rwm leads to a wide bandwidth.) This phe-

nomenon is also observed in the results of lwm, which
tends to increase as site stiffness increases because a

larger lwm will generate a high total predominant

frequency. This finding is also consistent with the

observations. Parameter Apga indicates that normal

and reverse faults can cause a larger PGA than a

strike-slip fault (see e2 and e3), and PGA tends to

increase with decreasing site stiffness (see b).

Tables 4 and 5 show the correlation of the inter-

and intra-event residuals, respectively. Several of

these estimated correlations also provide interesting

insights. Note that Td has a negative correlation with

Table 2

Values of dummy variables for different fault types

Fault type SS NS RS CC

Strike slip 1 0 0 0

Normal slip 0 1 0 0

Reverse slip 0 0 1 0

Chi–Chi 0 0 0 1
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both lwm and Apga, and it has a positive correlation

with rwm. This finding is as expected because ground

motions recorded at a long distance site usually have

a long duration with a low PGA. Furthermore, they

contain more low-frequency components than high-

frequency components, which leads to a small lwm
and a large rwm. A relatively strong negative

correlation is observed between g and Apga. This

finding is consistent with the discussion for Table 3,

i.e., that a long distance site often has a small PGA

but more low-frequency components, which cause a

low acceleration attenuation speed and thus a large g.
Figure 7 shows the diagnostic scatter plots of the

residuals versus the predictor variables. Inter-event

residuals can only be plotted against Mw, whereas

intra-event residuals are plotted against Mw, RJB and

VS30. This shows that the residuals are evenly

scattered around zero and thus implies that the

regression model is a good fit to the data.

4. Numerical Simulations

For a given set of earthquakes and site charac-

teristics (Ft, Mw, RJB, VS30), large quantities of

synthetic ground motions can be generated with a

detailed introduction below, based on the predicted

parameters described in the preceding sections.

Note that the intra-event and inter-event residuals

are generated as random values, and they obey

Table 3

Maximum likelihood estimates of regression coefficients and standard error components

e1 e2 e3 e4 e5 e6 e7 c1 c2 c3 h b r s

Td 3.080 2.880 2.749 2.852 0.062 -0.122 0.964 0.182 -0.046 0.002 -0.222 -0.277 0.260 0.217

e -3.676 -3.845 -3.551 -3.263 1.712 0.569 0.142 0.743 -0.055 -0.005 19.97 0.183 0.543 0.639

g -3.256 -4.018 -3.469 -3.275 0.128 -0.434 1.444 0.464 -0.145 0.000 -0.239 -0.465 0.961 0.467

lwm 3.863 4.191 4.106 3.144 1.522 -0.070 2.234 0.101 -0.405 0.000 83.77 0.375 0.467 0.266

rwm 4.119 4.111 4.099 4.087 0.577 0.071 0.372 -0.986 -0.070 0.010 51.92 -0.308 0.445 0.151

Apga 0.190 0.647 0.470 0.099 0.326 -0.054 -0.445 -0.967 0.111 -0.002 4.071 -0.226 0.467 0.242

Table 4

Correlation of intra-event residuals

Td e g lwm rs Apga

Td 1 -0.104 0.121 -0.354 0.270 -0.305

e -0.104 1 0.001 0.175 -0.130 -0.080

g 0.121 0.001 1 -0.003 -0.098 -0.370

lwm -0.354 0.175 -0.003 1 -0.118 0.055

rwm 0.270 -0.130 -0.098 -0.118 1 -0.043

Apga -0.305 -0.080 -0.370 0.055 -0.043 1

Table 5

Correlation of inter-event residuals

Td e g lwm rwm Apga

Td 1 -0.524 -0.058 -0.417 0.474 -0.387

e -0.524 1 -0.317 0.438 -0.254 0.302

g -0.058 -0.317 1 -0.113 -0.582 -0.294

lwm -0.417 0.438 -0.113 1 -0.175 0.236

rwm 0.474 -0.254 -0.582 -0.175 1 0.017

Apga -0.387 0.302 -0.294 0.236 0.017 1
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multivariate normal distributions with a covariance

matrix computed by the residuals of the six parame-

ters. The wavelet used in the present study is the

‘‘Meyer’’ wavelet, and decomposition depth d is set

as 9 because the dt is 0.005; therefore, the frequency

and time resolution can reach 0.194 Hz and 2.56 s. A

high-frequency resolution can guarantee that enough

frequency points will be scaled by the use of Eq. (8)

and that 2.56 s is enough time in the time domain

because the seismic ground motion is generally

longer than 5 s.

