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Abstract—Anthropogenic seismicity (AS) is the undesired

dynamic rockmass response to technological processes. AS envi-

ronments are shallow hence their heterogeneities have important

impact on AS. Moreover, AS is controlled by complex and

changeable technological factors. This complicated origin of AS

explains why models used in tectonic seismicity may be not suit-

able for AS. We study here four cases of AS, testing statistically

whether the magnitudes follow the Gutenberg–Richter relation or

not. The considered cases include the data from Mponeng gold

mine in South Africa, the data observed during stimulation of

geothermal well Basel 1 in Switzerland, the data from Acu water

reservoir region in Brazil and the data from Song Tranh 2 hydro-

power plant region in Vietnam. The cases differ in inducing

technologies, in the duration of periods in which they were recor-

ded, and in the ranges of magnitudes. In all four cases the observed

frequency–magnitude distributions statistically significantly differ

from the Gutenberg–Richter relation. Although in all cases the

Gutenberg–Richter b value changed in time, this factor turns out to

be not responsible for the discovered deviations from the Guten-

berg–Richter-born exponential distribution model. Though the

deviations from Gutenberg–Richter law are not big, they substan-

tially diminish the accuracy of assessment of seismic hazard

parameters. It is demonstrated that the use of non-parametric kernel

estimators of magnitude distribution functions improves signifi-

cantly the accuracy of hazard estimates and, therefore, these

estimators are recommended to be used in probabilistic analyses of

seismic hazard caused by AS.

Key words: Magnitude scaling, Gutenberg–Richter relation

breakdown, non-parametric estimation, anthropogenic seismicity.

1. Introduction

The frequency–magnitude distribution (FMD)

presents the proportions of specific magnitude inter-

vals in a population of earthquakes. A model of this

distribution has a fundamental impact on the results

of estimation of probabilistic characteristics of the

seismic process. The most popular models of the

FMD are derived from the classic Gutenberg–Richter

(G–R) relation (GUTENBERG and RICHTER 1944), which

can be presented in the following exponential form:

N ¼ 10a�bM ð1Þ

where N is the number of events of magnitude CM,

and a and b denote constants, whose values are

specific for a seismogenic process. The a parameter

characterizes the overall level of seismicity in the

region under consideration, calculated as the common

logarithm of the number of events with M C 0,

a = log10N(M C 0). The b parameter characterizes

the ratio of the number of stronger earthquakes to the

number of weaker ones. Its values usually range from

0.5 to 1.5, depending on the distribution of stresses

and regional tectonics (e.g. MOGI 1967; TSAPANOS

1990), although some papers claim its universal value

of 1.0 (e.g. FROHLICH and DAVIS 1993; KAGAN 1997,

1999; WESNOUSKY 1999; GODANO and PINGUE 2000;

BIRD and KAGAN 2004; WECH et al. 2010). The lower

the b coefficient, the larger the probability of occur-

rence of stronger events is.

The linear relation of the logarithm of the number

of events and their size is maintained only for a

certain range of magnitudes. The deficit of the

number of observed earthquakes with respect to the

number of earthquakes anticipated from G–R relation

for magnitudes below a certain value is explained by

incompleteness of observation as no such a deficit
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was observed down to picoseismicity (KWIATEK et al.

2010, 2011). It is assumed that G–R relation is valid

from the magnitude threshold of catalogue com-

pleteness, and the magnitude probability distribution

is presented as the left-hand side truncated expo-

nential distribution or the double-truncated

exponential distribution in case when an existence of

the upper physical limit of the magnitude range is

assumed (e.g. COSENTINO et al. 1977). The models of

FMD derived from the G–R relation are often used in

the probabilistic seismic hazard analysis.

However, there are also observations, which

indicate deviations from the linear G–R relation for

magnitudes from the complete part of catalogue (e.g.

WESNOUSKY et al. 1983; SCHWARTZ and COPPERSMITH

1984; LEONARD et al. 2001). Using a version of the

smoothed bootstrap test for multimodality (SILVER-

MAN 1986) to study magnitude distributions of

earthquakes from seismogenic regions from Greece,

LASOCKI and PAPADIMITRIOU (2006) evidenced highly

confidently complex, multimodal structures of these

distributions. On the other hand, there are also papers

maintaining that no such deviations exist (e.g. FROH-

LICH and DAVIS 1993; KAGAN 1999; SCHORLEMMER

et al. 2004, 2005; PAGE et al. 2011). The problem of

the shape of the distribution for the seismic source

magnitude is still under investigation and so far no

definite conclusion on the issue has been attained.

The phenomenon of seismic activity induced by

human technological undertaking is the undesired

dynamic rockmass response to technological pro-

cesses. Anthropogenic seismicity (AS) results from a

combination of human influence on rocks and rock’s

potential to respond. Variations of technological

inducing factors cause the earthquakes generation

process to be time dependent, of dynamics virtually

unknown. The variety and diversity of technological

factors inducing or triggering anthropogenic earth-

quakes may result in significant deviations of the

observed FMD from the models derived from G–R

relation. Such deviations have been long noticed in

mining-induced seismicity (e.g. KIJKO et al. 1987,

LASOCKI 2001, MAGHSOUDI et al. 2013) and explained

in connection with a bi-component seismicity gen-

erating process in mining environment (e.g. JOHNSTON

and EINSTEIN 1990; GIBOWICZ 1990; MCGARR 2000,

MAGHSOUDI et al. 2014). Recently, a breakdown of the

G–R relation was also shown for AS associating

hydraulic fracturing (EATON et al. 2014). It is proba-

ble that the complicated origin of AS, which is

controlled by complex and changeable technological

factors, may imply the incoherence of the observed

frequency–magnitude distribution with the G–R

relation as to be a dominant feature in AS, regardless

of the technology inducing earthquakes. The present

work investigates the shape of FMD and its confor-

mity to the G–R relation on four AS cases associated

with different technological activities: underground

mining, reservoir impoundment and well stimulation

for geothermal energy production. The cases differ in

the durations of periods in which they were recorded,

from 10 years to less than 2 days, and in the ranges of

magnitudes, from [-4.3; -1.4] to [1.0; 4.7]. Since

the G–R relation is equivalent to the exponential

distribution for earthquake magnitudes (UTSU 1999),

two goodness-of-fit tests are applied to check the

conformity of the observed distributions of magni-

tude to the exponential distribution, namely: the

Kolmogorov–Smirnov one-sample test and the Pear-

son’s chi-square test.

