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Abstract—Recent advances in multi-temporal Differential

Synthetic Aperture Radar (SAR) Interferometry (DInSAR) have

greatly improved our capability to monitor geological processes.

Ground motion studies using DInSAR require both the availability

of good quality input data and rigorous approaches to exploit the

retrieved Time Series (TS) at their full potential. In this work we

present a methodology for DInSAR TS analysis, with particular

focus on landslides and subsidence phenomena. The proposed

methodology consists of three main steps: (1) pre-processing, i.e.,

assessment of a SAR Dataset Quality Index (SDQI) (2) post-pro-

cessing, i.e., application of empirical/stochastic methods to

improve the TS quality, and (3) trend analysis, i.e., comparative

implementation of methodologies for automatic TS analysis. Tests

were carried out on TS datasets retrieved from processing of SAR

imagery acquired by different radar sensors (i.e., ERS-1/2 SAR,

RADARSAT-1, ENVISAT ASAR, ALOS PALSAR, TerraSAR-X,

COSMO-SkyMed) using advanced DInSAR techniques (i.e.,

SqueeSARTM, PSInSARTM, SPN and SBAS). The obtained values

of SDQI are discussed against the technical parameters of each data

stack (e.g., radar band, number of SAR scenes, temporal coverage,

revisiting time), the retrieved coverage of the DInSAR results, and

the constraints related to the characterization of the investigated

geological processes. Empirical and stochastic approaches were

used to demonstrate how the quality of the TS can be improved

after the SAR processing, and examples are discussed to mitigate

phase unwrapping errors, and remove regional trends, noise and

anomalies. Performance assessment of recently developed methods

of trend analysis (i.e., PS-Time, Deviation Index and velocity TS)

was conducted on two selected study areas in Northern Italy af-

fected by land subsidence and landslides. Results show that the

automatic detection of motion trends enhances the interpretation of

DInSAR data, since it provides an objective picture of the defor-

mation behaviour recorded through TS and therefore contributes to

the understanding of the on-going geological processes.

Key words: Persistent scatterers, small baseline subset, SAR

interferometry, time series analysis, quality assessment, subsi-

dence, landslides.

Abbreviations

SDQI SAR dataset quality index

TS Time series

NI Number of images Index

TI Time Index

MTBI Mean temporal baseline index

MSBI Mean spatial baseline index

SRI Spatial resolution index

1. Introduction

The spatial and temporal monitoring of geological

processes, such as subsidence, swelling/shrinkage of

soils, or landslides, is crucial to understand their

mechanisms, and therefore activate procedures of

early warning and deploy suitable risk mitigation

measures. In this respect, among the remote sensing
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technologies used for landslide hazard assessment

(METTERNICHT et al. 2005), space-borne synthetic

aperture radar (SAR) provides data from low to very

high spatial resolution (smaller than one metre), day

and night and all weather condition images with

archives that, dependently on the space mission, can

offer a high degree of coverage over Earth’s surface.

These unique imaging capabilities, thanks to recent

advances in sensor technology and processing algo-

rithms, boosted the use of SAR data for a wide range

of geosciences and environmental applications.

Among these, mapping and monitoring of natural

hazards have greatly benefited in the last decade from

the development of advanced multi-temporal Differ-

ential SAR Interferometry (DInSAR) techniques (e.g.

PSInSARTM by FERRETTI et al. 2001; SqueeSARTM

by FERRETTI et al. 2011; SPN by ARNAUD et al. 2003,

SBAS by BERARDINO et al. 2002; CPT by BLANCO-

SANCHEZ et al. 2008; MT-UnSAR by HOOPER 2008,

ISBAS by SOWTER et al. 2013; PSIG - Cousin PSs

(CPSs) by DEVANTHÉRY et al. 2014). In particular,

such Persistent Scatterer Interferometry (PSI) tech-

niques were used for updating landslide inventories

(e.g. COLESANTI AND WASOWSKY, 2006; FARINA et al.

2006; MEISINA et al. 2008; CHEN et al. 2010; BIANCHINI

et al. 2012; Bovenga et al. 2012), as well as for de-

tecting and mapping land subsidence (e.g. SOUSA

et al. 2010; TOMAS et al. 2010, RASPINI et al. 2014;

TEATINI et al. 2012).

So far, most deformation studies using DInSAR

data were focused on the spatial analysis of ground

movements using mainly the average rates of the

displacements. Only in recent years, thanks to the

improvement in processing techniques and the pos-

sibility to infer non-linear ground motions, it was also

possible to take advantage of the capability of

Figure 1
Conceptual flow-chart of DInSAR time series analysis
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DInSAR techniques in describing the long-term

evolution of natural processes (CALÒ et al. 2014).

Furthermore, novel works were conducted in order to

identify different trends in Time Series (TS) and to

detect different phases of temporal evolution of a

natural process: acceleration and deceleration, sea-

sonality, sudden change in motion, trend inversion

(MILONE and SCEPI, 2011; CIGNA et al. 2012; BERTI

et al. 2013).

Aim of this work is to extract the best out of the

information contained in DInSAR data, in order to

properly characterize the temporal evolution of

ground displacements and improve the interpretation

of geological processes. For the purpose, we propose

a methodology for the analysis, and improvement, of

TS produced by PSI processing techniques, with

particular focus on landslides and subsidence phe-

nomena. Our procedure, addressed to DInSAR users

interested to fully exploit the potential of TS without

working on the development of DInSAR processing

chains, is composed by three main steps (see flow-

chart in Fig. 1):

1. Pre-processing: evaluation of a SAR Dataset

Quality Index (SDQI) that describes the expected

quality of DInSAR products prior to the SAR

image processing.