The simulation method proposed in the present

study carries both deterministic and random aspects

of ground motion shaking. The deterministic aspects

are that the frequency contents are freely

adjustable according to Ft, Mw, RJB and VS30. The
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Scatter plots of residuals against earthquake magnitude, RJB, and VS30 for each model parameters
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stochastic aspects are specified by the Gaussian white

noise, and the predicted parameters have random

effects because of the residuals.

To demonstrate this phenomenon, Fig. 8a, b

shows two set of ground motions, i.e., one recorded

motion and three simulated motions with accelera-

tion, velocity and displacement time history in each

set, for given values of Ft, Mw, RJB, VS30 from past

earthquakes. The acceleration time history is pro-

cessed by a high-pass filter with a cutoff frequency

(a) 

-0.1

0.0

0.1

-0.05
0.00
0.05

-0.02
0.00
0.02

-0.1

0.0

0.1

-0.05
0.00
0.05

-0.02
0.00
0.02

-0.1

0.0

0.1

-0.05
0.00
0.05

-0.02
0.00
0.02

0 5 10 15 20 25 30
-0.1

0.0

0.1

-0.05
0.00
0.05

-0.02
0.00
0.02

 Recorded  Recorded

 Sim-2

 Sim-3

 Recorded

 Sim-1  Sim-1  Sim-1

 Sim-2

 Sim-3

A
cc

el
er

at
io

n 
(g

)

 Sim-2  Sim-2

 Sim-3

V
el

oc
ity

 (
m

/s
)

D
is

pl
ac

em
en

t (
m

)

0.078

0.089

0.083

1.26

0.67

1.06

0.62

1.03

0.76

0.11

0.21

0.20

0.10

0.09

0.12

44.36

29.60
Sim-3

Sim-2

Time (s)

 Sim-3

T
d
 (s) ε η μ

wm
σ

wm A
pga

 (g)

Sim-1 34.99

Time (s)Time (s)

(b) 

-0.4
-0.2
0.0
0.2
0.4

-0.4
-0.2
0.0
0.2
0.4

-0.1

0.0

0.1

-0.4
-0.2
0.0
0.2
0.4

-0.4
-0.2
0.0
0.2
0.4

-0.1

0.0

0.1

-0.4
-0.2
0.0
0.2
0.4

-0.4
-0.2
0.0
0.2
0.4

-0.1

0.0

0.1

-0.4
-0.2
0.0
0.2
0.4

-0.4
-0.2
0.0
0.2
0.4

0 5 10 15 200 5 10 15 20
-0.1

0.0

0.1

 Recorded  Recorded  Recorded

 Sim-1  Sim-1  Sim-1

A
cc

el
er

at
io

n 
(g

)

 Sim-2

V
el

oc
ity

 (
m

/s
)

 Sim-2

D
is

pl
ac

em
en

t (
m

)

 Sim-2

0.112

0.274

0.188

1.11

0.83

1.47

0.65

0.39

0.32

0.09

0.01

0.04

0.24

0.16

0.05

20.05

28.73
Sim-3

Sim-2

T
d
 (s) ε η μ

wm σ
wm A

pga
 (g)

Sim-1 35.76

Time (s)

 Sim-3

Time (s)

 Sim-3

Time (s)

 Sim-3

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 5 10 15 20

Figure 8
a Recorded and synthetic motions corresponding to Ft = 2 (reverse faulting), Mw = 6.61, RJB = 61.79 km, and VS30 = 235 m/s. The

recorded motion is from the 1971 San Fernando earthquake at the Carbon Canyon Dam station; b recorded and synthetic motions

corresponding to Ft = 2 (reverse faulting), Mw = 6.93, RJB = 58.52 km, and VS30 = 190.14 m/s. The recorded motion is from the 1989

Loma Prieta earthquake at the SF International Airport station

1618 Y. Li, G. Wang Pure Appl. Geophys.



0.1 Hz. The table below the graphs displays the

randomly generated parameters for the synthetic

motions. Note that these two events have very similar

earthquake and site characteristics (Ft = reverse;

Mw = 6.61, 6.93; RJB = 61.79, 58.52 km;

VS30 = 235, 190.14 m/s), but the two recorded

motions are somewhat different. The first motion has

a longer duration, a relatively high frequency and a

low PGA, whereas the second motion has a shorter

duration with a low frequency and a low PGA. It is

notable that the parameters are randomly generated,

and the Gaussian white noise is different for every

simulation, which denotes the random aspects of the

present method. Meanwhile, the generated parame-

ters seem to be distributed within a certain range. For

example, the durations of the first motion are

approximately 30–45 s, whereas the second motion

has durations of approximately 20–35 s, which can

also be observed for PGA variation ranges. This is the

deterministic aspect of the present method. Note that

Td is the duration of the whole Gaussian white noise

rather than any energy duration or the ground motion.

