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Abstract—In this paper, I present a new depth estimation

method based on the ratio of gravity and full tensor gradient

invariant. The new approach is designed to be stably and quickly

interpret the gravity data and full tensor gravity data. First, we

deduce two simple calculation equations using the particular

models (sphere and horizontal cylinder model). The depths of the

particular sources can be directly calculated using the simple

equations. However, a shape factor similar to the structural index of

Euler deconvolution is contained in the simple calculation equa-

tions. It directly relates to the accuracy of calculation depth. To

calculate the depth of source accurately, the shape factor must be

determined first. Thus, the application of the simple equations is

very circumscribed. To overcome the limitation, I calculate the

ratio of the simple equations of different altitudes to improve the

original algorithm. It effectively eliminates the influence of the

shape factor. I use different model to test the method and apply the

method on real gravity data. It demonstrates that the new approach

is stable, simple and effective depth estimation method. The new

improved approach not only can be used to calculate the sphere and

cylinder model depth, but also can be used to calculate other

general models. It is a very useful tool to calculate the depth of

gravity bodies.

Key words: Gravity anomaly, full tensor gradient invariant,

depth estimation.

1. Introduction

Gravity data capture the lateral density variations

in the Earth. The advantage of the gravity data is its

lateral resolution. However, a complete quantitative

interpretation of gravity data usually needs three

information: the depth, the dimension (the horizontal

position) and the physical property. In many

researches and applications, the depth is often a more

important parameter needed to be estimated. There-

fore, many depth estimation methods have been

introduced, such as Euler deconvolution (THOMPSON

1982; STAVREV and REID 2007, 2010), Naudy method

(NAUDY 1971), Werner deconvolution (HARTMAN

et al. 1971; HANSEN 2005), analytic signal-based

methods (NABIGHIAN 1972; ROEST et al. 1992; BASTANI

and PEDERSEN 2001), local wave-number methods

(THURSTON and SMITH 1997; KEATING 2009), and

wavelets methods (COOPER 2006). These methods

have been proved very useful and effective in gravity

data depth interpretation.

In the ongoing development of full tensor

gravity gradiometry (FTG) technique, more and

more FTG data are routinely used in exploration

programs to evaluate and explore geological struc-

tures. The FTG data have many advantages so that

more and more researchers began to propose new

interpretation method for FTG data (HAYES et al.

2008; CEVALLOS et al. 2013; OLIVEIRA and BARBOSA

2013). Many methods for FTG data are evolved

from the methods for gravity data. Simultaneously,

the gradient components are widely used in inter-

pretation of gravity data. For example, the popular

approach of Euler deconvolution method was orig-

inally implemented using the three gradient

components of vertical direction. Then, it was

developed into the gradient tensor form to interpret

gravity and FTG data by (ZHANG et al. 2000). The

same as Euler deconvolution method, Tilt-depth

method also was modified to interpret FTG data

(SALEM et al. 2013). Analytic signal method for

FTG data was established (BEIKI 2010). Meanwhile,

these new proposed methods displayed the advan-

tages of using multi-components of FTG (measured

or calculated) to interpret gravity data and not FTG

data.
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The full tensor gradient invariants are important

tool to interpret FTG data. PEDERSEN and RASMUSSEN

(1990) proposed three invariants I0, I1 and I2, and

discussed the advantages of the invariants in gravity

and FTG data interpretation. MATARAGIO and KIELEY

(2009) used various invariants to interpret the FTG

data. ORUÇ (2010) has established a depth estimation

method from FTG invariants and vertical component.

BEIKI and PEDERSEN (2010) used eigenvector of gra-

dient tensor to locate geologic bodies. All of these

methods can display the advantages of the invariants

in gravity and FTG data interpretation.

In this paper, I propose a new depth estimation

method based on the ratio of gravity and FTG

invariant. The method is first established based on the

simple sphere and cylinder model, and then it is

improved using different altitudes data. Thus, the

influence of shape factor that is related to the model

shape is discarded. The new method is tested using

various model data and real measured gravity data.