2. Post-processing: application of empirical/stochas-

tic methods to improve the quality of already

processed TS data.

3. Trend analysis: application and comparison of

different approaches of TS trend analysis.

We applied this methodology to SAR data col-

lected by different SAR sensors over different test

areas, and processed with different DInSAR tech-

niques as summarised in Table 1. We purposely

selected these heterogeneous datasets to prove the

effectiveness of the methodology in a wide range of

application contexts.

2. Pre-Processing: SAR Dataset Quality Index

(SDQI)

2.1. SDQI: Input Parameters and Evaluation

Products of advanced DInSAR techniques, i.e.,

mean deformation velocity maps and associated TS,

can be effectively exploited for hazard and risk

assessment, providing valuable information on the

spatial and temporal evolution of deformation phe-

nomena such us landslides and ground subsidence.

This information can be complemented with ground-

based monitoring data (e.g. inclinometers, exten-

someters, piezometers, and GPS) to deeply

understand the long-term kinematical behaviour of

geological phenomena, and to investigate the possible

triggering factors of the detected ground motion. In

this context, it can be very useful for end-users, such

as surveyors, geologists, geoscientists, or land use

planners, to assess the suitability of deformation TS

for this kind of analysis.

To this purpose, we propose an innovative SAR

Dataset Quality Index that provides a quantitative

assessment of the impact that ‘‘decorrelation’’

Table 1

Summary of DInSAR datasets used in this work

ID Satellite Band Study area Area

(km2)

Type of

processing

Temporal

SPAN

No of

images

Revisiting

time (day)

1 ERS-1/2 C NW Italy (5 datasets) [5000 PSInSARTM 1995–2001 60/80 35

2 RADARSAT-1 C NW Italy (5 datasets) [5000 SqueeSARTM 2003–2010 80/100 24

3 ERS-1/2 C Valle de Tena, Spain 33 SPN 1995–2001 29 35

4 ENVISAT ASAR C Valle de Tena, Spain 33 SPN 2003–2007 37 35

5 ALOS PALSAR L Valle de Tena, Spain 33 SPN 2006–2010 12 46

6 TerraSAR-X X Valle de Tena, Spain 33 SPN 05/2008–10/2008 11 11

7 ERS-1/2, ENVISAT C Umbria, Central Italy 1200 SBAS 1992–2010 91/37 35

8 COSMO-SkyMed X Umbria, Central Italy 300 SBAS 12/2009–02/2012 39 4/16

9 TerraSAR-X X Umbria, Central Italy 216 SBAS 07/2011–01/2013 38 11

10 ENVISAT C Daunia Apennines, Southern Italy 2200 SBAS 2003–2010 37 35

11 TerraSAR-X X Daunia Apennines, Southern Italy 1500 SBAS 01/2010–07/2012 24 11
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phenomena, size of the dataset, and sensor wave-

length exert on the performance of the multi-temporal

DInSAR processing and the generation of ground

motion TS. This index refers to the capability of the

available SAR datasets to be effectively used to

generate deformation velocity maps and associated

TS, with a density of measure points suitable to carry

out a comprehensive investigation of the study area.

SDQI can be easily implemented by users not

necessarily expert in SAR processing, to assess the

expected quality of the DInSAR results against the

coverage or number of detectable measurement

points.

Furthermore, when several SAR datasets are

available for the same study area, the SDQI can be

used to effectively select the most suitable dataset for

the analysis of the investigated deformation phe-

nomenon. In this way, the SDQI supports the design

of the DInSAR monitoring activities.

The SDQI is calculated as weighted average of

five indexes that account for the main parameters

impacting on the number of coherent points de-

tectable through a DInSAR processing:

Where:

• NI (Number of images Index) is associated to the

number of acquisitions belonging to the selected

SAR dataset;

• TI (Time Index) refers to the length of the whole

time period spanned by the SAR dataset;

• MTBI (Mean Temporal Baseline Index) is associ-

ated to the average time interval between

consecutive scenes;

• MSBI (Mean Spatial Baseline Index) refers to the

average spatial baseline of the interferometric

pairs;

• SRI (Spatial Resolution Index) is associated to the

ground range resolution of the SAR scenes;

• and wNI, wTI, wMTBI, wMSBI, wSRI are the respective

weights.

Each index, below described in detail, is dimen-

sionless, ranges between 0 and 1 and is properly

weighted according to the values reported in Table 2.

These weights are defined based on our experience

related to analyses of phenomena with maximum

displacements of the order of few centimetres per

year. However, in case of geological processes

characterized by high deformation rates (i.e., exceed-

ing 5 centimetres per year), the weights can be easily

adapted, in order to make the proposed methodology

flexible with respect to the investigated processes,

without modifying the calculation of the single

indexes. In such a case, the MTBI weight should be

properly increased to 3 or 4, in order to make more

significant the role of the temporal baseline with

respect to other parameters. At the same time if we

are not interested in the long-term behaviour of the

deformation process, e.g., when we a priori know it is

characterized by quasi-linear deformation trend, we

can opportunely decrease the weight of Time Index.

Moreover, if not all the parameters can be estimated,

the SDQI assessment can be performed by setting

equal to zero the weights corresponding to the

unavailable parameters. For instance the Mean Base-

line Spatial Index is not always accessible before

processing the SAR dataset; therefore, in such a case,

the SDQI could be based on 4 parameters and its

reliability will not be affected.