For example, in Fig. 8b, the first simulation has a Td

of 35.76 s, but it looks shorter than the second sim-

ulation, which has a Td of 28.73 s. The reason is that

the first simulation has a smaller e and g than the

second simulation. Furthermore, the general features

of the simulated accelerations are similar to those of

the recorded motions. The velocity time histories tend

to have a low frequency and a large amplitude in the

latter half part of the motions, resulting from

parameter p defined in Eqs. (11)–(13). This phe-

nomenon is highly influenced by parameters e, g, lwm
and rwm. If all these parameters can be predicted

accurately, the velocity and displacement time his-

tories will be more close to the recorded ones, as

shown by Sim-2 in Fig. 8a and Sim-1 in Fig. 8b.

In practice, the ground motion simulation method

has two basic functions: one is to generate ground

motions to meet special engineering requirements,

and the other is to investigate the simulation param-

eters for certain regions. For example, the stochastic

point-source and finite fault methods use a specified

high-frequency decay parameter, j, and a low-fre-

quency cutoff parameter, fc (see BOORE 2003). To

realize both functions above, it is necessary to sim-

ulate ground motions with given values for some

model parameters, e.g., the lwm and rwm that control

the predominant frequency of ground motion. In

these cases, the lwm and rwm are fixed, and the

remaining variables are generated based on the con-

ditional mean vector and covariance matrix. Figure 9

shows the recorded motions together with three

synthetic motions and compares the best simulation

with pseudo-spectral acceleration (PSA) against the

recorded motion. The first line of bold numbers in the

table is the identified model parameters for the

recorded motion, and the three lines below are the

generated parameters with a fixed lwm and rwm.
Simulations with fixed parameters lead to a

stable frequency content, and it is clear that the

simulated motion shows an increasingly lower fre-

quency along the time axis.

5. Model Validation

To validate the proposed model, comparisons are

made between the selected recorded and synthetic

ground motions to demonstrate the similarity of their

features. The comparison includes elastic response

spectra, previous NGA ground motion prediction

equations and previous stochastic models.

5.1. Against Earthquakes Within and Without

the Database

Figure 10 displays the 5 % damped elastic

response spectra of the accelerogram recorded at

the Alhambra-Fremont School station in the 1994

Northridge earthquake and 50 synthetic motions

simulated by inputting the same Ft, Mw, RJB and

VS30 as the recorded motion without fixing any model

parameters. In Fig. 10a, the regressed model

described in Sect. 3 is used (hereafter RM1). In the

left graph, the spectra of the recorded motions are

well distributed within the scope of variability of the

spectra of the synthetic motions at each period

considered. The discrepancy between the simulated

spectra and the recorded ones is primarily caused by

the misfit of the PGA of the motions, which can be

seen in the right graph in Fig. 10a, in which all PGAs

of the simulated ground motions are scaled to be

equal to the recorded motion, and most spectra of
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synthetic motions agree much better with the spectra

of the recorded motion; i.e., the variance of synthetic

motions becomes smaller. This finding is important

because in engineering practice, the PGA of ground

motions is often scaled to meet the requirement of

special structural design conditions, e.g., incremental

dynamic analysis (IDA) for tall buildings. It seems

that the simulation model will be better if the PGA of

the synthetic motions can be predicted more accu-

rately, but this is usually difficult, and such variability

observed in the spectra of synthetic motions is

reprehensive of the variability inherent in ground

motions for the given Ft, Mw, RJB and VS30.

Figure 10b contains the simulations for the

Alhambra-Fremont School station in the 1994 North-

ridge earthquake but with different regression

equations. In the present earthquake database and

regression model, the Chi–Chi earthquake has the

largest number of records and has been set as

a different fault mechanism. The Northridge

earthquake, however, has 140 records, almost half

the number of the Chi–Chi earthquake. To determine

how the Northridge earthquake affects the simulation

results, we use a database without the Northridge

earthquake and obtain another regression model

(hereafter RM2). Then, 50 unscaled and scaled

synthetic motions with the same Ft, Mw, RJB and

VS30 are obtained, respectively. Figure 10b shows

that the PSA of simulated ground motions computed

with RM2 decay are slower than those computed with

the RM1 against the period, indicating that long

period components diminish faster in the Northridge

earthquake. Furthermore, the parameter variance in

RM2 becomes smaller as simulations are more

concentrated than in RM1.

