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Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale
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Abstract—The main objective of this paper was to introduce
the Environmental Seismic Intensity scale (ESI), a new scale
developed and tested by an interdisciplinary group of scientists
(geologists, geophysicists and seismologists) in the frame of the
International Union for Quaternary Research (INQUA) activities,
to the widest community of earth scientists and engineers dealing
with seismic hazard assessment. This scale defines earthquake
intensity by taking into consideration the occurrence, size and areal
distribution of earthquake environmental effects (EEE), including
surface faulting, tectonic uplift and subsidence, landslides, rock
falls, liquefaction, ground collapse and tsunami waves. Indeed,
EEEs can significantly improve the evaluation of seismic intensity,
which still remains a critical parameter for a realistic seismic
hazard assessment, allowing to compare historical and modern
earthquakes. Moreover, as shown by recent moderate to large
earthquakes, geological effects often cause severe damage”;
therefore, their consideration in the earthquake risk scenario is
crucial for all stakeholders, especially urban planners, geotechnical
and structural engineers, hazard analysts, civil protection agencies
and insurance companies. The paper describes background and
construction principles of the scale and presents some case studies
in different continents and tectonic settings to illustrate its relevant
benefits. ESI is normally used together with traditional intensity
scales, which, unfortunately, tend to saturate in the highest degrees.
In this case and in unpopulated areas, ESI offers a unique way for
assessing a reliable earthquake intensity. Finally, yet importantly,
the ESI scale also provides a very convenient guideline for the
survey of EEEs in earthquake-stricken areas, ensuring they are
catalogued in a complete and homogeneous manner.
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1. Introduction

Earthquake environmental effects (EEE) are all
the effects, from geological to hydrological, physical
and meteorological, that a seismic event can induce
on the natural environment (MIcHETTI et al. 2007).
Among them, the coseismic geological effects are the
most hazardous. They range from surface faulting,
which can reach displacements of many meters and
extend for hundreds of kilometers, to landslides, rock
falls, liquefaction, ground collapse and many other
consequences, including tsunamis.

Earthquake environmental effects are common
features produced by moderate to large crustal
earthquakes, in both their near and far fields. Always
recorded and surveyed in recent events, very often
they are remembered in historical accounts and con-
served in the stratigraphic record as paleo-earthquake
markers, the latter being the basis of paleoseismology
(e.g., McCarpiN 2009). Both surface deformation and
faulting and shaking-related geological effects (e.g.,
liquefaction, landslides) not only leave permanent
imprints in the environment, but can also severely
impact man-made structures (e.g., Hancox et al
2002; HonEGGER et al. 2004; EERI 2008, 2011).
Moreover, underwater fault ruptures and seismically
triggered landslides can generate devastating tsunami
waves (cf. Warp 2001; Harsitz et al. 2006; TEN
BRINK et al. 2009; Ozawa et al. 2011; SATAKE et al.
2013; and bibliography therein).

These phenomena represent significant sources of
hazard, especially (but not exclusively) during large
earthquakes, substantially contributing to the sce-
narios of destruction. Severe damage to buildings and
infrastructure from surface faulting, landslides and
liquefaction is commonly experienced during
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moderate to strong seismic events (e.g., DowRrIick
et al. 2008; MIcHETTI et al. 2009; EBERHARD et al.
2010; HaYEs et al. 2010; Lekkas 2010; EERI 2011;
Fritz et al. 2011; Mor1 et al. 2011; VITTORI et al.
2011; D1 ManNA et al. 2013; Hare et al. 2013;
MavrouLss et al. 2013; PAvLIDES et al. 2013; SiLva
et al. 2013; VALKANIOTIS et al. 2014). Our aim was to
prove that seismic hazard assessment (SHA) would
benefit from a comprehensive consideration of all
earthquake-related effects, including environmental
ones. Macroseismic intensity and its attenuation with
distance are still considered key parameters for SHA
and are used to generate shake maps for early
warning and rapid response planning (e.g., SGRENSEN
et al. 2009). According to the latter authors, ground
motion attenuation in terms of macroseismic intensity
allows to overcome some drawbacks of the com-
monly applied ground motion prediction equations
(GMPEs), which are the limited number of record-
ings and the complex and not straightforward
association of ground motion with damage.

A tool devised in the recent past (MICHETTI ef al.
2007) to improve the intensity characterization is the
Environmental Seismic Intensity (ESI) scale. It is a
12 degrees intensity scale (Table 1) solely based on
EEEs, whose documentation has seen a considerable
growth in the past decades. Several authors have
made use of geological effects in their application of
the Modified Mercalli (MM) intensity scale in the
past, also influencing the advent of the ESI scale
(e.g., DENGLER and McPHErsoN 1993; Hancox et al.
2002). Many scientists all around the world have
already applied the ESI scale in their account of
recent and historical earthquake scenarios (see “Ap-
pendix”). The key contribution to SHA of the ESI
scale is the improved intensity assessment, seen as
the comprehensive parameter necessary to maintain
the consistency between source parameters assessed
for historical earthquakes and for the modern ones.
The case of the 2012 Modena earthquake sequence
clearly illustrated this point (e.g., GaLLI et al. 2012;
D1 ManNaA et al. 2013; Graziant et al. 2015). Such
consistency is pivotal for reliable magnitude/intensity
relationships and the value of the seismic catalogue
itself.

Therefore, based on several years of worldwide
application in the field, in this paper (a) we introduce
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the ESI scale to the community of earth scientists
(geologists, geophysicists and seismologists) and
civil engineers, as a survey instrument to better
characterize a seismic event, also in terms of local
effects and attenuation with distance, and (b) we
provide insurers, civil protection agencies and
administrators with an integrated tool to assess the
potential damage deriving from geological effects
during a future earthquake in an area, to be added to
that directly associated to seismic shaking.

In the following, first a short summary of the
evolution of earthquake intensity scales is given, also
considering the impact of the advent of magnitude,
followed by the background and rationale of the ESI
scale. Then, three representative case studies target
what are deemed to be the most crucial issues related
to the application of the ESI scale, including: (a) the
comparability of epicentral intensity assessed based
on traditional macroseismic scales and on environ-
mental effects, (b) the capability to measure paleo-
earthquakes by means of the empirical relationships
of rupture parameters (rupture length and displace-
ment) with intensity and magnitude and (c) the
assessment of epicentral intensity from the total area
of secondary environmental effects and from the total
rupture length (MicHETTI et al. 2007).

2. The Evolution of Intensity Scales and the Role
of Environmental Effects

Over the past decades, a number of publications
have dealt with the history of the intensity scales and
the analysis of their relationships, from RICHTER
(1958) and SHEBALIN (1975) to MussoN et al. (2010).
In the following, the focus is placed on how intensity
was originally conceived and for what purposes.
Before any standardized intensity scale had been
conceived, a set of symbols were occasionally uti-
lized for depicting different levels of damage of an
earthquake, as in the map drawn by Matteo Greuter
(Fig. 1) for the July 30, 1627, Gargano earthquake (in
ZEccH1 2004). Something similar might already have
appeared in Italy in the late 16th century, drawn by
Gastaldi for the July 20, 1564, Nizza event, as cited in
GI0FFREDO (1692), but this map, if it ever existed, is
now lost. While this made it possible to compare
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Figure 1
Matteo Greuter, Roma, 1627: distribution of damage caused by the July 30, 1627, Gargano earthquake in southern Italy; the stippled box
encloses the map legend: symbols classify damage as completely destroyed, in large part destroyed, about half ruined, only partially ruined or
damaged

damage caused by a given earthquake at different
sites, it did not allow comparison among different
earthquakes.