Table 2

Weights assigned to each parameter of SAR Dataset Quality Index

(SDQI)

Parameters Weight Weight value

Number of images (NI) WNI 2

Mean temporal baseline index (MTBI) WMTBI 2

Time Index (TI) WTI 1

Mean spatial baseline index (MSBI) WSBI 1

Spatial resolution index (SRI) WSRI 1

SDQI ¼ ðNI � wNI þ TI � wTI þ MTBI � wMTBI þ MSBI � wMSBI þ SRI � wSRIÞ
wNI þ wTI þ wMTBI þ wMSBI þ wSRI

ð1Þ
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The estimated SDQI value can be converted in a

qualitative evaluation (see Table 3), via the identifi-

cation of the following SDQI classes: Very Low (if

SDQI B 0.25), Low (if 0.25\ SDQI B 0.45), Medi-

um (if 0.45\SDQI B 0.65), High (if

0.65\SDQI B 0.75), and Very High (if

SDQI[ 0.75).

1. Number of Images Index (NI): This index

(Table 4) assesses the impact of the number of

available SAR images on the achievable coherent

point density. Multi-temporal DInSAR processing

produces more spatially dense and accurate results

when applied to large datasets (CASU et al. 2006).

Accordingly, this index increases with the number

of acquisitions belonging to the SAR dataset. It is

worth noting that a minimum number of SAR

acquisitions, about 20 (e.g., MARINKOVIC et al.

2005; Crosetto and Cuevas 2011), opportunely

distributed over time, should be considered to

improve removal of atmospheric phase compo-

nents from the stack of interferograms and

generate reliable ground motion series. We as-

sume that when the number of scenes composing

the SAR dataset is lower than 20, this index is

lower than 0.5, and in this case DInSAR process-

ing could be strongly affected by noise effects

independently from the other indexes.

2. Time Index (TI): This index (Table 5) takes into

account the time interval covered by the SAR

dataset. In particular, in order to properly estimate

and filter out seasonal trends (mostly due to

atmospheric contributions), a time period suffi-

ciently long should be considered. In addition,

long deformation TS allow a better characteriza-

tion of the temporal behaviour of the geological

processes. For instance, to analyse swelling/

shrinkage phenomena or landslides, TS should

cover more than one seasonal cycle ([1 year), and

ideally be extended to several years to include

both dry and wet years. However, long time period

DInSAR analyses are affected by temporal

‘‘decorrelation’’ phenomena that reduce the num-

ber of coherent points (BONANO et al. 2012).

Accordingly, TI takes into account these two

opposite effects, reaching the maximum value for

5–8 year long analyses and decreasing for longer

periods of investigation.

3. Mean Temporal Baseline Index (MTBI): This

index (Table 6) quantitatively assesses the impact

of the mean temporal baseline (MTB) between

consecutive SAR acquisitions, according to the

following equation:

Table 3

SAR Dataset Quality Index (SDQI)

Value SDQI Condition

Very low B0.25 Low confidence in TS and VLOS

Low 0.25–0.45 Use of average VLOS only

Medium 0.45–0.65 TS are likely to be noisy

High 0.65–0.75 High confidence in TS and VLOS

Very high [0.75 TS are more likely to fit the expected trend

Table 4

Number of images Index (NI)

Number of images NI

\10 0

10–20 0.25

20–30 0.5

30–40 0.75

[40 1

Table 5

Time Index (TI)

Temporal span (years) TI

\0.5 0

0.5–1 0.25

1–2 0.5

2–5 0.75

5–8 1

8–12 0.75

[12 0.5

Table 6

Mean Temporal Baseline Index (MTBI)

Mean temporal baseline MTBI

L Band (Days) C Band (Days) X Band (Days)

[360 [120 [60 0

180–360 90–120 45–60 0.25

90–180 60–90 30–45 0.5

60–90 20–60 15–30 0.75

\60 \20 \15 1
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MTB ¼

PN�1

i¼1

ðTi � Ti�1Þ

N � 1
¼ T

N � 1
ð2Þ

where

• N is the number of available SAR images acquired

at epochs,

• T is the whole temporal interval of the analysis,

expressed in days.

MTBI is based on the average temporal baseline,

in order to take in account the effect of very long

temporal baselines that can occur in a very irregular

temporal sampling.

MTBI considers that the effect of temporal

‘‘decorrelation’’ on different bands (L-, C-, and

X-band) increases with decreasing wavelength (ROC-

CA 2007). Moreover, since larger wavelengths allow

larger deformations to be estimated, lower values of

the mean temporal baseline should be considered

with C- and X-band SAR datasets with respect to

L-band ones in order to limit phase unwrapping

errors.

4. Mean Spatial Baseline Index (MSBI): This index

(Table 7) takes into account the geometrical

‘‘decorrelation’’ effect, which depends on the

critical perpendicular baseline computed accord-

ing to the following equation (Franceschetti and

Lanari 1999):

Bperpcritical ¼
kr0

2Dr
ð3Þ

where:

• k is the sensor wavelength;

• r0 is the sensor-target distance;

• and Dr is the ground range resolution.

MSBI values (Table 7) were set on the basis of

the critical spatial baseline for each band, considering

the C-band ERS-1/2 case as a reference (ground

range resolution of 20 m and a sensor-target distance

of 800 km). In addition, the worst case (MSBI equal

to 0) for the C-band has been defined as about half of

its Bperpcritical value (cf. Eq. 3). The L- and X-band

values have been retrieved by scaling the C-band

spatial baseline values with respect to wavelengths. It

is worth noting that the impact of the ground range

resolution on the critical baseline will be considered

within the SRI described below.