2. Theory

2.1. Mathematical Background of FTG

and the Invariants

The gravity gradient tensor C can be defined as:

C ¼
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U is the gravitational potential, and it satisfies

Laplace’s equation outside of source. r2UðrÞ ¼ 0,

where g is the gravity vector.

PEDERSEN and RASMUSSEN (1990) have introduced

the tree invariants for the potential field gradient

tensors, which can be defined as follows:

I0 ¼ traceðCÞ ¼ gxx þ gyy þ gzz ¼ 0 ð2Þ

I1 ¼ gxxgyy þ gyygzz þ gxxgzz � g2
xy � g2

yz � g2
xz ð3Þ

and

I2 ¼ detðCÞ
¼ gxxðgyygzz � g2

yzÞ þ gxyðgyzgxz � gxy � gzzÞ
þ gxzðgxygyz � gxzgyyÞ ð4Þ

The invariants can be used to enhance and detect the

edges and structures of geologic sources. They were

widely used in potential field data interpretation.

2.2. Depth Estimation of Simple Models

2.2.1 The Point Source Model (Sphere Model)

PEDERSEN and RASMUSSEN (1990) have introduced the

gravity tensor equation of point source as follows:

C ¼ �GM

R3

�1þ 3n2 3ng 3nf
3ng �1þ 3g2 3gf
3nf 3gf �1þ 3f2

2
4

3
5

ð5Þ

where ðn; g; fÞ ¼ ðx; y; zÞ=R, then the invariants can

be denoted as:

I1 ¼ �3
GM

R3

� �2

ð6Þ

I2 ¼ DetðCÞ ¼ �2
GM

R3

� �3

ð7Þ

The gravity anomaly of sphere model can be calcu-

lated by:

gz ¼ GM
h

R3
ð8Þ

where G is the gravitational constant, M is the mass,

R is the radius and h is the depth. Then, we can obtain

the depth calculation equation using Eqs. (6) and (8).

h ¼
ffiffiffi
3

p
gzffiffiffiffiffiffiffiffi

�I1
p
����

���� ð9Þ

2.2.2 Line of Monopoles (Horizontal Cylinder

Model)

As above, the gradient tensor components of hori-

zontal cylinder can be obtained:

C ¼ �GM

R2

1� 2n2 �2nf
�2nf 1� 2f2

� �
ð10Þ

where ðg; fÞ ¼ ðy; zÞ=R, and the invariant can be

denoted as:

I1 ¼ � 2GM

R2

� �2

ð11Þ
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As we all know, the gravity anomaly of horizontal

cylinder can be denoted as:

gz ¼ 2GM
h

R2
ð12Þ

As mentioned above, where G, M, h, and R denote the

gravitational constant, mass, radius and depth, in turn.

Therefore, we can get the depth calculation equation

as follows:

h ¼ gzffiffiffiffiffiffiffiffi
�I1

p
����

���� ð13Þ

Equations (9) and (13) have the similar form, and we

rewrite them as a uniform form as follows:

h ¼
ffiffiffiffi
N

p
gzffiffiffiffiffiffiffiffi

�I1
p
����

���� ð14Þ

where N is the shape factor, it is a parameter related

to the shape of model. For the simple model or

geologic bodies, the depth can be directly calculated

using Eqs. (9) and (13).

2.3. Improved Theory and the Workflow

2.3.1 Eliminating the Shape Factor

and Automatically Obtaining the Depth

If a priori information concerning the source geom-

etry has been known, as discussed in the preceding

section, it is easy to calculate depth of geologic

source. Equation (14) contains a shape factor. It

means that the depth calculation result would be

influenced by the shape factor. Different models need

different shape factor that can result in different depth

result. However, in the practical applied, the shape

factor needs to be determined before depth calcula-

tion. It is difficult to determine the shape factor.