A number of strong events since the seventeenth
century in many regions of Europe gradually
increased the awareness that measuring and com-
paring earthquake effects was necessary, requiring a
detailed documentation through a proper standardized
procedure. A logical approach appeared to be the use
of all the observable effects and consequences of an
earthquake to represent its size. By the end of the
nineteenth and in the early twentieth century, several
intensity scales were conceived that divided the

whole range of seismic effects into characteristic sets
commonly defined as degrees, now generally 10 to 12
in number. Their basic purpose was the same: to
assess the size (strength) of earthquakes based on
their effects on three different classes of targets: (1)
domestic objects and human perception, (2) man-
made engineered structures and infrastructures and
(3) geological/natural environment.

Intensity scales had a threefold purpose: (1) to
document the whole set of phenomena due to the
earthquake; (2) to define a level of structural/envi-
ronmental damage (I;) in all the localities where it
was felt, based on direct observation or deducted
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from historical accounts; (3) to compare different
earthquakes, based on the size of the observed effects
and extent areas of similar levels of structural/envi-
ronmental damage. The latter implies the possibility
to classify earthquakes according to their epicentral
intensity (I), i.e., the intensity within the epicentral
area where the strongest effects usually take place.
For example, when MusHkeTOV (1890), after a
reconnaissance mission in the epicentral area of the
May 28, 1887, Verny earthquake, wrote, “the earth-
quake strength was at least X degrees on the Rossi-
Forel scale,” he meant the strength of the Verny
earthquake as a natural phenomenon (see Fig. 2,
where the area of maximum environmental effects is
outlined). In fact, the environmental effects observed
in the mountains were described in an extensive
chapter, supported by drawings and photographs and
used in earthquake strength assessment, on a par with
damage incurred in towns and villages. Thus, in the
earlier applications of the intensity scales the envi-
ronmental effects were taken into account not
differently from the effects on humans and manmade
structures. See for example their wide use in the
Mercalli—-Cancani—Sieberg scale (MCS) or in the
several versions and variants of the Modified Mercalli
scale (e.g., Dowrick et al. 2008; Comerct 2013).

The advent of the earthquake magnitude scale
(RicuTtER 1935) greatly influenced the subsequent
development of the intensity concept. Magnitude was
deemed a more objective parameter, because it
relates the instrumentally recorded ground displace-
ment to its distance from the epicenter. Since then, a
number of studies have appeared relating intensity to
magnitude, with the goal to estimate magnitudes for
historical, pre-instrumental, earthquakes. Information
on their effects was collected going back as far as
possible in history, sometimes over many centuries,
as in Italy, Greece, Japan and China. The set of
empirical relationships among intensity, source depth
and magnitude, known as macroseismic field equa-
tions, takes a variety of forms. Some equations link I,
directly to magnitude; others use generalized infor-
mation on macroseismic effects in the form of
isoseismals and solve the equations to obtain mag-
nitude and source depth from ratios of isoseismal
radii (/;), and yet others are based on felt-areas (e.g.,
SHEBALIN 1972; AMBRASEYS 1985).

Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale 1489

What is stressed here is that more weight was
placed on intensity distribution rather than on /. The
intensity distribution, however, depends on the
availability of observations and is, therefore, biased
towards populated areas. More stable magnitude
assessments can be derived from isoseismals than
from a single /,. When observations are obtained in a
large number of localities, a poor intensity assess-
ment in one of them has little or no impact on the
average isoseismal radius, while an erroneous I
assessment significantly affects the magnitude esti-
mate. Another reason is that for many earthquakes the
epicentral intensity could not be accurately defined,
mainly because the epicenter was in a remote place.

Another achievement of instrumental seismology
that has dramatically affected the intensity concept is
the measurement of strong ground motion by
accelerometers. Ground motion is mainly responsible
for the observed intensity at a site (away from the
surface faulting zone) and significantly contributes to
its understanding (e.g., PANzA et al. 1997; WALD et al.
1999). However, such recordings cannot compete
with intensity observations in terms of density of
information and only rarely are available at the epi-
center. In Japan, intensity (JMA scale) is now
estimated based on the very dense array of strong-
motion instruments and seismic intensity-meters (ac-
celerometers) deployed there (e.g., NisHIMAE 2004).
In the US, the ShakeMap program of the US Geo-
logical Survey produces near real-time shaking
intensity maps from ground motion recordings (http://
earthquake.usgs.gov/earthquakes/shakemap/).

With time, the focus on the behavior of engineering
structures under seismic load, based on the estimation
of local damage levels, has grown steadily in impor-
tance, radically restricting the original meaning of the
intensity as an earthquake sizing parameter. The
European Macroseismic scale (EMS98: GRUNTHAL
1998) openly discourages the use of EEEs with the
comment: “while variations in the vulnerability of
manmade structures can be presented in a reasonably
coherent yet robust manner, in the case of the effects
on nature, most of these depend on complex, geo-
morphological and hydrological features which cannot
easily be assessed by the observer, or at all”. In our
view, the significant improvements made in recent
decades on the knowledge of the environmental effects


http://earthquake.usgs.gov/earthquakes/shakemap/
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Figure 2
Map of the effects of the Verny, 1887, earthquake in the Tien Shan range of central Asia (from MusHkeTov 1890). The small ellipse encloses
the area of maximum environmental effects, while the large ellipse indicates the area of considerable damage. Both contours appear on
Mushketov’s original map. Note that most of the environmental effects occurred in a mountainous zone located 15-20 km south of the nearest
populated area (Verny, now Almaty, Kazakhstan)

instead allow them to be fully exploited to categorize
earthquake size, i.e., assess epicentral intensity, which
is the rationale of the Environmental Seismic Intensity
scale described hereinafter.

3. Earthquake Environmental Effects and ESI Scale

The ESI scale has been conceived not only to
supplement the existing macroseismic intensity

scales, but also to work alone when the other scales
cannot be applied (e.g., vast uninhabited areas).
The reference macroseismic scales for calibration
have been the MM and Medvedev—Sponheur—Kar-
nik (MSK) scales, but also the MCS scale, after
adjusted to align with the other (see for example
the comparison table of intensities in REITER 1990).
The choice of these scales was motivated by the
wealth of historical information (also on environ-
mental effects) available from their application for
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over a century to earthquakes in many regions
worldwide and to historical events going back in
time for at least a millennium. This, and the
database of surface rupture parameters (e.g., WELLS
and CoppERSMITH 1994; and analysis in STIRLING
et al. 2013) of events for which intensity data
could be retrieved, allowed the tuning of the EEEs
in the different degrees, in terms of manifestation,
dimensions and density.