By considering N SAR images, characterized by

baseline values computed with respect to an acquisition

chosen as reference, the mean spatial baseline (MSB) is

calculated according to the following equation:

MSB ¼ Bmax � Bmin

N � 1
¼ B

N � 1
ð4Þ

where Bmax, Bmin and B represent the maximum

perpendicular baseline, minimum perpendicular

baseline, and the orbital tube of the SAR dataset,

respectively.

5. Spatial Resolution Index (SRI): This index

(Table 8) accounts for the impact of the ground

range resolution on the Bperpcritical value (cf.

Eq. 3). SAR datasets characterized by high to very

Table 7

Mean Spatial Baseline Index (MSBI)

Mean spatial baseline MSBI

L-band (m) C-band (m) X-band (m)

[1500 [500 [300 0

1250–1500 400–500 250–300 0.25

1000–1250 300–400 200–250 0.5

750–1000 250–300 150–200 0.75

\750 \250 \150 1

Table 8

Spatial Resolution Index (SRI)

Resolution Satellite Ground range resolution (m) SRI

Medium ERS-1/2, ENVISAT, Standard Beam RADARSAT-1/2 [20 0.25

Medium–high Fine Beam RADARSAT-1/2, ALOS-1 7–15 0.5

High StripMap TerraSAR-X and COSMO-SkyMed 3–7 0.75

Very high Spotlight TerraSAR-X and COSMO-SkyMed \3 1
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high ground range resolution (see Table 8) ease

the detection of a larger number of measurement

points, so that very spatially dense deformation

maps can be produced (CALÒ et al. 2014).

2.2. Application and Performance Assessment

We applied the proposed quality index SDQI to

SAR datasets acquired by different satellites, at

various frequency bands and spatial resolutions, over

different study areas (Table 1 resumes all the

parameters). Table 9 summarizes the computed SDQI

indexes for the considered datasets. To ease the

comparison, the SAR datasets are grouped by study

area and processing technique. The average density

of PS is used as parameter to assess the performance

of SDQI. It’s worth pointing out that radar target

density depends also on characteristics of study area,

e.g., land cover and topography (Table 9).

The analysed data present usually good quality

but in some cases (e.g. Tena Valley datasets) the low

SDQI values correspond to noisy TS (e.g. ALOS

dataset Fig. 2c) or too short temporal spans (e.g.

TerraSAR-X dataset Fig. 2d).

1. Tena Valley Spain. This area covers a medium

steep mountainous area in Pyrenees. The main PS

targets are represented by talus debris and some

spare villages. Landslides are the main land

surface processes that affect the area (HERRERA

et al. 2013). All the datasets (ERS 1995–2000;

EVISAT 2003–2007; ALOS 2006–2010; Ter-

raSAR-X may—October 2008) were processed

with SPN algorithm. In the case of ALOS dataset,

the low amount of SAR images and the presence

of 4–5 image gap ([200 days) makes medium the

overall quality of this dataset (SDQI = 0.54, 250

PS/km2), decreasing the level of confidence in

using these TS for landslide hazard assessment. In

the case of TerraSAR-X, even if the temporal

baseline and the spatial resolution are good (11

images and revisiting time of 11 days), the

observation period is too short (5/6 months),

Table 9

SDQI calculation for selected case history datasets compared with the PS density (*) The data of MSBI was assumed equal to 1.0 on the base

of PSI data producer indication

Weight 2 2 1 1 1 Relative quality PS/km2

Dataset Processing NI MTBI TI MSBI SRI SDQI

RSAT

NW Italy

SqueeSARTM 1.00 0.75 1.00 1.00 0.25 0.82 Very high 50–200

ERS

NW Italy

PSInSARTM 1.00 0.75 1.00 1.00 0.25 0.82 Very high 30–100

ENVISAT

Tena Valley

SPN 0.75 0.50 1.00 1.00 (*) 0.25 0.68 High 15

ERS

Tena Valley

SPN 0.50 0.50 1.00 1.00 (*) 0.25 0.61 Medium 5

TSX

Tena Valley

SPN 0.25 0.75 0.00 1.00 (*) 0.75 0.54 Medium 700

ALOS

Tena Valley

SPN 0.25 0.50 0.75 1.00 (*) 0.50 0.54 Medium 250

ERS-ENVISAT Umbria SBAS 1.00 0.75 0.50 1.00 0.25 0.75 High 110

CSK

Umbria

SBAS 0.75 0.75 0.75 1.00 0.75 0.78 Very high 1700

TSX

Umbria

SBAS 0.75 1 0.5 1.00 0.75 0.82 Very high 3600

ENVISAT

Daunia

SBAS 0.75 0.5 1 1.00 0.25 0.67 High 350

TSX

Daunia

SBAS 0.5 0.5 0.75 1.00 0.75 0.64 Medium 330
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decreasing the dataset quality (SDQI = 0.54, 700

PS/km2). ERS and ENVISAT (Fig. 2b) datasets

show better TS with medium (SDQI = 0.61, 5 PS/

km2) and high quality (SDQI = 0.68; 15 PS/km2),

respectively.