2. Method

The empirical G–R relation corresponds to the

left-hand side truncated exponential distribution with

probability density function (PDF) in the following

form:

f Mð Þ ¼ be�b M�Mcð Þ ð2Þ

and the cumulative distribution function (CDF) in the

form of:

F Mð Þ ¼ 1 � e�b M�Mcð Þ: ð3Þ

for M C Mc and 0 otherwise, where b = b�ln(10),

b is the parameter of the G–R relation, Mc is the

magnitude threshold of observation completeness, i.e.

the magnitude from which the FMD follows the

power-law decay. In the present study, we test the

null hypothesis H0, stating that the distribution of

magnitude is exponential.

The two most widely used statistical goodness-of-

fit tests are used here to test the null hypothesis: the

Kolmogorov–Smirnov (K–S) one-sample test and the
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Pearson’s chi-squared test (v2). They belong to a

group of non-parametric tests allowing the verifica-

tion of the hypothesis about the concordance between

a sample and a specified distribution. To verify H0, a

function of the tested theoretical distribution for a

random variable is compared with a respective

empirical distribution of this variable determined in a

random sample. In both tests we estimate p values

and compare them with the adopted significance level

a = 0.05. A small value of p suggests that the null

hypothesis may be false; when p\ a then the null

hypothesis is rejected with the probability of making

error a. When p C a then there are no grounds for

null hypothesis rejection at the significance level a.

The goodness-of-fit tests do not estimate the proba-

bility of making the type II error, i.e. the probability

of incorrect acceptation of the null hypothesis being

false. Therefore, the lack of grounds to reject the null

hypothesis is not equivalent to the suggestion that this

hypothesis is true, although results of goodness-of-fit

tests are often interpreted incorrectly in that way.

The K–S one-sample test is based on the maximum

difference between the empirical CDF, FE(M) and the

hypothetical CDF, FH(M). When Mi, i = 1, …, N is a

sample data the K–S test statistics is Dm ¼
max1� i�N FH Mið Þ�½ FE Mi�1ð Þ;FE Mið Þ � FH Mið Þ�.
The distribution, FH(M), must be fully specified. If its

parameters are estimated from the data the critical

values of Dm statistics are no longer valid. Since we

estimate the shape parameter of (2, 3) from a sample

data we use a modified test statistics, presented toge-

ther with tables of critical values in PEARSON

and HARTLEY (1972). For the exponential distribution

case the modified test statistics is T Dmð Þ ¼ 1
ffiffiffi

N
p

Dm � 0:2=Nð Þ N þ 0:26
ffiffiffiffi

N
p

þ 0:5
� �

.

The K–S test is applicable only to continuous ran-

dom variables for which no value repeats in a sample

data. Although the magnitude is a continuous variable,

it is provided with a finite number of digits, most often

with one digit after the decimal point. Due to that there

are many repetitions of the same value in the sets of

magnitude observations. Hence, to apply the K–S test,

we randomize first each magnitude within its round off

interval. Randomization of magnitude is carried out by

transforming the magnitude according to the formula

(LASOCKI and PAPADIMITRIOU 2006):

M̂ ¼ F�1 u F M þ 0:5dMð Þ � F M � 0:5dMð Þ½ �f
þ F M � 0:5dMð Þg ð4Þ

where M is the magnitude value taken from cata-

logue, dM is the length of the magnitude round off

interval, u is the random value drawn from the uni-

form distribution in the [0,1] interval, F(�) is the CDF

(3), F-1(�) denotes its inverse function, and M̂ is the

randomized value of magnitude. Because an estimate

of p value depends somewhat on randomization, the

randomization is performed 105 times, the average of

all p values, p̂, is accepted as the final p value; the

standard deviation of the p value estimate, r, is also

determined.

The v2 test compares observed frequencies, Ni,

with the frequencies expected from the hypothesized

distribution, NH(i), in k consecutive, non-overlapping

intervals that cover the whole range of sample values.

The test statistics, v2 ¼
Pk

i¼1
Ni�NH ið Þ½ �2

NH ið Þ , follows

approximately the chi-square distribution with (k –

c - 1) degrees of freedom, c is the number of esti-

mated parameters. This test can be applied for both

continuous as well as discrete random variables,

whose values can repeat, hence in this case the

magnitude randomization is not carried out.

2.1. Data

Four catalogues of earthquakes related to various

anthropogenic seismic processes are used. They

represent anthropogenic seismicity accompanying:

• underground exploitation of solid minerals—the

Mponeng deep gold mine,

• exploitation of geothermal energy—Basel 1 well,

• reservoir impoundment—Song Tranh 2 reservoir,

• changes in the level of filling of a surface water

reservoir—Açu reservoir.

The catalogues differ both in the number of

earthquakes from the least N = 644 (Açu) to the most

populated, N = 4304 (Mponeng), in the periods of

recording from 1.6 days (Basel 1) to more than

10 years (Açu), in the range of magnitudes from

[-4.3; -1.4] (Mponeng) to [1.0; 4.7] (Song Tranh 2)

and in the Gutenberg–Richter b value from 0.75

(Song Tranh 2) to 1.90 (Açu).
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The Mponeng deep gold mine is located in South

Africa with the exploitation depths exceeding 3.5 km.

The JAGUARS (JApanese–German Underground

Acoustic Emission Research in South Africa) seismic

network was installed about 90 m below the exploita-

tion level. The high sensitivity and small spacing of

the network sensors allowed for recording events

with the focal size up to a few centimetres. Following

the earthquake Mw 2.2, which occurred on 27 Dec

2007, more than 25,000 aftershocks were recorded,

with magnitudes from less than -5 up to -0.8

(KWIATEK et al. 2011; KOZłOWSKA et al. 2015).