Therefore, to discard the influence of shape factor is a

preferable way. Given this, I deduce a new automatic

calculation method without the shape factor.

In Eq. (14), gz and I1 are the gravity anomaly and

the full tensor invariant, respectively. They are

measured on ground (or on an original surface).

The buried depth of geologic body is h. If the

measured surface at another height is t, i.e., the

distance between geologic body and the measured

surface is h ? t. We can get the gravity anomaly g0
z

and the invariant I01 of the measured surface t. The

values can be obtained by upward continuation or can

be directly obtained by airborne measure. Therefore,

the distance from the source to the measure surface

can be denoted as:

h þ t ¼
ffiffiffiffi
N

p
g0

zffiffiffiffiffiffiffiffi
�I01

p
�����

����� ð15Þ

Combining Eqs. (14) and (15), we can get:

h

h þ t
¼
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p
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Assuming GI ¼ gz=
ffiffiffiffiffiffi
�I1

pj j
g0z=

ffiffiffiffiffiffi
�I0

1

pj j, we can eliminate the

influence of N, and get the depth of geologic body:

h ¼ GI � tj j
1� GIj j ð17Þ

It is important to note, when the denominator equals

zero, the singular point needs to be eliminated in

calculation process. In addition, during the calcula-

tion, the altitude of upward continuation needs to be

limited in a certain range. If the altitude is too small,

the difference of the data of two altitudes cannot be

displayed. However, if the altitude is too big, some of

the detailed information of original data would be

eliminated and the background effect would be

increased. Therefore, the altitude of upward contin-

uation is generally given as 1–3 sampling interval.

2.3.2 The Procedure of the New Method

In this method, the total horizontal derivative (THD)

is adopted to outline the edge and confirm the

location of geologic source. The maximum points are

extracted using the algorithm introduced by BLAKELY

and SIMPSON (1986). Therefore, the procedure of this

new approach is shown in Fig. 1

At first, the gravity data or FTG data of ground

need to be obtained. It is well known that gravity data

can be transformed into FTG data and vice versa

(LI 2001; SANCHEZ et al. 2005; DRANSFIELD 2010).

Then, we need to calculate the invariant I1 and

determine the center position of geologic source.

Furthermore, the gravity and FTG data of another

altitude t can be calculated by the upward
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continuation. Because the upward continuation is

similar to the low-pass filter, the upward continuation

of FTG data can be implemented using the noise

reduction procedures (PILKINGTON and SHAMSIPOUR

2014). The authors pointed out the least-squares

estimation of common gravity potential from which

each component can be subsequently recalculated

(LI 2001; SANCHEZ et al. 2005; DRANSFIELD 2010).

Any residual noise effects in the data that are not

Laplacian will be removed with this procedure.

Conversely, any noise components that do satisfy

Laplace’s equation will remain unaffected. Alterna-

tively, there are the corresponding airborne data, and

the different altitudes data need to be interpolated to a

uniform grid. Then, we only need to extract the

gravity and I1 value of different height, and use

Eq. (17) to calculate the depth.

Meanwhile, from the workflow, one can see that

the depth of geologic bodies can be obtained using

different altitudes data. FLORIO et al. (2014) have

proved that upward continuation is an effect tool to

improve the accuracy of depth estimation. Therefore,

if the original data are seriously interfered by noise,

we can eliminate the noise by upward continuation,

and then calculate the depth using the workflow. The

depth of source equal to the calculated result

subtracts the altitude of upward continuation.

3. Synthetic Model Tests

3.1. Simple Model Without Random Noise

To test the reliability and accuracy of the new

method, I first present sphere and horizontal cylinder

models to calculate depth, respectively. The forward

calculated formulation was given by BLAKELY

(1995).

Model 1 contains two different spheres. The

parameters of the sphere model are: the radius

R1 = 20 m, R2 = 50 m, the depths h1 = 50 m,

h2 = 150 m, all of the density contrasts are 1 g/

cm3. The sampling interval is 10 m. Figure 2a shows

the gravity anomaly of the model, and Fig. 2b shows

the I1 of the gravity data. Meanwhile, the total

horizontal derivative is calculated to locate the

positions of the spheres (Fig. 2c, d).