The earthquakes in the present database occurred

from 1971 to 2003. To test the prediction ability of

the proposed model, a recent earthquake, the strike-

slip-type South Napa earthquake on 24 Aug 2014

(Mw = 6.0), is selected as the target earthquake. In
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Fig. 11, the left graph compares the recorded and

simulated PGA distribution against RJB. Only one

simulation is conducted for each station, and the Vs30

is randomly generated within 250–700 m/s for sta-

tions without clear soil condition information. It is

found that the simulated PGA is slightly higher than

the recorded ones. The reason might be that more

than 80 % of the stations do not have any Vs30

information, and the recorded PGA in the Napa

earthquake is scattered for the same RJB. However,

the simulated PGA does reflect the general attenua-

tion trend of the Napa earthquake. The right graph in

Fig. 11 is the simulated PSA for the ground motion

recorded at the Santa Rosa Calistoga and Marit

stations. The gray lines indicate 50 simulations and

are not scaled by PGA. This shows that the recorded

PSA generally falls in the middle of the 50 simula-

tions, indicating that the present model has the

capacity to predict earthquake ground motion levels.

This capacity could be better if there were more

parameters involved in the model and more earth-

quakes added to the database.

5.2. Against with NGA Attenuation Models

Because the synthetic ground motions are

intended primarily for use in engineering practice, a

reasonable validation is to investigate how these

motions are comparable and consistent with existing

ground motion prediction equations. To this end, the

elastic response spectra (5 % damped Sa(T)) at 0.2 s,

1.0 and 3.0 s of a set of 500 synthetic motions against

RJB for given magnitude and soil conditions (Ft = 0

(strike slip), Mw = 5, 6 and 7, Vs30 = 300 m/s) are

compared with the ground motion predicting equa-

tions (GMPE) developed by BOORE and ATKINSON

(2008; BA08), CHIOU and YOUNGS (2008; CY08), and

ABRAHAMSON and SILVA (2008; AS08).

Figure 12 shows the median (color box) and ±one

logarithmic standard deviation values (cross above

and below) of the response spectra of simulated

ground motions. It is shown that the simulated

median values of PGA are in close agreement with

the BA08, CY08 and SGMPEs for all magnitudes and

with AS08 for magnitudes of 6 and 7. For other
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Figure 10
Elastic response spectra (5 % damped) of the 1994 Northridge earthquake recorded at Alhambra-Fremont School station and of 50 synthetic

motions. The motion correspond to Ft = 2, Mw = 6.69, RJB = 35.66 km, and VS30 = 550 m/s. a Unscaled and scaled simulated spectra using

a regression model in Sect. 3. b Unscaled and scaled simulated spectra using a regression model without Northridge records
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response spectra periods, the simulated medians

match well with CY08 and are slightly higher than

BA08 SGMPE. The comparison with AS08 has the

worst result; the simulated values are generally

higher for all magnitudes, particularly for Mw = 5.

Furthermore, the standard deviations of the simulated

response spectra tend to increase with the period. The

inherent feature of stochastic methods is that it is

difficult to simulate low-frequency motions accu-

rately. However, to address this issue, the variable

LNDD functions are introduced and used in our

present model. Then, the median response values at a
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Figure 11
Simulation of PGA distribution against RJB for Napa earthquake (left graph) and simulation of unscaled elastic response spectra (5 % damped)

of ground motion recorded at Santa Rosa Calistoga and Marit stations. The motion corresponds to Ft = 0, Mw = 6.0, RJB = 30.20 km, and

VS30 = 300 m/s
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Figure 12
Median and ±1 logarithmic standard deviation values of the response spectra of 500 synthetic motions and corresponding values predicted by

existing GMPEs without residuals. The selected parameters are Ft = 0 (strike slip), Mw = 5, 6 and 7, and Vs30 = 300 m/s. Z1.0 = 0.024 km

for CY08. Ztor = 0.034 km, W = 20 km and d = 90 for AS08
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long period (1.0 and 3.0 s) fit well to the existing

GMPEs.