Aftershocks were divided into 3 space zones

(KWIATEK et al. 2010). Here we analyse the set of

events from the best populated F zone, which

included events that occurred along the fault plane.

The catalogue is complete from magnitude -4.3. The

FMD plot is shown in Fig. 1a.

Located in Basel in Switzerland the 5-km-deep

Basel 1 geothermal well was a facility for the

enhanced geothermal system (EGS) of geothermal

energy production (HAERING et al. 2008). EGS is a

technology that allows extracting heat energy from

the dry and impermeable rocks located at great depths.

It requires injection of a large amount of pressurized

water that forms cracks in the rocks. Injection of water

began on 2 Dec 2006 and was planned to last 21 days.

Several days after beginning of the stimulation, on 8
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Figure 1
Cumulative FMD plots for studied data: a Mponeng, b Basel 1, c Song Tranh 2, d Açu
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Dec an ML 2.7 event occurred. Its size was greater

than the accepted safety level and led to closing the

well. The strongest event of magnitude ML = 3.4

occurred about 5 h after the well had been closed.

Over the next 2 months, 3 more events ML[ 3 were

recorded (HÄGE et al. 2012). The dataset studied here

comprise 1111 events, which occurred during the

injection of water between 6 and 8 December 2006.

The events were recorded by two mini arrays located

at the surface at a distance of about 2.1 and 4.8 km

from the Basel 1 well. The dataset magnitude of

completeness threshold is Mw = 1.1. The FMD plot

for these data is presented in Fig. 1b.

Song Tranh 2 dam locates on the River Song

Tranh in Quang Nam province in central Vietnam.

Natural seismicity of the area is very low, only 13

events were noted in the larger region of central

Vietnam between 1775 and 1992, out of which only

one occurred close to the present dam location. The

dam was built as a part of hydropower plant. At the

expected head of 175 m, the reservoir’s capacity

exceeds 740 9 106 m3. Filling of the reservoir

started in November 2010. Since that time two

remote seismic stations reported several weak earth-

quake in the Quang Nam province. Up to the

beginning of 2011, the seismic activity in this area

increased significantly. From March 2011 also

stronger events began to occur. The maximum water

level of 175 m was reached in October 2011 and was

kept until February 2012, when due to technical

reasons it was quickly reduced to the level of some

140 m. Two strongest earthquakes of magnitudes 4.6

and 4.7 took place on 22nd October and on 15th

November 2012, respectively, and caused minor

damage to housing in the area. Since 2012, the area

has been monitored by a local network of short-

period seismometers (WISZNIOWSKI et al. 2015). The

completeness threshold is 1.0. The complete part of

Song Tranh 2 catalogue contains 822 events, and the

b value is very small equal to 0.75. The FMD plot for

these data is shown in Fig. 1c.

Açu reservoir with a capacity of 2.4 9 109 m3 is

located in Rio Grande do Norte province in north-

eastern Brazil. It is a shallow reservoir featuring the

head of 34 m. Seismic monitoring of the reservoir

started in 1987, 4 years after the construction of the

dam, and 2 years after the final filling of the reservoir

(DO NASCIMENTO et al. 2004). The monitoring setup

changed over time. Until 1989, the events were

recorded by a single station. In 1989, additional three

stations were installed, and the next four stations in

the years 1990–1991 (FERREIRA et al. 1995). Between

1994 and 1997, the reservoir was monitored by at

least 8 stations in 5 different configurations (DO

NASCIMENTO et al. 2004, EL HARIRI et al. 2010). The

data from the vicinity of Açu reservoir were acquired

from the longest (10-year) observation period from

the datasets analysed in the present work. During this

period 644 events were recorded above the com-

pleteness threshold of 1.2. Events magnitudes were

determined from signal durations. The FMD plot for

these data is shown in the Fig. 1d.

Basic parameters of the analysed datasets are

summarized in Table 1. The values of the Guten-

berg–Richter b value, both here and in subsequent

analyses, were determined by the maximum likeli-

hood method (AKI 1965; UTSU 1965; BENDER 1983):

b ¼ log e

�M � Mc � 0:5dMð Þ
ð5Þ

where �M denotes the mean value of the magnitudes

greater or equal to Mc, Mc is the catalogue

Table 1

Parameters of seismic catalogues used for the analysis

Catalogue No. of events in the

complete part

of catalog, N

Recording period Duration of

recording

(days)

Magnitude range

of the complete

part

b value

From To

Mponeng 4304 27/12/2007 02/01/2008 6.1 [-4.3; -1.4] 1.27

Basel 1 1111 06/12/2006 08/12/2006 1.6 [1.1; 2.7] 1.66

Song Tranh 2 822 01/09/2012 10/11/2014 799.2 [1.0; 4.7] 0.75

Açu 644 19/08/1987 02/09/1997 3667 [1.2; 2.2] 1.90
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completeness level, and dM is the length of the

magnitude round off interval.

3. Results and Discussion

Basel 1, Song Tranh 2 and Açu catalogues contain

numerous repetitions of magnitude values hence

these catalogues are randomized. The magnitudes

from Mponeng gold mine have been provided with

six digits after the decimal point, so there is no need

to perform randomization.

For v2 test purpose, the whole magnitude ranges

are divided into non-overlapping intervals as follows:

• the Mponeng data range is divided into 19

intervals. Frequencies in these intervals are from

896 to 7.

• the Basel 1 data range is divided into 7 intervals.

Frequencies in these intervals are from 409 to 12.

• the Song Tranh 2 data range is divided into 19

intervals. Frequencies in these intervals are from

122 to 6.

• the Açu data range is divided into 10 intervals.

Frequencies in these intervals are from 201 to 8.

Results of the K–S and v2 tests for all four cata-

logues are shown in Table 2. The modified K–S test

statistics exceeds in all four cases the critical value

for a = 0.05. Likewise, all p values from the v2 test,

varying from 5.56 9 10-14 to 0.03, are less than a.