The extensive list of earthquakes in Table 2 helps
clarify the application range of the ESI scale and its
added value to macroseismic scales. In fact, many
earthquakes of moderate to strong magnitude are
assigned in the literature a small, unrealistic I,
despite extensive surface faulting and large offsets,
e.g., the I of IX for the 2004, Sumatra, M 9.1 event.
Table 2 emphasizes also how the epicentral intensity
and location of historical earthquakes can be poorly
constrained based only on damage, when epicenters
are located in sparsely populated areas with few
buildings, or when the structural damage saturates, as
it is usually seen, at intensity X of the historically
used XII degrees scales cited before (MCS, MM,
MSK). In some cases, the rupture parameters are not
measured directly, but inferred from geophysical or
instrumental seismological data, as for several events
in the database of WELLs and CoppERSMITH (1994).
Some occurrences in the data base are likely erro-
neous, e.g., the 1976 Gazli earthquake: its epicentral
area was in the desert, and the expedition of the
Institute of Physics of the Earth of Moscow observed
only secondary effects (e.g., HaARTZELL 1980).

The intensity values in Table 2 are undeniably
correct, because they refer to the strongest macro-
seismic effects observed. However, they are far from
representing that comprehensive measure of the event
necessary for comparing seismicity in space and time,
especially prior to the instrumental era, which is the
prime scope of epicentral intensity. This current
tendency in intensity estimation affects the develop-
ment of reliable intensity/magnitude relationships,
which serves to make the seismic events comparable
in those catalogues that extend back in time well
before the instrumental period even including paleo-
seismic events. This is the case, for example, for the
Mediterranean region, China, Japan, and the USA. In

this perspective, seismic intensity remains a

Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale 1491

fundamental gauging parameter, despite the avail-
ability of more objective parameters, such as
magnitude. The intensity assessment of many his-
torical earthquakes is being updated as new archive
documents are discovered or sources reinterpreted.
Sometimes, the newly inferred magnitudes have a
strong impact on SHA. However, to maintain or even
improve its essential role, intensity should take
advantage of all information pertaining to earthquake
effects, on both built and natural environments, also
considering that some geological effects (especially
faulting, liquefaction, landslides) conserve a much
longer “memory” than those on the man-made
structures. This provides a unique tool for comparing
and mutually calibrating prehistoric (paleoseismic),
historical and modern earthquake datasets. Like
macroseismic estimates, the application of the ESI
scale must also take into account local effects of soil
amplification and preexisting highly unstable slopes
that may lead to locally overestimate the intensity.
EEEs can be found only where the geological and
morphological conditions exist for their occurrence,
with an uneven coverage of territory. These draw-
backs, however, do not lessen the value of the overall
picture, similarly to what happens in all macroseismic
field reconstructions..

EEEs fall into two main categories: (1) primary
effects, which are the surface expression of the seis-
mogenic source (e.g., surface faulting), normally
observed for crustal earthquakes above a given
magnitude threshold, generally close to 6.0 according
to available sets of data (e.g., WELLS and COPPERSMITH
1994; YEeats et al. 1997); (2) secondary effects,
mostly dependent on the characteristics of seismic
wave and morphologic, geologic, climatic and soil
conditions (e.g., landslides, liquefaction -effects,
ground cracks, etc.).

A good example of the contribution of EEEs to
hazard assessment and earthquake characterization is
provided by the empirical relationships of (1) mag-
nitude and faulting parameters, in particular
maximum/average displacement, surface rupture
length and rupture area (e.g., WELLS and COPPERSMITH
1994; PavLiDEs and Caputo 2004; STIRLING et al.
2013), (2) magnitude and landslide distance from
epicenter (e.g., KEerer 1984; RODRIGUEZ et al. 1999;
Hancox et al. 2002; Porripo et al. 2002; DELGADO
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Table 2

continued

References

Iy
ESI

MM

ly

MD (m)

SRL (km)

Date

Epicentral Area

Country

BiLuam et al. (2005), MArRTIN (2005),

XI1I

X

1300-1500 20.0

M, 9.1

26.12.2004

Sumatra—Andaman Islands

Indonesia

BANERJEE ef al. (2007) and CHLIEH et al.

(2007); http://earthquake.usgs.gov/
earthquakes/eqinthenews/2004/

us2004slav/ (accessed 26/06/2015)

L. Serva et al.
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et al. 2013; Comerci et al. 2013; Esposito et al. 2013)
and (3) magnitude and liquefaction distance from
epicenter (GaLL1 2000; CAsTILLA and AUDEMARD 2007;
and references therein). The aforementioned rela-
tionships, although largely empirical and
characterized by considerable scattering, are widely
applied in both deterministic and probabilistic SHA
studies, especially (1). The same empirical analysis
can be carried out based on intensity (see for example
the graphs in MICHETTI et al. 2004), which is the basic
approach of the ESI scale, where several other envi-
ronmental effects are also taken into account
statistically.

The importance of EEEs as a tool to measure
earthquake intensity was already outlined in the early
1990s, for example by DENGLER and McPHERSON
(1993) and ServA (1994). An MMI-derived scale has
been developed in New Zealand (Hancox et al. 2002)
that incorporates landsliding, liquefaction and other
ground damage criteria, but excluding primary
effects, regarded as a seismogenic effect unrelated to
shaking and, therefore, neither to intensity.

The concept of an intensity scale exclusively
based on environmental effects took form in the 1999
15th INQUA Congress, Durban. A first version of the
scale was presented in 2003 (16th INQUA Congress,
Reno, MicHETTI ef al. 2004) and tested over a 4-year
trial period using actual case studies worldwide. The
ESI 2007 intensity scale, presented in the framework
of the 2007 17th INQUA Congress in Cairns, Aus-
tralia, has taken into account the results of these
applications.

In the following, the basic structure of the ESI 2007
is discussed. The full text is given in Table 1 (Michetti
etal. 2007) and is available on-line in several languages
(http://www.isprambiente.gov.it/it/pubblicazioni/
periodici-tecnici/memorie-descrittive-della-carta-geo
logica-ditalia/memdes_97.pdf).

In order to make the ESI 2007 scale more com-
patible with previous macroseismic scales, it
maintains two different levels of EEE spatial gener-
alization: site and locality.

Site corresponds to the place where a single EEE
of a certain type was observed, such as a landslide or
a ground crack. This is the level at which EEE
descriptions have to be compiled. As these effects are
strongly dependent not only on the severity of


http://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/memorie-descrittive-della-carta-geologica-ditalia/memdes_97.pdf
http://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/memorie-descrittive-della-carta-geologica-ditalia/memdes_97.pdf
http://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/memorie-descrittive-della-carta-geologica-ditalia/memdes_97.pdf
http://earthquake.usgs.gov/earthquakes/eqinthenews/2004/us2004slav/
http://earthquake.usgs.gov/earthquakes/eqinthenews/2004/us2004slav/
http://earthquake.usgs.gov/earthquakes/eqinthenews/2004/us2004slav/
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shaking, but also on many other physical factors, it is
only possible to assign an interval of probable
intensity values to the effect observed at the site.

Locality is the place including one or more sites
where the EEE occurred and presents a level of gen-
eralization to which intensity can be assigned. It is
assumed that within the spatial frame of a locality,
when EEE occurred in several sites, peculiar effects
associated with the specific characteristics of each site
are removed. Locality can refer to any place, whether
populated or not. Since a natural “locality” can be
anything from a river valley to a mountain slope or a
large hill, it is difficult to assign a typical dimension to
it, although it must be small enough to avoid com-
prising separate areas with significantly different site
intensities, but large enough to include more than one
site and consequently to be representative for an
intensity assessment. Therefore, the definition of
locality boundaries is a matter of expert judgment.