2. The NW Italy is covered by many datasets that

presents almost the same characteristics in terms

of number of images used, satellite and type of

SAR processing (Table 1), as a result the SDQI is

the same. Once we exclude the 1994 year gap

from ERS-1/2 dataset processed by means of

PSInSARTM the SDQI is very good (0.82), which

is the same as for the RADARSAT-1 processed by

means of SqueeSARTM: this dataset covers the

period 2003–2010 (Fig. 2a). The SAR point

density range from 30 to 100 (PS/km2) for ERS

and from 50 to 200 PS-DS/km2 for Radarsat.

3. Umbria region, Central Italy. The landscape

shows a hilly or mountainous morphology, with

open valleys and large intra mountain basins. The

area is widely affected by landslides and subsi-

dence phenomena, with relevant impacts on urban

areas and infrastructures. SAR Datasets (ERS-

ENVISAT 1992–2010, COSMO-SkyMed

2009–2012, and TerraSAR-X 2011–2013) were

processed by applying the SBAS-DInSAR ap-

proach. The data provided high quality TS for all

datasets: SDQI = 0.75, 110 Points/km2 for ERS-

ENVISAT, SDQI = 0.78, 1700 Points/km2 for

COSMO-SkyMed and SDQI = 0.82, 3600 Points/

km2 for TerraSAR-X.

4. Daunia Apennines (southern Italy). The study area

is characterized by gentle hills and low mountains,

only locally exceeding 1000 m above sea level.

Complex mass movements widely occur in the

Figure 2
An example of 4 Time series with similar rate of velocities (-10/-20 mm/year) of 4 datasets with different SDQI. NI is the number of images

a RADARSAT descending dataset NW Italy, 85 images (temporal span 2003–2009), processed with SqueeSAR, SDQI = 0.81; b ENVISAT

descending datasets, Tena Valley, 38 images (temporal span 2001–2008) processed with SPN, SPN = 0.68; c ALOS ascending dataset, Tena

Valley, 13 images (temporal span 2006–2010), SDQI = 0.54; TSX descending dataset, Tena Valley, 12 images (temporal span May–October

2008), SDQI = 0.54. It is possible to appreciate the best fit of TS with high SDQI to their polynomial interpolation

3088 D. Notti et al. Pure Appl. Geophys.



region, heavily damaging villages and infrastruc-

tures. SAR datasets (ENVISAT 2003–2010, and

TerraSAR-X January 2010–June 2012) were pro-

cessed by applying the SBAS-DInSAR approach.

The data provided high quality TS for ENVISAT

(SDQI = 0.67, 330 Points/km2), and medium

quality TS for TerraSAR-X (SDQI = 0.64, 350

Points/km2).

3. Post-Processing: Time Series Improvement

The post-processing analysis can be carried out

to improve the quality of DInSAR data and correct

possible errors. In literature it is possible to find

works on TS error estimation working on process

chain (HANSSEN, 2001). For instance GONZÁLEZ and

FERNÁNDEZ (2011) provide a model based on Monte

Carlo methodology to asses the error in the time

series during the processing steps related to atmo-

sphere and develop a model to fit a non linear

deformation. In this paper we provide a wider set

of post-processing approaches that can be used also

by SAR final user and oriented by ground truth

observation. If the analysis of the time series does

not show any particular noisy data, TS can be

directly analysed as described in Sect. 3 (i.e. trend

analysis).

3.1. Removing Noise and Regional Trends

The analysed DInSAR TS may be affected by

trends or anomalous estimates not related to real

ground motion. These trends are quite easy to detect

because they usually affect the whole dataset. They

can be due to different causes: errors in data

processing (e.g., atmospheric phase screen);

• uncompensated orbital phase ramps

• regional trends related to long-term geological

process (e.g., tectonic creep) onto which the local

geological processes of interest (e.g., landslides,

subsidence) overlap;

• presence of land movements at the reference point

location that affect reversely all the dataset;

• thermal effects on targets: the difference of tem-

perature between summer and winter can cause

seasonal cycle of dilatation and shrinkage of target,

especially if is a metallic object.

These errors can be identified by sampling all

high coherence ([0.9) radar targets from a selected

stable area where LOS average velocities are in the

range ±0.5 mm/year. The stable area can be choice

Figure 3
Removal of regional trend from TS data from the RADARSAT-1 SqueeSARTM ascending data available for Liguria Region, Italy. It is

possible to appreciate the decrease on noise in de-trended time-series
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for instance on the base of GPS data if available, or

using ancillary geomorphological knowledge on the

area. TS of these targets are averaged at each date of

the monitoring period, and if the averaged TS reveals

the presence of specific trends (e.g., seasonality), the

whole dataset is probably affected by an artefact. It is

possible to remove the artefact from the i-th TS of the

DInSAR dataset of interest (i.e. TSi), through simple

subtraction of the averaged TS of the stable, coherent

targets (i.e. TSNoise). This allows to compute the

corrected TS (i.e. TSc):

TSc ¼ TSi � TSNoise ð5Þ

Figure 3 shows an example of RADARSAT-1 TS

ascending data processed with SqueeSARTM algo-

rithm over Liguria Region. As clearly shown, the

original TS data reveal strong seasonality. This trend

is common to all the TS of this dataset, including

very stable and high coherence PS and Distributed

Scatterers (DS) of the dataset, so it is suggested that

the observed seasonality relates to an artefact. The

seasonal trend (black dot line) is obtained by

averaging TS of stable (Vlos in the range ±0.5 mm/

year) and high coherence (coher[ 0.9) PS and DS of

the SqueeSARTM dataset. Then the extracted seasonal

trend is subtracted from the original TS to remove the

artefact, which helps to obtain less noisy TS (red line

in Fig. 3).