The tested null hypothesis is rejected at the signifi-

cance level a = 0.05. The size distribution of seismic

sources for these earthquake populations seems to be

not exponential.

Figure 2 shows a graphic comparison of the

empirical CDF, FE(M), with the values of the expo-

nential CDF fitted to the observed magnitudes,

FH(M). In the case of catalogues that have been

randomized, the values of distribution functions are

averages of all for individual randomizations.

For all four catalogues, the difference between the

theoretical and observed FMDs, D(M), can be

observed typically at the lower limit of the magnitude

range. For the Mponeng data, the largest D(M) values

are observed near M = -4.2, for Basel 1 and Song

Tranh 2 data near M = 1.3, and for Açu data near

M = 1.27. It fits the expectations, as empirical CDFs

reveal the largest random fluctuations at the begin-

ning of the range of observed values. However, the

next and interesting considerable differences are at

about the middles of magnitude ranges: for Mponeng

data approximately at -3.5, for Basel 1 at about 1.5

and 1.9, for Song Tranh 2 at some 2.4, for Açu

approximately at 1.55.

The test results indicate that in all considered

cases the actual magnitude distributions in the

earthquake populations do not follow the G–R rela-

tion. One of the possible reasons for that may have

been time changes of b value. The samples (whole

catalogues) being mixtures of subsamples drawn

from exponential distributions with different shape

parameters, relevant for different parts of the periods

of observation, would not fit the exponential

distribution.

Time variability of the Gutenberg–Richter b value

in anthropogenic seismic processes has been long

known (e.g. GIBOWICZ 1979; VOLANT et al. 1992;

HOLUB 1995; FEUSTEL 1997; GROB and VAN DER BAAN

Table 2

K–S and v2 tests results

Catalogue K–S test v2 test

p p̂ r T(Dm) Critical T(Dm)

for a = 0.05

p

Mponeng 3.2 9 10-9 – – 3.189 1.094 5.56 9 10-14

Basel 1 – 0.003 10-3 1.792 3.03 9 10-4

Song Tranh 2 – 0.041 0.014 1.397 0.026

Açu – 2.97 9 10-5 7 9 10-6 2.370 0.030

For K–S test p is the p value for Mponeng data, which have not been randomized, and p̂ is the mean p value from 105 randomizations for the

other datasets. r is the respective standard deviation of p. T(Dm) is the modified K–S test statistics

1522 P. Urban et al. Pure Appl. Geophys.



2011a, b; MALLIKA et al. 2012; DAVIES et al. 2013).

The property has been used in algorithms for evalu-

ation of the time-dependent seismic hazard (e.g.

LASOCKI 1989, 1993a, b; KIJKO et al. 1993; STEWART

and SPOTTISWOODE 1993; TRIFU et al. 1997; CONVER-

TITO et al. 2012).

To check this possibility of explaining the ascer-

tained violations of the G–R relation each of the four

datasets is divided into a number of non-overlapping,

consecutive subsets jointly covering the whole

observation period and the null hypothesis is tested in

the subsets. The subsets for a specific division contain

more or less the same number of earthquakes.

Figure 3 presents the estimated p values in combi-

nations of the case, the subset and the test.

Additionally, the reference to the modifications for

the K–S test for unspecified shape parameter is pro-

vided with colours of the points from dark maroon

when the test statistics T(Dm) allows for rejection H0

at the significance level 0.01 to white when H0 cannot
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Comparison of empirical CDFs, with the exponential CDF-s fitted to the observed magnitudes. FE(M) empirical CDF, FH(M) fitted theoretical

CDF, D(M) = |FE(M) - FH(M)|
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be rejected even at the level 0.15. It can be seen that

with increasing number of subdivisions, leading to

increasing number of decreasingly populated subsets,

in both tests p values generally increase.

4304 seismic events from Mponeng gold mine are

subdivided up to 37 subsets. In the v2 test p values,

which do not support rejection of H0 at a = 0.05,

begin to appear with the division of the dataset into 4

subsets; for one of these subsets p[ 0.30 is obtained.

In the K–S test the first larger p value ([0.15) appears

with catalogue division into 6 subsets. For the divi-

sion into 30 and more subsets, p approaches values

reaching up to 1.0.

1111 seismic events from Basel 1 are subdivided

up to 11 subsets. In the v2 test, already at the division

into 3 subsets two values of p[ 0.10 are obtained. In
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Figure 3
p values for subsets of the studied catalogues. See text for further information
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the K–S test, when dividing the dataset into 6 and

more groups one value of p[ 0.50 appears.

822 seismic events from Song Tranh 2 are sub-

divided up to 8 subsets. First larger p value ([0.15)

appears already at catalogue division into 2 subsets in

both tests although in K–S test the p value is about

0.15 whereas in v2 test p value reaches about 0.3.

644 seismic events of Açu dataset is subdivided

up to 6 subsets. Larger estimates of p value are

obtained in both tests already for the division into 3

subsets when for one of these subsets the value of

p[ 0.60 appears.

The observed effect that the null hypothesis has

not been rejected for some of the subsets, whereas it
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has been rejected for the complete datasets may be

due to two reasons. First, as mentioned before, the

deviations of the observed FMD from the G–R rela-

tion in the complete datasets may have resulted from

time changes of b value within the periods of

observation. For those of shorter time intervals,

which experienced strong b variations, the null

hypothesis would be rejected, whereas it would not

be for those other ones, in which b varied mildly.

Indeed, b value varied with time in all four AS

cases analysed in this work. Figure 4a presents the

time variation of b value for Mponeng data. The

catalogue containing 4304 tremors has been split into

12 consecutive, non-overlapping data windows. Each

window contains approximately the same (�1)

number of events, N = 358 or 359. The b value for

the whole catalogue equals bc = 1.27, and its stan-

dard deviation is rb = 0.02. Here, as well as in other

three cases below, rb is an asymptotic standard

deviation of the maximum likelihood estimator of b,

rb ¼ b
� ffiffiffiffi

N
p

. Initially, b value quickly increases

above bc. Subsequently, b value decreases and sta-

bilizes close to bc.