An analogue of locality in traditional macroseis-
mic studies is a village or a medium-sized town, to
which an intensity value can be assigned. Sometimes,
intensities differing by one or even two degrees are
found for the same town, commonly due to site effect
conditions. In such a case, conservatively, the highest
intensity is generally taken, if the scale of represen-
tation does not allow all values to be displayed. The
site is an analogue of a single macroseismic object.
For a single building, the degree of damage can be
defined, but not a well-defined intensity value.

In the classical macroseismic intensity assess-
ments, a statistical analysis of damage levels for
different categories of structures (differentiation is
based on their vulnerability) within the city or town
provides the intensity of shaking at this locality. In
contrast, expert judgement of EEEs at a given locality
is used for the ESI scale. This evaluation concerns
both the probable range of intensities observed as
well as the accuracy of the estimates. By adopting the
“locality-site” concept, a merging of environmental
and macroseismic effects into a unified intensity scale
might be almost straightforwardly achieved.

The EEE intensity field resulting from this process
provides an additional portrait of the earthquake. A
comparison with the “traditional” macroseismic fields
of the same earthquake has shown so far a fairly good
agreement, generally within one degree (see

Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale 1495

references on its application listed in the “Introduc-
tion”). However, significant discrepancies in intensity
assessments (> one degree) must be accounted for with
a dedicated analysis. They can result from: (a) a site
amplification selectively affecting the human or nat-
ural environment to a greater extent (for example,
topographic or soft sediment amplification effects),
(b) an anomalously strong or light damage because of
building type and/or quality. Moreover, although it has
worked satisfactorily so far, the ESI scale is still a
novel tool. Some fine-tuning might emerge as useful in
the future, based on experience gained by its applica-
tion to more cases.

Based on the ESI scale (Tables 1, 3), the size of
the epicentral area, i.e., the area where the strongest
effects are observed, as well as the total area affected
by EEEs, allow [, to be estimated. The latter also
scales with rupture parameters: surface rupture length
(SRL) and maximum displacement (MD) that are also
rather well correlated with magnitude. This is par-
ticularly useful for assessing the size of paleo-
earthquakes, where proxies of intensity/magnitude
data are extremely rare. Relationships between the
total area of specific secondary effects (e.g., land-
slides or liquefactions) and I, despite more complex,
also make it possible to estimate the earthquake size
(Table 1). In addition, recent studies confirm that
factors such as the total number, size and density of
landslides may provide a sound means of assessing
the strength of shaking across an earthquake-affected
area (Hancox et al. 2002, 2014, and references
therein).

However, there are instances where the instru-
mental and macroseismic epicenters are far apart; the
typical example is the Mexico City earthquake in
1985, where an M8.1 subduction event caused its
greatest damage more than 350 km away, in the soft
lacustrine setting of Mexico City (e.g., CAMPILLO
et al. 1989; CHAVEZ-GARcIA and BARD 1994). This is a
particular case where the local amplifications (mostly
liquefaction and ground compaction in Mexico City
and sparse landslides over a wide region) have to be
taken into proper consideration, together with other
information, most likely leading to excluding the
Mexico City data for assessing /. The characteristics
of the EEEs of many earthquakes worldwide,
including the assessed ESI intensity, are reported in
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Table 3

Ranges of surface faulting parameters and typical extents of total area for each intensity degree (SRL: surface rupture length, MD: maximum
surface displacement or deformation, Total Area: area of occurrence of EEEs)

Iy Intensity Primary effects

Secondary effects

SRL MD Total area (km?)
v - - -
V — — —
VI - - -
VII (*) (*) 10
VIII Some hundred meters Centimeters 100
IX 1-10 km 5-40 cm 1000
X 10-60 km 40-300 cm 5000
XI 60—150 km 300-700 cm 10,000
XII >150 km >700 cm >50,000

(*) Limited surface fault ruptures, tens to a few hundreds of meters long with offset of a few centimeters, may occur, more often associated

with very shallow earthquakes, especially in volcanic areas

the EEE Catalogue, hosted by ISPRA in the frame-
work of the INQUA TERPRO Focus Area on
Paleoseismicity project “A global catalogue and
mapping of Earthquake Environmental Effects”
(http://www .eeecatalog.sinanet.apat.it/terremoti). The
same data set is currently also accessible through the
United Nations—International ~Atomic Energy
Agency—International ~ Seismic  Safety  Center
(IAEA-ISSC) webpage (issc.iaea.org).

4. Case Studies of Application of the ESI Scale

Many papers published so far illustrate the
application of the ESI scale to recent, historical and
paleo-earthquakes (cf. list of references in the “In-
troduction”). In the following, some recent and
historical case studies, representative of different
seismotectonic environments (location in Fig. 3),
focus on some key questions. The first case study is
an example of how regional and local factors affect
earthquake size assessment. Then, the 1805 Italy
earthquake is used to illustrate how the distribution of
maximum secondary effects makes it possible to
assess Iy and to identify the seismogenic source. In a
third example, the Denali 2002 earthquake serves to
highlight the problem of epicentral intensity assess-
ment, when the epicenter is far from populated areas.

4.1. Focusing on How Regional and Local Factors
Affect Earthquake Size Assessment: the June 27,
1957, Muya (Baikal, Russia) Earthquake

Systematic studies of paleo-earthquakes started in
the Baikal region in the early 1960s; the first regional
catalogue of paleo-earthquakes was published in
KonNDorskAYA and SHEBALIN (1982).

Baikal is a unique zone of active continental
rifting. The almost pure normal faulting of published
CMT-solutions (inset of Fig. 4) is in full agreement
with this general geodynamic framework. However,
the largest known earthquake in the region, the 1957
Muya earthquake (My, = 7.6, Mg = 7.5), demon-
strates a much more complex faulting style, with a
relevant strike-slip component found both in source
modeling and in surface ruptures (Fig. 5). Surface
ruptures associated with the earthquake were studied
during several field investigations and summarized in
reports and papers by KurusHIN (1963), SOLONENKO
(1965), SoLoNENKO et al. (1966, 1985) and KURUSHIN
and MEeL’nikova (2008) (Fig. 5). Figure 4 summa-
rizes the macroseismic information, based on
questionnaires collected in 1958 by the Institute of
the Physics of the Earth, RAS and data from
SoLoNENKO et al. (1958). Noteworthy is the far-
reaching extension of the felt area, over 700 km away
from the surface faulting zone.
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Figure 3
Location of earthquake case-studies discussed in this paper

According to the ESI scale, epicentral intensity
can also be assessed based on the total length (SRL)
and maximum displacement (MD) of the observed
surface faulting. The surface ruptures of the Muya
event occurred along three main WNW trending en
echelon segments with partly lateral and normal slip
components (Fig. 5). The reported 20-25 km of SRL
corresponds to an epicentral ESI intensity X. The
maximum offset (vertical) was 3.3 m, which, for
normal faulting, is also in agreement with an intensity
of at least X. Instead, since the villages nearest the
surface rupture zone were 50 km away, the maximum
observed macroseismic intensity was rather low
compared to the magnitude of the event, not reaching
VIII. Thus, if only macroseismic effects are consid-
ered for epicentral intensity assessment, I, would be
underestimated by no less than two degrees.