The database used in the present study is a sub-set

of that used by the above 3 SGMPEs, which all come

from the NGA project. Thus, the simulated PSA

values have a similar attenuation trend with those

SGMPEs. These comparisons show that the method

presented in this study is viable and consistent with

existing GMPEs, particularly for magnitudes greater

than 6.0 because approximately 70 % of ground

motion recordings in our database have magnitudes

of 6.0 or higher.

5.3. Against the Yamamoto Model and Finite Fault

Model

If the structural static analysis is of primary

concern, then the elastic response spectra approach is

a good choice to perform seismic design in engineer-

ing practice. However, with the development of

computer hardware and software, dynamic time

history analysis is becoming an obligatory step to

investigate the non-linear performance of important

structures during earthquakes. Therefore, the simula-

tion of frequency variation along the time domain

becomes critical because the natural period of the

structure might change as structural damages

accumulate.

Figure 13 shows the time–frequency plot of a

record motion and 3 simulated motions generated by

the present model, the Yamamoto model and the finite

fault model (MOTAZEDIAN and ATKINSON 2005), respec-

tively. For a fair comparison, the synthetic motion is

selected when its elastic response spectra and duration

fit best to that of the recorded motion for each

simulation model. Furthermore, the PGA of all

simulated motions is scaled the same as the record

one. As mentioned in the previous section, earthquake

ground motions tend to have a relatively high

frequency as acceleration values increase; then, the

frequency becomes gradually lower with the decreas-

ing acceleration amplitude. This is shown clearly in

Fig. 13a, which displays the time–frequency plot of

recorded motion. It shows that frequencies at the

range of 1–10 Hz are found before 20 % of Td,

representing the high frequencies; then, the predom-

inant frequencies are approximately 2 Hz at each time

point from 20 to 60 % of Td. Finally, the frequencies

decrease to lower than 1 Hz after 60 % of Td.

The result from our model is shown in Fig. 13b.

There are basically 3 frequency ranges: 2–10 Hz

before 20 % of Td, approximately 2 Hz from 20 to

40 % of Td, and approximately 1.5 Hz after 50 % of

Td. For the Yamamoto model and the finite fault

model, as shown in Fig. 13c, d, the frequency

distributions seem to be more even at each time

point within the range of 0–10 Hz.

It should be noted that the synthetic motions

generated by the 3 models have very similar elastic

response spectra to the recorded one, even they have

a different predominant frequency at each time point.

Therefore, the response spectra or the Fourier spectra

reflect the frequency distribution of the time history

without considering the exact time effect. Although

the time–frequency plot of our model is not exactly

the same as the recorded motion, the general features

of the simulated motion are similar in character to the

recorded one, which indicates that our model is

acceptable and adoptable in estimating strong ground

motion.

6. Conclusions

A model based on a wavelet method for simu-

lating nonstationary ground motions for a given set of

earthquakes and site characteristics has been devel-

oped. Six model fundamental parameters are defined,

and their prediction equations are developed, which

relate the parameters of a stochastic model to the

earthquake fault mechanism, moment magnitude,

Joyner and Boore distance and site shear-wave

velocity. Taking the uncertainty of model parameters

into consideration, the simulated suite of ground

motions can reasonably capture the natural variability

of recorded ground motions.

The model proposed in the present study is a

stochastic model based on a modulated, filtered white

noise process. It incorporates both temporal and

spectral nonstationarities. The 6 model parameters

can properly characterize the duration, the evolving

intensity, the predominant frequency, the bandwidth

and the frequency variation of the ground accelera-

tion process, respectively. All parameters are
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identified manually for each real ground motion in

the database used in this paper except for PGA. In

normal ways, these parameters can be identified by

computers using an optimization method, but we find

it is better to conduct it manually for several reasons.

Stochastic model parameters only give an average

result of simulated ground motions; it is, therefore,

impossible for two simulations to be exactly the same

with the same parameters. Thus, an optimization

algorithm is difficult and slow to give precise and

correct parameter values. The parameter identifica-

tion process is not overelaborated; parameters of

those records from one earthquake are similar.

Therefore, the model can be replicated and adapted to

another database.