Figure 4b presents the changes of b with time for

the Basel 1 data. The catalogue containing 1111

earthquakes has been divided into 11 consecutive,

non-overlapping data windows. Each window con-

tains the same number of events N = 101. The value

of b changes from approximately 1.8 to 1.3. b value

for the whole catalogue equals bc = 1.66, and its

standard deviation is rb = 0.05. In the initial period

b is greater than bc. By the end of observation, b is

significantly smaller than bc.

b value variations in time for the Song Tranh 2

data are detailed in Fig. 4c. The catalogue containing

822 earthquakes has been divided into 8 consecutive,
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earthquakes

1526 P. Urban et al. Pure Appl. Geophys.



non-overlapping data windows. Each window con-

tains approximately the same (�1) number of events,

N = 102 or 103. The b value for the whole catalogue

equals bc = 0.75, and its standard deviation is

rb = 0.03. From September 2012 to June 2013

b value was significantly smaller than bc. Later, it

increased and stabilized above bc.

The time changes of b for the Açu data are pre-

sented in Fig. 4d. The values of b have been

calculated in the data window of 110 events,

advanced by 10 events. The b value for the whole

catalogue equals bc = 1.90, and its standard devia-

tion is rb = 0.07. In general, b oscillates about bc,

changing in the range from approximately 1.5 to

about 2.5. Three periods of b growth and decline can

be identified. Initially, between 1988 and 1990, a

slight increase is observed, followed by a significant

decrease of b value. The second period extends over

1990–1992. In the third period, 1992–1996, the most

significant increase of the b value can be observed.

If the time changes of b value are responsible for

the diverse increase of the tests’ p values when

decreasing the time intervals, from which the data

samples have been obtained, then the p values for

subsets should negatively correlate with the disper-

sion of b value in these subsets. This correlation is

studied for Mponeng and Basel-1 datasets, which are

numerous enough for this purpose.

We form 25 groups of subsets from the Mponeng

dataset. The groups consist, respectively, of 6, 7, …,

30 consecutive, non-overlapping subsets of the

complete dataset, extending jointly over the whole

period of observation. The subsets of a specific group

contain more or less the same number of events,

ranging from some 717 to some 143. For each subset

in the group our null hypothesis is tested by the K–S

and v2 tests, resulting in p values. Next, every subset

is divided into smaller consecutive parts, of some 15

sample values each, and the Gutenberg–Richter b

value is estimated for each part. The resultant b

values for parts are used to evaluated the mean b

value,\b[, for the subset and the standard deviation

of b, sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm

i¼1
bi� bh ið Þ2

m�1

r

, where bi are the b values in

m 15-element parts of the subset. The b value esti-

mation from 15 element samples is strongly

uncertain; however, we believe that the degree of

variation of such estimates within a subset, expressed

by sb, reflects the dispersion of actual b over the

subset. If in the period of time, to which the specific

subset corresponds, b fluctuated significantly, the sb

value becomes large.

For example, when the Mponeng data are divided

into 6 subsets, each subset containing some 717 data

values, then these subsets are further subdivided into

48 parts of 14–15 events. Consequently, sb is calcu-

lated from 48 b values. When dividing the catalogue

into 30 subsets of some 143 data values each, the

further subdivision of subsets into 14–15-element

parts leads to 10 parts in each subset, hence sb is

calculated from 10 b values.

Figure 5a presents the relation between sb and p,

for the division of the Mponeng catalogue into 30

non-overlapping subsets. No apparent correlation

between these two parameters is visible. The Spear-

man’s rank correlation coefficient for the pair sb and

p value from the K–S test is RS = 0.15. The p value

associating the null hypothesis that there is no cor-

relation between sb and p is pS = 0.42. For the pair sb

and p obtained from the v2 test RS = 0.02 and

pS = 0.93. The obtained values of the RS coefficient

do not indicate any traces of correlation between sb

and p.

Similar results and the same conclusions are

drawn for the other divisions of the Mponeng cata-

logue. The correlation coefficient, RS, versus the

number of catalogue divisions is presented in Fig. 5b.

The value of the correlation coefficient RS varies in

the interval from about -0.3 up to 0.6, approaching

zero with the growing number of catalogue subdivi-

sions. The ps value of the test investigating the

hypothesis of the lack of correlation between sb and

p varies, but never falls below 0.1.

5 groups of subsets of the Basel 1 catalogue result

from its divisions into 5, 6 until 9 consecutive, non-

overlapping subsets, respectively. Further steps of the

analysis are the same as described above for Mpo-

neng data. In every case, the Basel 1 data are

randomized 105 times to undergo the K–S test. Fig-

ure 6a presents the relation between sb and p, for the

division of the Basel 1 catalogue into 9 subsets. No

correlation can be seen between these two parame-

ters. The correlation coefficient, RS and the ps value

of ‘‘no correlation’’ hypothesis test, are RS = 0.18,
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pS = 0.64 for the K–S test and RS = 0.32, pS = 0.41

for the v2 test. The correlation coefficient against the

number of catalogue subdivisions is presented in

Fig. 6b. The value of the correlation coefficient RS

varies between -0.6 and 0.4. The ps value varies but

never falls below 0.2.

The correlation study performed on Mponeng and

Basel 1 data does not support the theses on the

relation between the degree of concordance between

the observed and the exponential distribution for

magnitude and the time variability rate of the

Gutenberg–Richter b value. The differences between

the observed magnitude distributions and the Guten-

berg–Richter-led models are not due to variations of

b value in the time intervals of observation.

The catalogues Açu and Song Tranh 2 are too

small to carry out a similar correlation analysis.

The other reason why larger p values of the

goodness-of-fit tests are obtained for some, generally

less numerous subsets, might be the loss of repre-

sentativeness of such smaller samples. In such a case

larger p values would result from the test failure

rather than from the correctness of the null hypoth-

esis. Note, however, that the null hypothesis has not

been rejected in a quite big sample resulting from the

division of Mponeng catalogue into four subsets, i.e.

the sample comprising 1076 magnitude values.

We check this reason using the Mponeng dataset.