The epicentral locations determined instrumen-
tally differ from each other by more than 100 km
(ISC 2012). The instrumental hypocenter depth varies
from 10 (Doser 1991) to 22 km (BALAKINA et al.
1972). TatevossiaN et al. (2010) have assessed a
depth around 20 km, applying the macroseismic field
equation for Baikal region found in KONDORSKAYA
and SHEBALIN (1982) for My, = 7.6 and a radius of
felt shaking of 700 km (Fig. 4). The rather short
surface faulting zone (20-25 km) is also supportive
of the relatively deep source, common in the Baikal
region (e.g., DEVERCHERE et al. 2001). For the sake of
comparison, the 2003 Altai earthquake (M = 7.4)
was accompanied by 70 km of surface ruptures
(SRL) (TATEVOSSIAN et al. 2009). According to WELLS
and CoppersMITH (1994), a 20-25 km SRL would

correspond to M 6.6, much lower than that measured
(see, for example, TaTeEvossian 2011). The short SRL
and large MD (maximum displacement) could also be
representative of a source with high stress drop, a
possible trait of the regional seismicity. Thus, the
influence of regional tectonics and structural charac-
teristics on the coseismic effects should also be
considered in the paleoseismic evaluations.

4.2. Focusing on the Distribution of Maximum
Secondary Effects to Assess Iy and to Identify
the Seismogenic Source: the July 26, 1805,
Molise (Southern Italy) Earthquake

The 1805 Molise earthquake (Southern Italy) was
characterized by a main shock (macroseismically
derived magnitude M, = 6.6) followed a few hours
later by two important aftershocks. The epicentral
zone was centered in the Bojano plain (I, = X MCS;
LocaTi et al. 2011), and an area of about 2000 km?
was affected by MCS intensities >VIII. Esposito
et al. (1987) locate the macroseismic epicenter of the
main shock (Figs. 6, 7) at Frosolone (I,.x = XI
MCS). The epicenter of the second main shock was
located at Morcone, some tens of kilometers to the
southeast.

The historical accounts of the 1805 earthquake
mention about one hundred seismically induced
environmental effects, mostly in the near-field area,
although some were reported as far away as 70 km
from the epicenter (Esposito et al. 1987; PoRrFIDO
et al. 2002). The most relevant effects documented in
contemporary sources are described in Table 4 and
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Figure 4
Approximate macroseismic (white star) and instrumental (blue star, gaccording to VVEDENsKAYA and BaLakiNa 1960) epicenters of the Muya,
1957, earthquake, and MSK intensities (degrees in Roman numerals). Inset in lower left: source mechanisms in the Baikal region for events
with M, > 10** dyn cm (M,, > 5.3) (http://www.globalcmt.org/CMTsearch.html), showing a dominant extension in the Baikal rift grading
into ca. east—west left-lateral slip eastward of the Muya region

mapped in Fig. 7. Among these, vertical ground
displacements of about 1.5 m at Guardiaregia and
Morcone are interpreted as primary effects. Along an
antithetic fault, a long fracture reported between
Pesche and Miranda and northeast of Castelpetroso
may also be interpreted as evidence of surface
faulting. This fact would indicate that the total
rupture length was about 40 km, with maximum

displacements of about 1.5 m at Guardiaregia. Con-
sequently, the ESI epicentral intensity is X.

The earthquake also triggered a number of
secondary effects, notably, slope movements, hydro-
logical anomalies and liquefaction. At least 26 mass
movements (rock falls, topples, slumps, earth flows
and slump earth flows) were recorded (EsposiTo et al.
1987, 1998; Porrpo et al. 2007; SErvA et al. 2007).


http://www.globalcmt.org/CMTsearch.html

Vol. 173, (2016) Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale 1499

transition zon
. L2km
west segment ama‘a\dt\'
L3 km ¢ e s
Va1.3m e 4

central segment
L 6 km

XN segmerit .-
!L 3.5 km G

Figure 5
Surface faulting of the 1957 Muya earthquake; stippled in white is a doubtful portion of the coseismic rupture (L rupture length, Va average
vertical component of slip, Ha average horizontal component of slip). Orange arrows mark sections with substantial horizontal slip. Three
main segments can be discerned, separated by transition zones. The focal mechanism shown, from VVEDENSKAaYA and BALAKINA (1960), is very
similar to the three subevents reconstructed by Doser (1991). White dot is approximate location of top photograph in Fig. 11

In 29 localities, principally around Bojano (Biferno
springs) and the Matese Massif, 48 hydrological
anomalies were reported, mainly changes in water
discharge from springs. Flow increases were
observed in at least 16 springs, mainly SSW of the
Matese Mountains. New springs also appeared, one
of them at Bojano was active for about 2 months after
the earthquake (Esposito et al. 1987, 2001; Porfido
et al. 2002). Only one clear case of liquefaction was
reported at Cantalupo. Flames were also seen escap-
ing from the supposed fault rupture at Morcone,
likely burning methane from palustrine sediments.
Furthermore, anomalous sea waves were observed in
the gulfs of Naples and Gaeta (Caputo and Farra

1984; EsposiTo et al. 1987; Tinti and MARAMAI 1996,
MaRraMAI et al. 2014), the cause of which is
unidentified, possibly submarine landslides or reso-
nance effects.

The application of the ESI scale to secondary
effects has allowed local intensity values between V
and X to be assigned to about 50 municipalities
(SERvA et al. 2007; Fig. 7). The total area of relevant
ground effects (ESI local intensities >VII) amounts
to about 5300 km?. According to Table 3, the ESI
epicentral intensity is X.

In conclusion, this case study shows that both
primary and secondary effects, when properly taken
into account, can serve for:
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‘1L§oseismal (MCS)

Figure 6
1805 Molise earthquake: comparison of MCS and ESI macroseismic intensity fields. White lines MCS isoseismals (MCS degrees in Roman
numerals, after Esposito ef al. 1987). The highest intensity was seen at Frosolone, slightly west of the 1456 epicenter. ESI local intensities
(triangles) are after SERVA et al. (2007). Only the epicenters of the three major historical earthquakes in the near area are shown. Likely, the
1456 and 1805 events occurred along the same fault

1. Intensity assessment: in fact, two independent (GUERRIERI et al. 1999; BLUMETTI et al. 2000; GALLI
applications of the ESI, from the total area of and Garapint 2003).
secondary effects and from SRL, have yielded the
same [y = X. This result is also consistent with

the independently assessed macroseismic intensity 4.3. Focusing on Epicentral Intensity Assessment,
MCS = X). When the Epicenter is Far from Populated

2. Identification of the seismogenic source: the Areas: the November 3, 2002, Denali (Alaska)
scenario of secondary effects allows the seismo- Earthquake

genic source to be located on the southwestern
border of the Bojano basin, in good agreement
with local evidence of surface faulting reported in
historical documents at Morcone, Guardiaregia
and Pesche (Table 4), confirmed by recent studies

The 2002 Denali earthquake (M, = 7.9) was the
largest strike-slip earthquake in North America in
more than 150 years (HANSEN and RaTcHkovsk 2004;
MARTIROSYAN 2004). The epicenter was located
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Figure 7
Distribution of the main geological effects reported for the 1805 Molise earthquake (data after Porripo et al. 2002). The Bojano fault system,
running northwest—southeast, has controlled the Quaternary evolution of the Bojano and adjacent intermountain basins, marked in light green,
the largest of them being Morcone and Sepino (? where rupture is doubtful)