I first calculate the sphere depth using Eq. (9)

with the shape factor 3, and the depth result is shown

in Fig. 2c. It can be seen that the result corresponds

with the real depth of sphere. This demonstrates that

if the shape factor can be obtained as a prior

parameter, the depth can be calculated accurately.

Figure 2d shows the depth result calculated using

Eq. (17). The upward continuation height is 10 m.

From the result, we can see that the depths

Figure 1
The calculation workflow of the depth estimation method
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correspond with Fig. 2c and they agree well with the

real depth of spheres. It is thus clear that the

improved approach is effective in depth calculation.

For the 2-D situation, I establish horizontal cylinder

model to test the approach. The parameters of the

model are: the radius R1 = 10 m, R2 = 20 m, the

depths h1 = 100 m, h2 = 200 m, and the density

contrast is 1 g/cm3. The sampling interval is 10 m. The

same as above, I use the two methods to calculate

depths of the cylinders. The results are shown in Fig. 3.

Figure 3a is the gravity anomaly of the two cylinders.

I1 is calculated and shown in Fig. 3b. The positions of

the cylinders can be produced by the maximum of the

THD. Then, I calculate the depth by Eq. (14) with the

shape factor 1, and the result is shown in Fig. 3c.

Finally, I calculate the depth using Eq. (17) with the

upward continuation altitudes 10 m. The result is

shown in Fig. 3d. It is corresponding with the Fig. 3c.

Both of the results correspondwell with the real depths.

It demonstrates that both of the method can obtain the

depth result of geologic source.

3.2. Complex Model with Random Noise

To further study the practicability of the new

approach, I use a complex model composed of sphere

(body 1), vertical prism (body 2) and vertical cylinder

(body 3), and their horizontal edge positions are shown

by dashed lines. The buried depth of vertical prism is

200–800 m, and the vertical cylinder is 400–800 m.

The center depth of sphere is 400 m. All of the density

contrasts are 1 g/cm3. I add the 0.5 % of the maximum

amplitudeGaussian noise, and the anomaly is shown in

Fig. 4a. The invariant I1 is shown in Fig. 4b. For the

noise data, it is difficult to accurately calculate the

depth of geologic source (FLORIO et al. 2014). Mean-

while, it is inaccurate to obtain the positions of models

using the THDwith noise (Fig. 4c). To obtain the depth

Figure 2
a Gravity anomaly of model 1. b The full tensor invariant I1. c The total horizontal derivative and depth calculated using Eq. (9) with the

shape factor equal to 3, where the white and black dots denote depth. d The total horizontal derivative and depth calculated using Eq. (17)

without the shape factor, where the white and black dots denote depth
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accurately, the upward continuation is calculated first

(the altitude of upward continuation is 30 m). Then, the

positions of the model can be obtained using the

maximum values of THD (Fig. 4d). The depth is

calculated using the workflow, and the result is shown

in Fig. 4d. From the result, it can be seen that the

calculated depth mainly displays the center depth of

geologic sources. All of the models’ depths agree with

the real buried depths. It demonstrates that the new

approach is utility for depth estimation. The upward

continuation can be used to denoise and improve the

accurate of this approach.