First, the dataset is shuffled to deprive it of any time-

dependent properties. The shuffled dataset is divided

into non-overlapping subsets, jointly covering the

whole dataset and the null hypothesis on the con-

cordance between the observed FMD and the

exponential distribution is tested in the subsets. The

numbers of subsets, into which the shuffled dataset is

divided, are the same as when the null hypothesis has

been tested in time-sequential subsets of the original

Mponeng dataset. The shuffling and the further steps

of the analysis are repeated 1000 times.

The results obtained for an individual shuffling

case are similar to that presented in Fig. 3 for Mpo-

neng data. The average result from all 1000

experiments is as shown in Fig. 7. The mean of the

test p value related to the null hypothesis grows with

the decrease of sample size. When the number of

events in the sample becomes equal to and less than

600, the average p value of the K–S test becomes

greater than 0.05. For the v2 test the p value becomes

greater than 0.05 when the sample size is less than

800. Smaller samples are not representative enough
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Figure 7
p values for subsets of shuffled Mponeng dataset, averaged over 1000 shuffling experiments
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for the considered magnitude population to indicate

by means of the used goodness-of-fit tests, violations

of the G–R relation, which are ascertained in larger

samples. It is interesting that such a loss of repre-

sentativeness occurs on average already for samples

as big as of 600–800 events. Such a situation may

take place when the actual distribution in the popu-

lation is not far from the model.

The deviations from the Gutenberg–Richter law

have been ascertained in all four considered cases of

seismicity induced by different technological activi-

ties. Although this suggests that such deviations can

be characteristic in general for the induced seismicity

regardless of its inducing factor, the specific cause in

each of these cases is likely different. A full physical

interpretation of the observed effects requires far

more detailed studies of every case and is out of the

scope of this paper. However, some initial remarks

can be formulated.

EATON et al. (2014) and EATON and MAGHSOUDI

(2015) suggest that the breakdown of the Gutenberg–

Richter relation for seismicity induced by hydraulic

fracturing, which they has observed, may result from

different scaling of brittle deformations during

fracking and tectonic earthquakes. This may have

explained the Mponeng case, whose extremely small

magnitudes link these events to brittle cracking rather

than to fault slips.

It is also shown in the above-cited paper (EATON

and MAGHSOUDI 2015) that the combination of two (or

more) Gutenberg–Richter law-controlled earthquake

populations with different b values can result in only

positive deviations from the straight line in larger

magnitude range. Such kind of deviations are seen for

the Song Tranh 2 case (Fig. 1c). The epicentres of

Song Tranh 2 events, whose distribution are shown in

Fig. 8, form distinct two clusters. The one is partially

located in the north-western part of the reservoir and

then extends north of the reservoir up to some 10 km

apart. The other forms begin at the south bank of the

reservoir and continues roughly along NW–SE

direction until some 10 km from the reservoir’s south

bank. The clusters are well separated in space. Such a

picture implies that the earthquakes were generated in

two different tectonic systems, which is supported by

the seismotectonic interpretation of Song Tranh 2

seismicity provided by WISZNIOWSKI et al. (2015). In

addition, the earthquake productivity within the sec-

ond cluster became more significant in the later part

of the period of observation. In this connection, the

first cluster productivity could be an immediate

response and the second cluster productivity—a

delayed response of the rockmass to the stimulation

by reservoir impoundment, according to the reser-

voir-induced seismicity classification and

interpretation provided by SIMPSON et al. (1988). Such

different types of reservoir seismicity involve the

activity of different faults. Thus, the Song Tranh 2

sample may have been a mixture of two samples of

different b values.

Basel burst of earthquakes occurred in less than

2 days before the first major event. This sample

comes from the period preceding and likely covering

fault activation. Some of the events may have been

just brittle deformations linked to injections and some

of them may have been signals of the nucleation

process. This would lead to multicomponent sample

and the breakdown of Gutenberg–Richter relation.

The presence in this sample of events related to the

fault activation would explain a relatively low b value

for the sample, as fault activation can be connected

with a drop of b to about 1.0 (EATON and MAGHSOUDI

2015 after MAXWELL et al. 2009).

No reasonable speculations about the result for

Açu seismicity can be done because even event

locations are not known.

Figure 8
Distribution of epicentres of events from Song Tranh 2
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4. Non-Parametric Estimation of Magnitude

Distribution for Anthropogenic Seismicity

For all four studied datasets of induced earth-

quakes the goodness-of-fit tests indicate that the

respective FMD-s do not follow the Gutenberg–

Richter relation. The considered seismicity episodes

are linked to quite different technologies. We have

analysed all cases available at the moment. Hence, it

can be expected that the ascertained disagreement

between the observed magnitudes and the Guten-

berg–Richter-born model is met in many instances of

anthropogenic seismic processes.

Facing the same problem of losing applicability of

the exponential distribution model for magnitude in

mining-induced seismicity cases Lasocki and his

colleagues proposed to adopt non-parametric kernel

estimators (SILVERMAN 1986) to represent magnitude

distributions (e.g. LASOCKI et al. 2000; KIJKO et al.

2001; ORLECKA-SIKORA and LASOCKI 2005; LASOCKI and

ORLECKA-SIKORA 2008). The presently most often used

version of this estimator utilizes Gaussian adaptive

kernels. Its details are provided in Appendix 1.

The ascertained here deviation of observed mag-

nitudes from the Gutenberg–Richter relation-based

distribution model is statistically significant but tiny.

This can be inferred from the fact that it becomes

‘‘invisible’’ even for samples as big as of 800 ele-

ments. We consider now two questions. First,

whether or not a non-parametric kernel estimator

performs better than the ‘‘close-to-observation’’

exponential model in case of such tiny deviations.

Second, how the use of the disqualified exponential

distribution model for magnitude reflects on accuracy

of the source effect modelling in the probabilistic

seismic hazard analysis.

True magnitude distributions for our AS cases are

not known. Therefore, we can provide an answer to

the second question only through comparisons of the

results obtained when the exponential model is

applied with the results obtained when a better dis-

tribution estimate is used. If the answer to the first

question is positive, the non-parametric estimator

performs better than the exponential model, then the

non-parametric estimator will be used as the refer-

ence for the comparisons related to the second

question.