135 km south of Fairbanks and 280 km north of
Anchorage (Fig. 8). The total surface fault rupture
length was about 330 km, running ca. east—west at its
northwestern tip and then WNW-ESE; the maximum
displacement was 8.8 m right-lateral, measured west
of the Denali and Totschunda fault junction, and over
5 m reverse on the Susitna Glacier fault (EBERHART-
PuiLries et al. 2003; AAGAARD et al. 2004; CRONE
et al. 2004; FRANKEL 2004; HANSEN and RATCHKOVSKI
2004; HarussLEr 2009). Three sub-events were
identified (EBERHART-PHILLIPS ef al. 2003; FRANKEL
2004), and a total seismic moment equivalent to M, =
7.9 was inferred from GPS data, also consistent with

that derived from InSAR data (WRIGHT et al. 2004).
The first sub-event (M,, = 7.2), located near the
instrumental epicenter, was associated with the
rupture along the Susitna Glacier Fault. The second
sub-event (M,, = 7.3) was 50-100 km east of the
epicenter, where the surface offset of the Denali Fault
reached over 6 m. It is noteworthy that, despite this,
the Trans-Alaska Pipeline did not produce any oil
spill, thanks to a technical solution devised after the
experience of the 1964 Alaska earthquake (HONEGGER
et al. 2004). The third sub-event had the largest
seismic moment, equivalent to M,, = 7.6, and was
located about 130-220 km east of the epicenter,
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where the maximum surface offset of 8.8 m was
measured (EBERHART-PHILLIPS ef al. 2003; FRANKEL
2004).

The effects of rupture directivity are particularly
remarkable for the Denali Ground
shaking effects were reported as far away as almost
6000 km from the epicenter: for example, in
Louisiana, seiches rocked boats and broke moorings
(EBERHART-PHILLIPS ef al. 2003; Cassipy and RoGERS
2004). Local bursts of seismic activity were also

fault event.

Pure Appl. Geophys.

observed far away in volcanic and geothermal areas,
especially if lying in the direction of the Denali
rupture propagation, e.g., in the Yellowstone area, at
a distance of 3100 km (HuseN et al. 2004; MoRAN
et al. 2004).

Several papers describe the surface faulting of the
2002 earthquake (EBERHART-PHILLIPS et al. 2003;
CRONE et al. 2004; HAEUSSLER et al. 2004; HAEUSSLER
2009). The slip on the Susitna Glacier thrust fault
generated structures ranging from simple folds on a

Table 4

Descriptions of relevant environmental effects induced by the 1805 Molise earthquake

Location Type

Description

References

Pesche, Miranda and Surface faulting

S. Angelo in

Grotte
Guardiaregia Surface faulting
Morcone Surface faulting and

hydrological changes

Bojano Karst collapses
Cantalupo Liquefaction
S. Giorgio La Landslide

Molara
Acquaviva di Isernia Landslide

Bojano Emergence of new springs,
turbidity, chemical

variation

A very long fracture was surveyed from Miranda, Pesche up to S.
Angelo in Grotte. “Especially in the upper mountain from Miranda
to S. Angelo in Grotte chasms were open for about a half palm” [one
Neapolitan palm was 26.3 cm]

“Very evident and deep fractures with offsets up to seven palms”
(about 150 cm according to Esposito et al. 1987).

“flames from the ground...were seen near the inn, where horrible
chasms opened over a length of about one-third of a mile, some of
which had the ground overthrown at a height exceeding six palms,
and of which the width was over three palms and comparable the
depth. These fractures now can be seen from far away, because the
grass along the crevasses is desiccated as it had been on fire. In one
such crevasse I observed a pear tree, that, in that moment [of the
earthquake], lost all its unripe fruits, threw many branches to the
ground and, of the ones left, many are now desiccated. In the same
place the soil was completely disturbed, as it had excavated by
innumerable moles. Here a spring increased its flow rate, leaving a
slight smell of sulphur. A new spring gushed out from the ground...”

The day after the 26 July event, two chasms opened within the Matese
Mts. at about a half the slope of Bojano

Several contemporary eye-witnesses documented a liquefaction
characterized by sand-volcanoes in the surficial fluvio-lacustrine
deposits near the Cantalupo village

Along the Tammaro river up to the Molini of Cardinale Ruffo,
remarkable vertical as well as horizontal fissures were seen in an area
1922 steps long and about 800 steps wide) [one Neapolitan step,
“passo”, was ca. 1.9 m]. The topographic surface appeared
corrugated and uplifted of about 15 palms; in particular, the poplar
tree plantations and a road were uplifted and shifted for 13-20
palms...The Tammaro river was deviated as the original river bed
had raised about 50 palms as a consequence of this uplift...

“A forest about 20 miles wide was devastated. The ground failed and
trees were eradicated”

The day before the main shock, some springs located near Bojano were
anomalously turbid and hot. Four days later, three large water rivers
flooded very quickly the surrounding cultivated fields. The anomaly
in water discharge persisted for about 20 days. A new spring opened
at Bojano and it is still flowing

Fortint (1806)

BARATTA
(1901)

Caprozzi
(1834)

BARATTA
(1901)
PePE (1806)

PepE (1806)

BARATTA
(1901)
Por (1805)
and PEpE

(1806)
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Figure 8
2002 Denali earthquake: Community Internet Intensity (CII) and GI (Geophysical Institute, University of Alaska Fairbanks) intensity
distribution based on the report materials (MARTIROSYAN 2004). Star indicates the instrumental epicenter. The fault ruptures are plotted,
simplified, according to EBERHART-PHILLIPS et al. (2003). The box encloses the epicentral area (Fig. 9)

single trace to complex thrust-fault ruptures and
pressure ridges on multiple, sinuous strands, in a
deformation zone locally wider than 1 km. A max-
imum vertical displacement of 5.4 m on the south-
directed main thrust was measured. The principal
surface break occurred along 226 km of the Denali
fault, with average right-lateral offsets of 4.5-5.1 m
and a maximum offset of 8.8 m near its eastern end.
Finally, dextral slip averaging 1.6—1.8 m transferred
southeastward onto the Totschunda fault for another
66 km.

The secondary geological effects of the 2002
Denali earthquake were mostly landslides, liquefac-
tion and ground cracks (Fig. 9; EBERHART-PHILLIPS
et al. 2003; Harp et al 2003; HanseN and

RaTcHkovsk1 2004; JiBsoN et al. 2004, 2006). Despite
the thousands of landslides that were triggered,
primarily rock falls, rock slides and rock avalanches,
ranging in volume from a few cubic meters to tens of
millions of cubic meters (i.e., the rock avalanches that
covered much of the McGinnis Glacier), JIBSON et al.
(2006) have estimated them to be far less than
expected for an earthquake of this magnitude and
unusually concentrated in only a narrow zone about
30 km wide, straddling the fault-rupture zone over its
entire length. The overall affected area of 10,000 km?*
was significantly smaller than that triggered by other
earthquakes of comparable magnitude (Harp et al.
2003, and references therein). To explain this, JiBsoN
et al. (2006) suggest a deficit in high-frequency
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Figure 9
2002 Denali earthquake: distribution of geological effects based on survey data from authors cited in text. The fault ruptures are plotted,
simplified, according to EBERHART-PHILLIPS et al. (2003)

shaking, with the highest accelerations being con-
fined to the vicinity of the fault zone.