3.2. Removing Single Date Anomalies

Another typology of error that can be observed

during the analysis of DInSAR TS is related to

anomalous displacement estimates recorded at a

certain date of the monitoring period, and spatially

diffused across the whole dataset of DInSAR targets.

In order to detect such errors, stable (±0.5 mm/year)

and high coherence ([0.9) TS can be selected from

the dataset, similarly to the above described approach

for the removal of regional trends. If more than one-

third of the selected TS shows high dispersion in the

displacement value (e.g., [±5 mm from TS regres-

sion line for X and C-Band;[±15 mm for L-band) at

the same date of acquisition, it is recommended to

remove from the dataset the anomalous date to avoid

misleading interpretations like unwrapping errors

described in the next tools.

An example of this error was found in the

RADARSAT-1 descending dataset ‘‘Dogliani’’ pro-

cessed with SqueeSARTM for the Langhe Hills in NW

Italy. In particular, on 07/01/2009 more than one-

Figure 4
Example of stable TS (-0.4 mm/year) (Langhe Hill dataset) exceeding the ±5 mm threshold at the date 7/01/2009, compared with snow

height observed at ground (Hn) (Source Hydrological database ARPA Piemonte)
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third of the selected TS exceed the ± 5 mm thresh-

old. The anomalous values at that acquisition time

might be related to snowfall occurred on the day of

the SAR acquisition (see the sample PS in Fig. 4).

Consequently it is suggested that this scene is

removed and not included in the TS analysis.

3.3. Detect and Correct Possible Phase Unwrapping

Errors

One of the limitations of DInSAR techniques is

related to possible phase unwrapping errors caused

by more than a quarter of the radar wavelength

motions occurring between two successive

acquisitions or two close targets of the dataset

(e.g., CROSETTO et al. 2010). We propose an

empirical methodology to detect and mitigate po-

tential phase unwrapping errors during the post-

processing stage using a semi-quantitative approach

on a simple TS plot.

Especially when working with landslides, it is

possible to observe sudden motions occurring at

specific dates of the monitoring interval (e.g., rapid

movement along unstable slopes). Since these mo-

tions may be related to anomalies at specific

acquisitions, it is necessary to remove other possible

sources of errors from the dataset (as described in the

previous section) before checking for unwrapping

Figure 5
a Location of the case history; b The standard time-series with its error bars of ±k/4 (14 mm) the green dots represent the differential

displacement between two consecutive acquisition (xTS(t?1)-xTS(t)). If the the differential displacement is bigger than |k/4| the green dot it is

outside of TS errors bars (red) and it is possible to introduce a k/2 correction (e.g. April–July 2009)
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errors. If the absolute difference of the displacement

(D) observed between two consecutive acquisitions

(ti and ti?1) exceeds the phase ambiguity k/4 (e.g.

14 mm for C-band data) it is possible to ‘‘jump’’ to

the proposed replica (up or down) of TS that is placed

at ±k/2.

IF D tiþ1ð Þ � DðtiÞ [ k=4 ! Dðtiþ1Þ � k=2

correction for decreasing TSð Þ

IF D tiþ1ð Þ � DðtiÞ\� k=4 ! Dðtiþ1Þ þ k=2

correction for increasing TSð Þ

Before to apply the jump it is important to take in

account some limitations:

• in order to validate the jump to the replica it is

necessary to have external sources of data, for

instance, other monitoring measures, rainfall data,

evidence of acceleration from field survey or

literature.

• the tool can ease the correction of one unwrapping

error.

Using a simple plot of TS it is possible to

graphically see the conceptual model of this correc-

tion. In Fig. 5 an example of TS affected by this type

of error is shown for a landslide in the Langhe hills

(NW Italy). The PS and DS data were generated from

RADARSAT-1 imagery processed with Squee-

SARTM and are located close to the crown of the

landslide reactivated in April 2009 (Fig. 5a). In

Fig. 5b it is shown the time-series and the error bars

of ±k/4 (±14 mm) and the real displacement

between two consecutive acquisition (green dots). If

the displacement is larger than k/4 the green dots fall

outside the errors bars and it can represent a possible

case of phase unwrapping error. The TS studied from

2006 show weak movement until 2008 then from

December 2008 it is possible to see a strong

acceleration of the movement until April 2009 then

followed by a positive Jump. Between April 2009—

July 2009 the displacement it was larger than ?k/4.

After a check with ground truth incandescence it was

decided to apply a correction of -k/2. From a

qualitative point of view, with this correction the

trend is more reliable with the possible landslides

acceleration even if in terms of absolute movement

also this correction may underestimate movement

because we do not know how many k/2 jumps are

occurred. The acceleration occurred from December

2008 to April 2009 well fit the cumulated rainfall and

can explain the paroxysmal event occurred at the end

of April 2009. This ground deformation behaviour

better depicts the observation based on rainfall data

and the expected motion of the landslide in response

to the triggering factor. The landslide body has no PS

because the movement was too rapid to guarantee

sufficient phase correlation during the monitoring

interval (on the order of several meters).

1. Averaging Time Series

When the distribution of annual velocities across

the monitored area appears noisy and difficult to

interpret, TS can be spatially averaged to better detect

the general trends of deformations. This can be done,

for instance, for the TS located in the same geomor-

phological unit, which fall within a single landslide or

in a subsiding area which are thought to be charac-

terised by similar ground motion velocities.

The averaging procedure helps to smooth the

spatially variable velocities referring to single targets.

Moreover, the comparison between the averaged TS

and single PS or DS can be used to find processes

possibly occurring at the local scale.