We investigate the posed questions on the Song

Tranh 2 case. The p value for the K–S test is 0.96 and

for the v2 test is 0.91 when the sample data are

compared with the kernel estimates of magnitude

distribution. The respective values for the exponential

model are 0.041 and 0.026 (see Table 2). From the

point of view of both the K–S and the v2 goodness-of-

fit tests, the kernel estimate of magnitude distribution

fits to the data much better than the exponential

model. It is not surprising because the kernel esti-

mator is data driven, though the scale of the

improvement is impressive. Does, however, the ker-

nel estimate fit to the underlying magnitude

distribution better than the exponential distribution

does? In an attempt to answer this question we

investigate a synthetic data drawn from the distribu-

tion, which differs from the exponential distribution

similarly slightly as the actual Song Tranh 2 data

underlying distribution do. As the investigated syn-

thetic distribution we use a bi-linear hard end point

distribution model for magnitude defined by the

equation:

log N Mð Þ ¼ a1 � b1M for Mc �M �MT

a2 � b2M for MT\M �Mmax

�

ð6Þ

The CDF for this model reads:

F Mð Þ ¼

0 for M\Mc

1�exp �b1 M�Mcð Þ½ �
1�exp �b1 MT�Mcð Þ�b2 Mmax�MTð Þ½ � for Mc �M �MT

1�exp �b1 MT�Mcð Þþb2 M�MTð Þ½ �
1�exp �b1 MT�Mcð Þ�b2 Mmax�MTð Þ½ � for MT\M �Mmax

1 for M [Mmax

8

>

>

>

>

<

>

>

>

>

:

ð7Þ

where b = b�ln(10). We set Mc = 1.0, MT = 1.8,

Mmax = 4.9, b1 = 0.8, b2 = 1.4. The magnitude

range corresponds with the range of Song Tranh 2

data. The bi-linear model was occasionally proposed

to represent magnitude populations for which the

classic Gutenberg–Richter law might be inappropri-

ate (e.g. UTSU 1999; QIN 2005; TSUKAKOSHI 2010). We

draw from distribution (7) a sample of the same size

as the Song Tranh 2 dataset, i.e. of 822 elements.

Next, we fit an exponential distribution model to the

generated sample. The best fit b value is b = 0.85.

The K–S test turns down the exponential model at the

significance level 0.05 with p = 0.036 and

T(Dm) = 1.42. (The critical value of the modified test

statistics, T(Dm), at the significance 0.05 is 1.094, see
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Table 2). Mc, Mmax and the estimated b value indicate

that the generated sample is to some extent similar to

the Song Tranh 2 dataset whereas the p value sug-

gests that the respective underlying distributions of

the Song Tranh 2 dataset and the generated sample

deviate to similar degrees from the exponential

distribution.

The distribution underlying the generated sample

is known hence direct comparisons of the distribution

functions are possible. The non-parametric (kernel)

and parametric (exponential model) estimates of CDF

are compared with the actual CDF in Fig. 9.

The importance of proper modelling of the mag-

nitude CDF for probabilistic seismic hazard analysis

relies on the fact the source size effect is represented

there by the exceedance probability function (EPF) of

magnitude, R(M) = Prob{L C M} = 1 - F(M).

Furthermore, R(M) enters positively into the expo-

nent of the equations for hazard parameters, like the

exceedance probability conditional upon event

occurrence, the mean return period, the maximum

credible magnitude, etc. For this reason the most

important are discrepancies between actual and

modelled R for greater M, firstly because larger

magnitude events are of primary targets of the hazard

analysis and, secondly, because for growing M,

R(M) tends to zero and the estimation error can

become of the range of the estimate itself.

Figure 10 presents relative errors of the estimates

of EPF of magnitude. The relative error of estimate,

R̂ Mð Þ, is
R Mð Þ�R̂ Mð Þ

R Mð Þ � 100%. Although, as it is seen

from Fig. 9a, the discrepancies between the

parametric and actual CDF do not look big, the rel-

ative error of EPF estimate takes up to nearly 300 %.

The non-parametric estimator performs definitely

better. Its maximum relative error of EPF estimate is

50 %.

Having ascertained on the synthetic dataset the

outperformance of the kernel estimation over the

parametric one we return to the Song Tranh 2 dataset.

We compare the kernel, more accurate estimate of

magnitude distribution with the estimate resulting

from the inappropriate for the case of Song Tranh 2

data exponential magnitude distribution model.

Figure 11 compares the parametric estimate of CDF

with its reference—the non-parametric estimate. The

greatest deviations are for M = 1.25 and M = 2.35.

One of the most important functions used in the

probabilistic seismic hazard analysis is the above-
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mentioned exceedance probability conditional upon

event occurrence, i.e. the probability that the earth-

quake of magnitude equal to or greater than M will

occur in the time period of length T. When the

earthquake process is Poissonian then this excee-

dance probability takes the form of:

R M; Tð Þ ¼ 1 � exp �kT � R Mð Þ½ � ð8Þ

where k is the mean event rate and R(M) is the

exceedance probability function of magnitude. We

check how much the deviations of the parametric

CDF estimate from the reference estimate impact the

exceedance probability. To illustrate the effect we

take magnitude 2.5, which is close to the greatest

deviation point, and 4.5, which as being close to the

upper limit of magnitude range could be of utmost

importance in hazard analyses. The exceedance

probability estimates are presented in Fig. 12. For

M = 2.5 the use of the exponential distribution

model leads to overestimation of the exceedance

probability. The greatest difference between the

parametric estimate and the reference is for some

T = 0.5 month and amounts some 10 %. On the

contrary, for M = 4.5 the use of the exponential

distribution model leads to underestimation of the

exceedance probability, with the greatest difference

of more than 6 % for T = 26.5 month. According to

the parametric approach, the 95 % probability to have
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an earthquake greater or equal to 4.5 needs more than

7 years whereas the reference indicates that it needs

only 6 years.