To predict the aforementioned model parameters,

the two-stage regression analysis is employed to

investigate inter- and intra-event residuals. The

regression coefficients and error variances are esti-

mated by a correlation analysis. The results of these

analysis indicate that the 6 model parameters are not

independent of specified earthquake and site charac-

teristics. Predicting future ground motions is one of

the functions of the simulation method. Another is

fitting past earthquakes to investigate the model

parameters for regions of interest. Therefore, our

model can specify certain parameters to match

recorded ground motions, just as point-source and

finite fault methods do. The well-studied model

parameters can be used in turn to simulate ground
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Figure 13
Time–frequency plot of the 1979 Imperial Valley earthquake recorded at the El Centro Array #12 (a) and 3 synthetic motions generated by the

present model (b), Yamamoto model (c) and finite fault model (d)
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motions in regions that have similar fault and site

information or to predict ground motions for the same

region.

To demonstrate our model effect, a systematic

analysis is conducted by comparing the synthetic

acceleration time histories with recorded ones. The

validation of the present model is conducted as fol-

lows: (1) comparing the elastic response spectra of

synthetic motions and real ground motions, (2)

comparing the median and ±1 logarithmic standard

deviation of simulated motions with existing GMPEs,

and (3) comparing the time–frequency plot of real

ground motion and synthetic motions generated by

the present model, the Yamamoto model and the

finite fault model. All comparisons indicate that the

proposed model in the present study is effective and

can be used in seismic design to estimate strong

ground motions.
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AMERI G, GALLOVIČ F, PACOR F and EMOLO A (2009), Uncertainties

in strong ground-motion prediction with finite-fault synthetic

seismograms: An application to the 1984M 5.7 Gubbio, central

Italy, earthquake. Bull Seismol Soc Am, 99(2A): 647–663.

ARROYO D, and ORDAZ M (2010), Multivariate Bayesian regression

analysis applied to ground-motion prediction equations, part 1:

theory and synthetic example. Bull Seismol Soc Am, 100(4):

1551–1567.

ATKINSON GM and SILVA W (2000), Stochastic modeling of Cali-

fornia ground motions. Bull Seismol Soc Am, 90(2): 255–274.

ATKINSON GM and BOORE DM (2007), Boore-Atkinson NGA

ground motion relations for the geometric mean horizontal

component of peak and spectral ground motion parameters,

Pacific Earthquake Engineering Research Center.

ATKINSON GM, ASSATOURIANS K, BOORE DM, CAMPBELL K and

MOTAZEDIAN D (2009), A guide to differences between stochastic

point-source and stochastic finite-fault simulations. Bull Seismol

Soc Am, 99(6): 3192–3201.

BERARDI R, JIMENEZ M, ZONNO G, and GARCIA-FERNANDEZ M (1999,

August), Calibration of stochastic ground motion simulations for

the 1997 Umbria-Marche, Central Italy, earthquake sequence. In:

Proc. 9th Intl. Conf. On Soil Dyn Earthq Eng, SDEE (Vol. 99).

BERESNEV IA and GM ATKINSON (1997), Modeling finite-fault

radiation from the xn spectrum. Bull Seismol Soc Am, 87(1):

67–84.

BERESNEV IA and ATKINSON GM (1998), FINSIM–a FORTRAN

program for simulating stochastic acceleration time histories

from finite faults. Seismol Res Lett, 69(1): 27–32.

BOORE DM and ATKINSON GM (2008), Ground-motion prediction

equations for the average horizontal component of PGA, PGV,

and 5%-damped PSA at spectral periods between 0.01 s and

10.0 s. Earthq spectra, 24(1): 99–138.

BOORE DM (1983), Stochastic simulation of high-frequency ground

motions based on seismological models of the radiated spectra.

Bull Seismol Soc Am, 73(6A): 1865–1894.

BOORE DM (2000), SMSIM–Fortran programs for simulating

ground motions from earthquakes: version 2.0—A revision of

OFR 96-80-A, US Geology Survey, Open-File Report 00-509:

1–59.

BOORE DM (2003), Simulation of ground motion using the

stochastic method, Seismic Motion, Lithospheric Structures,

Earthquake and Volcanic Sources: The Keiiti Aki Volume:

635–676.

BOORE DM (2009), Comparing stochastic point-source and finite-

source ground-motion simulations: SMSIM and EXSIM. Bull

Seismol Soc Am, 99(6): 3202–3216.

CACCIOLA P and DEODATIS G (2011), A method for generating fully

non-stationary and spectrum-compatible ground motion vector

processes. Soil Dyn Earthq Eng, 31(3): 351–360.

CHIOU B and YOUNGS RR (2008), An NGA model for the average

horizontal component of peak ground motion and response

spectra. Earthq spectra, 24(1): 173–215.
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