Liquefaction features were observed over a much
greater distance, up to 120 km away from the rupture
zone. The liquefaction was more extensive and severe
to the east, near the third sub-event, on the Holocene
alluvial deposits of the Robertson, Slana, Tok,
Chisana, Nabesnaand Tanana Rivers (EBERHART-
PHILLIPS et al. 2003; KAYEN et al. 2004). Apparently,
according to the latter authors, the minimum shaking
levels and duration requirements for liquefaction
were reached more extensively than those needed to
trigger rock falls and rock slides. Actually, the third
sub-event had a longer duration and period of shaking
than the previous two (HARP et al. 2003; KAYEN et al.
2004; JmsoN et al. 2006). However, also the

stabilizing effect of permafrost may have contributed
to reducing the number of mass movements. More-
over, the region surrounding the high peaks of the
Alaska Range displays a rather smoother morphology
with wide alluvial valleys hosting peri-glacial lique-
faction-prone deposits.

Many hydrological anomalies were reported, such
as water waves, water spill from swimming pools,
seiches in lakes and rivers, muddy well waters, at
distances up to 3500 km across western Canada and
in the Seattle basin (Cassipy and Rocers 2004,
BarBEROPOULOU et al. 2006; Si. 20006).

The US Geological Survey carried out an indirect
macroseismic survey (Community Internet Intensity,
CII), later expanded by the University of Alaska
Fairbanks (MArRTIROSYAN 2004). The combined dataset



Vol. 173, (2016)

contains intensities for more than 155 inhabited
locations, 29 of which reported a maximum intensity
MM IX. Of these, 28 are located in the eastern part of
the ruptured fault, with an average distance from the
fault of 27 km (MARTIROSYAN 2004). Most of the
reported intensity data come from localities very far
(10-100 km) from the fault, and more than 70 % of
them are V MMI or less. Their spatial distribution is
strongly inhomogeneous, reflecting the sparse popula-
tion. The USGS has also produced a Shakemap of the
event, merging ground motion and macroseismic data
(http://earthquake.usgs.gov/earthquakes/eqinthenews/
2002/uslbbl/images/AK_mmi_new.jpg) that shows
instrumental intensities of at least IX, especially in the
central and eastern sections of the rupture zone.

The application of the ESI scale to the diagnostic
EEEs reported in the papers above provides intensi-
ties between VII and XII for 131 sites (Fig. 10).
These intensities are based on evidence of surface
faulting (primary effects), slope movements, lique-
faction and ground rupture features (secondary
effects). Based on the maximum horizontal slip of
8.8 m and the total surface rupture length of 330 km,
the maximum ESI scale intensity would be XII. The
spatial distribution of secondary effects (landslides
and liquefactions), with a total affected area of at
least 30,000 km?, suggests epicentral intensity XI.
Considering only mass movements, the ESI would
range between X and XI (Table 3). Such contrasting
values might be justified by the multiple rupture and
widespread sediments particularly susceptible to
liquefaction. As a whole, intensity XI appears most
reasonable. The distribution and characteristics of
EEEs locates the macroseismic epicenter west of
Mentasta, broadly ESE of the instrumental epicenter
and near the third sub-event (Fig. 10).

5. Discussion

The three case studies presented in the previous
chapter, together with Table 2, help underline the
efficacy of environmental effects for improving the
evaluation of earthquake size. The maximum inten-
sity of the 1957 Muya earthquake, defined on the
basis of its effects on man-made structures is two
degrees less than the most reasonable epicentral

Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale 1505

intensity, simply because the town nearest to the
epicenter is 50 km away. The same holds true for the
much more recent 2002 Denali earthquake.

Sprawling infrastructure is not limited to urban-
ized areas: extensive transportation, water channels
and pipeline networks run across the countryside, as
well as high-hazard installations such as dams,
chemical, nuclear power and Liquefied Natural Gas
(LNG) plants. These facilities need be evaluated for
geological hazard, and the ESI scale provides a basis
for achieving this task. It allows, in a simple and
effective manner, the building of scenarios for given
intensity values of potential geohazards that an area is
liable to face, considering solely its geomorphologi-
cal and soil characteristics. Practical applicants might
be structural designers, regulators, civil protection
agencies and administrators, also for a more effective
public communication. Even insurance companies
may benefit from a comprehensive representation of
the seismic hazard at a site, inclusive of geohazards.
This remains valid even when dealing with critical
facilities, where the most up-to-date and sophisticated
methods of SHA are generally applied.

The 1805 Molise earthquake demonstrates that
even when surface ruptures are not positively rec-
ognized in historical documents, the total area
affected by secondary environmental effects can
yield a quite accurate assessment of epicentral
intensity. This is inferred from the good match of
independent epicentral intensity assessments based
on primary and secondary environmental effects. At
the same time, this case proves the compatibility of
the ESI scale with traditional macroseismic scales,
where detailed and complete information on earth-
quake impact on buildings in the epicentral area is
available.

Although it has been satisfactorily applied so far,
it should be borne in mind that the ESI scale is still a
novel tool. Some fine-tuning might prove useful in
the future, based on the experience being gained by
its application to more cases. In particular, intensity
estimates based on primary effects, i.e., SRL or dis-
placement, are a crucial aspect, not considered, for
example, in the MMlI-derived scale used in New
Zealand (Hancox et al. 2002; Dowrick et al. 2008),
which instead takes advantage of the shaking-related
effects such as mass movements, liquefaction and
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Figure 10
2002 Denali earthquake: intensity field based on CII and ESI intensities. For symbols, see legend in Fig. 9. The assessed epicentral (/) ESI
intensity is XI, based on the amount of slip

other ground damage effects. Large fluctuations in
the faulting parameters are commonly observed when
compared to magnitude (STIRLING ef al. 2013, and
references therein). The causes are manifold: depth,
kinematics and multiple ruptures. The same happens
with intensity; therefore, the boundary values given
in Table 3 provide a reference frame that must be
accompanied by a careful consideration of regional
features, such as other rupturing events in the same
region, thickness of the seismogenic layer and
regional stress—strain state. Possibly, also a charac-
teristic stress-drop may play a role, but there is no
general consensus about what it can actually be. For
instance, the anomalously short SRL observed for the
M, = 7.5 Muya, 1957, earthquake (25 km) is in
agreement with all reports of coseismic surface

rupture lengths in the Baikal region, which never
exceed 45 km (e.g., TATEvVOSSIaN et al. 2010). This
suggests that such a feature is “characteristic” for the
region, driven by a high stress-drop or by an unusu-
ally deep seismogenic layer, limiting the portion of
the source rupture emerging at surface. Also, the
complexity of the rupture process, with nearly pure
strike-slip at depth, revealed by focal mechanisms
and substantial vertical components of deformation at
the surface, points out the need for a careful inter-
pretation of paleo-earthquake data obtained in situ, in
light of the regional geodynamics.