3.3. Test the Noise Influence

To further capture the noise influence of the new

approach, I use a 2D model that consists of two dikes,

and Gaussian random noise with different amplitude

is added. The top depths of two dikes are 15 and

20 m, respectively. The density contrast of both is

1 g/cm3. The sample interval is 2 m. First, I directly

calculate the depth of the model without noise using

the workflow, and the result is shown in Fig. 5c. The

calculated depth agrees with the real depth. Then,

Gaussian random noises with 0 mean and standard

deviation of 1, which are equal to 2 % of the

maximum data amplitude, have been added in the

gravity data (Fig. 6a). To obtain the maximum value

of THD conveniently, upward continuation data at 3

sampling intervals (i.e., 6 m) have been obtained first,

and then the depth can be calculated using the

workflow. The result is shown in Fig. 6c. A more

serious Gaussian random noise is added in the data

(the amplitude is 5 % of the maximum data ampli-

tude) (Fig. 7a), and to filter the noise, higher altitude

(5 sampling intervals) is used in this test. The depth

result is shown in Fig. 7c. It can be seen that with the

increase of noise amplitude, the error of depth result

is increased as well. However, the results still can be

used to denote the depth range of geologic source. It

demonstrates that the upward continuation is a useful

way to reduce the noise influence in this method.

4. Real Data Examples

To demonstrate the application effect, the new

method is applied to gravity data from Texas, which

Figure 3
a Gravity anomaly of model 2. b The full tensor invariant I1. c The depth calculated using Eq. (14) with the shape factor equal to 1, where the

asterisks denote the depth. d The depth calculated using Eq. (17) without the shape factor, where the asterisks denote the depth
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Figure 4
a Gravity anomaly of model 3, the amplitude of Gaussian noise equal to 0.5 % of the maximum amplitude of the data. b The full tensor

invariant I1 of the noised data. c The THD of the noised data without upward continuation. d The THD of the noised data with 30 m upward

continuation and the depth calculated using Eq. (17)

Figure 5
a Gravity anomaly of the dyke model. b The full tensor invariant I1. c The depth calculated using Eq. (17) without the shape factor, where the

asterisks denote the depth
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Figure 6
a Gravity anomaly of the dyke model with the amplitude is 2 % of the maximum data amplitude. b The full tensor invariant I1 of the noised

data. c The depth calculated using Eq. (17) without the shape factor, where the asterisks denote the depth

Figure 7
a Gravity anomaly of the dyke model with the amplitude is 5 % of the maximum data amplitude. b The full tensor invariant I1 of the noised

data. c The depth calculated using Eq. (17) without the shape factor, where the asterisks denote the depth

Figure 8
a The residual gravity anomaly of research area. b The full tensor invariant I1. c The THD of the data and the depth calculated using Eq. (17)
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was digitized from a residual Bouguer anomaly map

(SHAW and AGARWAL 1997b, c). The interval of the

grid data is 500 m, and the Bouguer anomaly map is

shown in Fig. 8a. Several authors used different

methods to interpret this Bouguer anomaly. More-

over, there was an array of seismic and drilling

information to verify our conclusion.

Figure 8b shows the invariant I1, and I calculated

the THD to use its maximum to confirm the positions

of geologic bodies. Then, I calculate the depth of

geologic sources using the above workflow. The

result is shown in Fig. 8c. The depth is about

4.7–4.8 km. I compare the result with other author’s

research (Table 1), it displays that the new calculated

result is reasonable and accuracy. It demonstrates that

the present approach is very useful to interpret the

gravity data.

5. Conclusions

Full tensor invariants play an important role in

gravity and FTG data interpretation. The invariants

can be used to delineate the edges of geologic sources

and to outline the feature of geological structures.

More importantly, they have many advantages in data

interpretation for the character that they are invariant

with the axis rotation. In this paper, I proposed a new

simple depth estimation method using the FTG

invariant. The new method can calculate the depth of

geologic source without any prior information. The

depth of geologic source can be directly calculated

using different altitudes data. Model test demon-

strated that this new method is accurate in the sphere

and horizontal cylinder depth estimation. In addition,

for the other general model, the depth also can be

obtained by this method. It is worth mentioning that

the new method can decrease the noise influence by

the upward continuation. Finally, the method was

applied to a real gravity data. The calculated result

agreed well with the previous researches. All of the

results demonstrated that the new method is accurate

and effective in depth estimation. The proposed

technique can be routinely applied to regional

interpretation.
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