5. Summary and Conclusions

For all four datasets concerning earthquakes

induced by human technological activity: under-

ground exploitation, geothermal energy exploration,

reservoir impoundment and filling a surface water

reservoir, the statistical tests have indicated with a

high significance that the FMD of these earthquakes

does not follow the Gutenberg–Richter relation. The

examined samples are huge, from about 4300 events

from the mine to about 650 earthquakes from the

water reservoir area. The data under consideration are

due to the seismic processes induced by quite dif-

ferent technologies. Therefore, it appears that the

incoherence of the FMD with the Gutenberg–Richter

relation may be a general feature of anthropogenic

seismicity, regardless of the technology inducing

earthquakes.

Although the Gutenberg–Richter b value changes

significantly in time in each of the considered datasets,

the disagreements between the observed FMD-s and

the theoretical Gutenberg–Richter relation-born expo-

nential model cannot be attributed to these changes.

The disagreement between the exponential distri-

bution model and the actual magnitude distributions is

not large and can be ascertained only while testing

large samples of sizes more than 600 to 800 elements.

The deviations from Gutenberg–Richter law are

not big but they statistically significant and signifi-

cantly diminish the accuracy of assessment of seismic

hazard parameters, which may be unacceptable in

practical applications.

As a remedy, the non-parametric kernel estima-

tors of magnitude distribution functions are

recommended to be used in probabilistic analyses of

seismic hazard caused by anthropogenic seismicity.

Even for so small discrepancies between the observed

distribution of earthquake magnitude and the expo-

nential distribution model, as those ascertained in this

study, the non-parametric estimates of distribution

functions are significantly more accurate than the

ones drawn from the exponential model.
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Appendix 1

The Non-Parametric Kernel Estimator of Magnitude

Distribution

Below the non-parametric kernel estimator of

magnitude is presented in the version, which we use

in probabilistic seismic hazard analyses and similar

topics. A general description of the kernel estimation

of distribution functions can be found, e.g. in the

book by SILVERMAN (1986).

The probability density function (PDF) of mag-

nitude takes a non-zero value for the completeness

level of catalogue, Mc. In such cases the kernel

estimation is performed on the doubled data

set y1; y2; . . .; y2Mf g ¼ 2Mc � M1; 2Mc � M2; . . .;f
2Mc � MN ; M1; M2; . . .; MNg, where {Mi), i = 1,

…, N is the sample data.

When a magnitude distribution is believed to

have no hard end point, the non-parametric kernel

magnitude PDF estimator with the Gaussian kernel

reads:
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f̂ Mj yi; 2Nf gð Þ ¼ 2
ffiffiffiffiffiffi

2p
p

N

X

2N

i¼1

1

kih
exp � M � yið Þ2

2 kihð Þ2

" #

ð9Þ

for M C Mc, and zero otherwise, where h is the

positive smoothing factor, and ki, i = 1, …, 2N are

the local bandwidth factors widening the kernels

associated with data points from the range where the

data are sparse (e.g. STOCK and SMITH 2002a, b;

ORLECKA–SIKORA and LASOCKI 2005).

The magnitude cumulative distribution function

(CDF) estimator reads:

F̂ M; j yi; 2Nf gð Þ ¼ 2

N

X

2N

i¼1

U
M � yi

ki h

� �

� U
Mc � yi

ki h

� �	 


ð10Þ

for M C Mc, and zero otherwise, where U uð Þ ¼
1
ffiffiffiffi

2p
p

R

u

�1
e�

n2

2 dn is the CDF of the standard Gaussian

distribution and the other symbols are as above.

The smoothing factor, h, is selected so as to

minimize the integrated squared difference between

the estimated and actual probability density (e.g.

BOWMAN et al. 1984). KIJKO et al. (2001) showed that

in the case of Gaussian kernel function h is approx-

imately a root of the equation:

X

i; j

2�0:5 yi � yj

� �2

2h2
� 1

" #

exp �
yi � yj

� �2

4h2

" #(

� 2
yi � yj

� �2

h2
� 1

" #

exp �
yi � yj

� �2

2h2

" #)

� 4N ¼ 0

ð11Þ

The bandwidth factors are:

ki ¼
f̂ � yij yi; 2Nf gð Þ

g

" #�0:5

ð12Þ

where

f̂ � yj yi;Nf gð Þ ¼ 2
ffiffiffiffiffiffi

2p
p

Nh

X

2N

i¼1

exp � y � yið Þ2

2h2

" #

ð13Þ

and

g ¼
Y

2N

i¼1

f̂ � yij yi; 2Nf gð Þ
" # 1

2N

ð14Þ

When a hard end point of magnitude distribution,

Mmax, is assumed then the PDF and CDF magnitude

estimators take the form of:

f̂ Mj yi; 2Nf gð Þ ¼ 1
ffiffiffiffiffiffi

2p
p

P

2N

i¼1

1
kih

exp � M�yið Þ2

2 kihð Þ2

h i

P

2N

i¼1

U Mmax�yi

kih

� �

� U Mc�yi

kih

� �h i

ð15Þ

F̂ Mj yi; 2Nf gð Þ ¼

P

2N

i¼1

U M�yi

kih

� �

� U Mc�yi

kih

� �h i

P

2N

i¼1

U Mmax�yi

kih

� �

� U Mc�yi

kih

� �h i

ð16Þ

for Mc B M B Mmax, f̂ Mð Þ ¼ F̂ Mð Þ ¼ 0 for M\Mc,

and f̂ Mð Þ ¼ 0 and F̂ Mð Þ ¼ 1 for M[Mmax. We

estimate Mmax using the generic formula (COOKE

1979; KIJKO and GRAHAM 1998) in the version rec-

ommended by LASOCKI and URBAN (2011)

M̂max ¼ Mobs
max þ

Z Mobs
max

Mc

F̂ M Mi;Nf gjð Þ
 �N

dM ð17Þ

where Mobs
max is the largest value in the data sample. This

Mmax estimator is biased, and nomograms for the bias

estimation can be found in LASOCKI and URBAN (2011).
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