In developing the ESI scale, it has always been
considered that realistic seismic hazard assessment
must be based on a sufficiently wide time-window of
earthquake history. Historical accounts of geological
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effects commonly inform on secondary effects, such
as ground cracks, liquefaction and landslide phe-
nomena, but may also include indications on fault
displacement, sometimes even rupture lengths. In
addition, erosion or trenching can expose paleoseis-
mic evidence, in the form of time-constrained fault
displacements and other geological features, espe-
cially filled cracks and liquefaction. Not all EEEs
have the same weight in the intensity assessment.
Each type of effect depends on some specific
parameters, sometimes regional (primary effects),
sometimes very local (secondary effects), like mor-
phology, stratigraphy, water table depth and
saturation. Some EEEs appear to start from a degree
threshold, but subsequently do not allow precise
degrees to be defined; others perform better to assess
intensities, but always in a statistical sense. There are
no clear steps in the number and size of most EEEs
between one degree and the next: Natura non facit
saltus. In general, the more the available EEEs in
terms of number and types, the better the intensity
estimate. Despite the fact that a single piece of evi-
dence (or several at the same site) may not provide a
precise indication of the magnitude of the causative
event, it may still represent a key information to
confirm the indications deriving from instrumental
data or active tectonics studies. Moreover, the size or
simply the presence of an EEE does allow a mini-
mum intensity to be assessed, similarly to what is
commonly applied in paleoseismology to derive a
minimum magnitude threshold. This minimum
threshold and the time interval between independent
faulting/shaking events can have a strong impact on
seismic hazard assessment. In the ESI scale, the
uncertainties regarding the value, in terms of earth-
quake characterization, to be attributed to a local,
often single, evidence of faulting, liquefaction or
earthquake-triggered mass movement are somehow
incorporated in the discrete nature of intensity
degrees, which are defined by large boundary values.

With more and more strong-motion recordings
made available, attenuation relationships have pro-
liferated based on moment magnitude as the most
representative parameter of the source. At the same
time, seismologists endeavor to understand the
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phenomena involved in source rupturing and propa-
gation, but rarely are their insights taken into account
in the design of facilities. Their studies of major
recent earthquakes show that the source is complex,
and parameters such as rupture length and stress drop,
directly linked to slip on the fault plane, are extre-
mely important for source characterization (e.g.,
MoHamMMmaDIOUN and SeErva 2001). Stress drop, a
parameter linked to maximum acceleration, is
strongly variable from one seismotectonic region to
another, or even from one fault or seismogenic source
to another (e.g., Fry er al. 2010). Moreover, the
commonly applied ground motion attenuation rela-
tionships  quite  often considerable
discrepancies between predicted values and actual
data (e.g., S@RENSEN et al. 2009). All this calls for a
reasonably simple tool to calibrate earthquake size in
a straightforward manner from observations of its
impact, to be as independent as possible of con-
straints imposed by models and assumptions.
Macroseismic intensity scales were conceived to
determine the size of an earthquake by noting the
effects it had caused. However, intensity assessment
can be biased by the varying levels of vulnerability
displayed by man-made environment. The advantage
in founding an intensity scale on geological effects is
the opportunity it provides to counterbalance the
unavoidable inconsistencies caused by such variable
vulnerability. Also, the natural environment is char-
acterized by a varying level of vulnerability. Ground
vibratory characteristics affect both secondary geo-
logical phenomena and artificial structures. However,
the natural environment is more stable on the long-
term scale: although ephemeral, it is capable of
conserving many EEEs, compared to the man-made
environment, being, therefore, able to retain the
record of earthquake traces much longer than man-
made structures. In fact, damaging effects on the
latter strongly depend not only on foundation soil, but
also on materials, design and foundation type, which
undergo rapid changes, especially in the modern
construction industry. This presents an obstacle to a
sound comparison of present and past damage. Fig-
ure 11 shows examples of this fact, based on the
epicentral areas of three large recent earthquakes.

reveal
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6. Conclusions

The main goal of this paper was to introduce the
ESI intensity scale, based on environmental effects of
earthquakes (EEEs), to the widest possible audience.
The key message is that, despite the advent of mag-
nitude, earthquake intensity remains a significant
seismic parameter for reliable SHA, especially when
EEEs are properly taken into account. In fact, this
study shows that epicentral intensity may be under-
estimated by two or even more degrees if the

Pure Appl. Geophys.

Figure 11
Top Photograph shot from a helicopter in the epicentral zone of the
1957 Muya earthquake in 2005, i.e., 48 years after it occurred. The
fault trace is still clearly visible, and anyone today can verify its
parameters. Middle Google Earth image captured in 2010 of the
epicentral area of the 1988 Spitak, Armenia, earthquake (22 years
after). The two villages in the image were totally destroyed, and
intensity 10 was assessed there. Today, it is no longer possible to
check any damage-related feature, because the villages have been
rebuilt and repaired. Bottom The same is true, for opposite reasons,
in the epicentral area of the 1995 Neftegorsk earthquake in northern
Sakhalin Island, as evident in the Google Earth image of 2010
(15 years after the event). Only a portion of the portrayed building
compound collapsed, and intensity 8-9 was assessed for the town at
that time. But Neftegorsk was completely abandoned, and this was
the reason for further heavy destruction. If someone were to
address the 1988 Spitak and the 1995 Neftegorsk earthquakes
today, the wrong impression would be that Neftegorsk suffered
much heavier damage than the villages in the Spitak epicentral area

contribution of environmental effects is ignored.
Table 2 demonstrates this is a generalized problem of
worldwide proportions. The case studies presented
earlier have served to substantiate this conclusion.

When the epicentral area is located in a densely
populated region and detailed information on build-
ing damage is available, the ESI scale is to be used in
conjunction with one of the “traditional” scales
(MSK, MM, EMS). In fact, it must always be borne
in mind that intensity in a specific locality results
from an informed assessment based on three cate-
gories of effects: on human, infrastructures (built
environment) and natural environment. Only in such
a case does the ESI, which has been developed from
the MMI and MSK scales, provide an intensity
assessment that is consistent with, and complements
the results of, the other scales.

The use of EEEs offers the possibility of com-
paring earthquake intensities worldwide. In fact,
EEEs are uninfluenced by cultural and technological
aspects, which may differ significantly from region to
region. Moreover, earthquake-prone areas can be
located in sparsely or even completely unpopulated
regions, where only the effects on the natural envi-
ronment might be observable. In such a case, ESI
becomes the only tool able to calibrate earthquake
intensity. The same holds true for events with
macroseismic intensity of X and above, where, with
most structures being ruined, all the damage-based
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intensities tend to saturate. Thus, any assessment
based on such damage is biased. Conversely, the size
of some EEEs continues to be proportional to the
intensity of the earthquake.

It is important to bear in mind that the natural
environment may have a much longer memory than
the built one. As the impact of an earthquake on a
man-made environment depends on the distribution
of urbanized areas, it is difficult to compare two
seismic events that occurred in the same area, but at
very different times. Conversely, this can be
achieved on the basis of documented EEEs. This
approach extends the time coverage of earthquake
catalogues to prehistoric times. Local evidence of
surface faulting and the size of secondary effects
(i.e., liquefaction effects, landslide-dammed lakes,
etc.) pertaining to prehistoric events can be evalu-
ated via detailed paleoseismological investigations
in natural or artificial exposures. Thus, the ESI scale
allows intensity to be estimated also for paleo-
earthquakes.

The ESI scale provides a very convenient guide-
line for the survey of EEEs in earthquake-stricken
areas, ensuring their complete and homogeneous
analysis. Its application, continuously improving the
EEE catalogue, would consequently also improve the
correlations cited above relating magnitude to surface
faulting or other geological parameters, which are
significantly affected by the inhomogeneity of avail-
able data, rarely documented so far with the same
criteria and quality.

In conclusion, the factoring in of the geological
and geomorphological effects of earthquakes allows
the most comprehensive earthquake risk scenario to
be built, a crucial need for all stakeholders, especially
designers, geotechnical engineers, hazard analysts,
regulators, civil protection agencies and insurers, as
well as the general population.
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