Figure 6 shows the case of the Mendatica land-

slide in the Ligurian Alps in Italy. It is possible to

identify 33 PS and DS in the upper part of the

landslides with velocity in the order of 8–12 mm/

year. Clearly, the TS of single PS or DS present

higher variance (5.8 mm/year) with respect to the

averaged TS (2.5 mm/year), and the averaging pro-

cedure reveals the general trend of the TS that shows

a strong acceleration of landslide motions in 2008.

4. TS classification, identification of trends

and deviations

Following the reduction of noise and quality im-

provement (see Sect. 2), the analysis of DInSAR TS

proceeds with the identification and classification of

temporal trends in high to very high quality TS

datasets. Attention should be paid, however, not to
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misinterpret ‘artificial’ or residual trends by consid-

ering these as true ground movements. Identification

of trend deviations in DInSAR TS is crucial to un-

derstand geological processes. The recent literature

reports on some methodologies to overcome limits

related to manual, visual analysis and classification of

TS (e.g., BERTI et al. 2013; CIGNA et al. 2012). These

methods can support radar-interpreters during their

analysis of large DInSAR datasets, to identify critical

areas of concern, non-linearity, acceleration/decel-

eration and, more generally, any deviations from a

priori defined trends.

We implement here the following approaches

(Table 10):

1. PS-Time: BERTI et al. (2013) developed ‘PS-

Time’, an automatic classification tool for PS TS

based on a conditional sequence of statistical tests.

This tool allows identification of six trend types

(i.e. uncorrelated, linear, bi-linear, quadratic, and

discontinuous with constant and variable ve-

locity), and additional parameters, such as the

break date (date identifying the trend change), V1,

V2 (the motion rate after and before the trend

change), and the index BICW (showing the degree

Figure 6
Mendatica landslides. Comparison between single TS and 33 averaged TS. It is possible to see the reduction of the noise and easier

identification trends
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of bi-linearity of TS). PS-Time can support both

regional and local scale studies of large PS

datasets, and be particularly efficient when the

behaviour of the geological process under inves-

tigation is unknown. PS-Time is freely accessed at

http://www.bigea.unibo.it/it/ricerca/pstime.

2. Deviation Index (DI) and mobile DI: CIGNA et al.

(2012) developed the Deviation Index (DI), able to

quantify trend deviations within DInSAR TS by

reproducing the visual process of identification of

trend changes. The first type of DI (i.e. DI1)

quantifies the deviation recorded after a certain

date tb with respect to its prediction based on the

linear regression of the TS records before tb,

whilst the second type (i.e. DI2) compares the TS

behaviour before and after an event occurred at tb,

by measuring any displacements recorded at tb and

identifying its impact on the TS. The use of DI1

and DI2 can support both local and regional

analyses of DInSAR TS, when an event is thought

to have an impact on the ground motion trend,

either permanently after a tb, or only temporarily

at tb. Since the application of the DI requires tb
selection to cut the TS into two distinct subinter-

vals to compare, building upon the original

method by CIGNA et al. (2012), TAPETE and

CASAGLI (2013) developed the ‘‘mobile DI’’

approach to identify objectively the correct break

date. This method consists in the computation of

the DI across the entire monitoring period fol-

lowed by analysis of DI variations as a function of

changing tb. The approach can be used when tb
cannot be defined a priori as no background

information about the process to study is available.

The main advantages of the mobile DI are both the

confirmation of the suitability of a fixed tb, and the

identification of other possible dates acting as

temporal breaks, which were not previously

identified by visual inspection.

3. Velocity TS: With this tool it is possible to

generate temporal series of velocity from DInSAR

TS, by cutting the monitored period into regular

sub-intervals and extracting partial linear regres-

sions on the displacement data. Number and

length of the sub-intervals can be determined by

accounting for: (1) TS quality, which is influenced

by temporal span and number of displacement

records composing the sub-interval (generally, the

shorter the length of the sub-intervals or lower the

number of scenes, the higher the likelihood that

the resulting series of velocities will appear noisy;

as practical recommendation, TS averaging may

be implemented beforehand, and sub-intervals

should include at least 5–6 displacement records;

see Sect. 2.3); and (2) the deformation trend of the

studied phenomenon, that can be identified via

Table 10

Comparative summary of the approaches of trend analysis of DInSAR time series tested in this research

Methodology Objectives Applications

PS-Time

(BERTI et al.

2013)

Automated detection of trend typologies for each TS of the

analyzed dataset, and additional parameters

Regional and local scale analysis of large DInSAR dataset,

when the deformation behaviour and the date of the event

of the studied process are unknown

Deviation Index,

DI (CIGNA

et al. 2012)

Mobile DI

(TAPETE and

CASAGLI,

2013)

DI type 1 (DI1): Quantification of the deviation within TS

after a certain date tb, with respect to its prediction based

on the ‘historical’ pattern

DI type 1 (DI1): Local and regional scale applications, when

events of known date occurred and have changed the

general trend of the TS

DI type 2 (DI2): Quantification of the sudden trend change

occurred at the date tb, by evaluating the step recorded at

tb within the series, not necessarily associated with an

overall trend change

DI type 2 (DI2): Local and regional scale applications, when

events of known date occurred and have changed the TS

locally and in the immediate of the event (e.g., sudden

displacement), but not its general trend

Retrieval of the curve of DI vs. tb to identify peak values due

to trend deviation or changes throughout the TS. In doing

so, it complements the DI approach

Local and regional scale applications, when the deformation

behaviour and the date of the event of the studied process

are either known or unknown

Velocity time

series

Evaluate the temporal variation of the velocity, by cutting

TS into sub- intervals and re-computing step-wise

velocities. May underline seasonal components

Local scale analysis, when long and not noisy TS are

available. To reduce noise a spatial averaging of TS is

recommended
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preliminary visual inspection of the TS (e.g.,

either long-term or season-based sub-intervals

may be considered). We applied the above three

methodologies to analyse two test areas in Italy:

(1) Pontecurone, in Piemonte Region, NW Italy,

affected by land subsidence, and (2) Crociglia

landslide, NW Apennines. For both sites, two

SAR data stacks processed by TRE S.r.l. with the

SqueeSARTM algorithm (FERRETTI et al. 2011)

were employed:

• 89 RADARSAT-1 Standard Beam, ascending

mode images (24/03/2003–22/05/2010);

• 84 RADARSAT-1 Standard Beam, descending

mode images (28/04/2003–05/10/2009).

4.1. Subsidence Case History of Pontecurone

Pontecurone is a small rural village in the

southwestern sector of the Po River Plain, located

on the alluvial fan of Curone stream (Fig. 7), where

thickness of alluvial sediments exceeds 150 m.

Stratigraphic and geotechnical data for the region

show a typical alluvial succession of gravel, sand

(aquifer layer) and silt–clay (aquitard layers); in

Figure 7
Simplified hydro-geological setting of Pontecurone. It is possible to see that the area at south of the village is characterized by the presence of

deep borehole. Borehole data from Provincia Alessandria/Regione Piemonte Settore Acque
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Pontecurone clay sediments (at least 10 m thick)

outcrop and locally confine the first aquifer (Fig. 7).

In the upper part of Curone alluvial fan, several

groundwater wells exploit confined aquifers, and are

generally deeper than those in the northern sectors.

Though there is little information available about

water extraction, groundwater exploitation seems to

be mainly related to agricultural irrigation.

Visual analysis of the annual LOS velocity (VLOS)

of both ascending and descending SqueeSARTM

RADARSAT-1 datasets, revealed general stability

of the area, with only two confined zones in

Pontecurone and Voghera showing motion rates

down to -5 mm/year (Fig. 8a).

Automatic TS classification of over 28,000

points of the SqueeSARTM ascending and 23,000

points of the descending TS datasets with PS-Time

showed that in the area of Pontecurone most TS are

classified as bi-linear, especially within the ascend-

ing dataset while, for the remainder of the dataset,

the typology of TS are either linear or uncorrelated,

and only a few are classified as quadratic (Fig. 8a).

The BICW index showed for the area of Ponte-

curone values higher than 1.2, this indicating the

occurrence of strongly bi-linearity, and identified the

break date of the TS in the last part of 2008, i.e.

27/11/2008.

The computation of the DI1 confirms this evident

change of trend in the TS of both ascending and

descending data. By assuming November 2008 as the

tb for all the series, the resulting DI1 (Fig. 8c) show

that the extension of the area affected by temporal

deviations is by far wider than that depicted by the

sole visual analysis of annual VLOS. The DI1 results

for the descending dataset (Fig. 8c left) highlight that

large sectors of the scene recorded deviations as high

as 1.5–3 times the respective predictions based on the

temporal history of the area before tb. More than half

of the built-up area of Voghera, indeed, evidences

DI1 values of 1.5–3.0 and even higher than 3.0–5.0

for a small sector in the southwestern outskirts of the

town. Pontecurone, Casei Gerola and Rivanazzano

Terme show DI1 greater than 1.5. The DI1 compu-

tation for the ascending dataset (Fig. 8c right) also

shows concentration of trend deviations over Ponte-

curone, with DI1 increasing by moving from the

outskirts to the centre of the village.

It is worth noting that the ascending and descend-

ing mode TS are characterized by both different time

lengths and different number of scenes composing the

input satellite image stacks, as mentioned above. The

use of a common tb for both datasets creates TS sub-

samples with different lengths of the historical (i.e.

pre-tb) and updated (i.e. post-tb) intervals in ascend-

ing and descending mode. In particular, while the

length of the updated interval is 16-image long for the

ascending data, this is only 10-image long for the

descending one, hence the computation of DI1 for the

latter is less reliable, due to the fewer number of

scenes available after tb.

To confirm the suitability of the fixed tb and

identify possible additional dates of trend deviation,

the mobile DI was also calculated over the entire TS

for both PS and DS of the ascending dataset over the

village of Pontecurone where, as above discussed, a

clear pattern was identified in the spatial distribution

of the DI1 (Figs. 8c–9a). The example in Fig. 9 refers

to the DS A4WEI in the northeastern quarter of the

village where the highest values of DI1 at the selected

tb (2.8–5.3) were retrieved. The TS of the examined

DS is characterized by an inversion of the trend (i.e.

from moving away from the satellite to moving

towards it) immediately after the tb suggested by PS-

Time and confirmed by the DI1 (Fig. 9c). The curve

of the mobile DI1 gives an objective confirmation

(Fig. 9d), with the main peak reaching 5.6 on 10/12/

2008, and also adds evidence not retrieved by visual

inspection of the TS. Indeed, after tb another DI1

peak of *5.0 is identified on 11/11/2009 (Fig. 9d),

i.e. in correspondence with a trend change occurred

within the post-tb sub-interval (Fig. 9c). This peak

marks a further acceleration of the LOS displace-

ments exactly 1 year after the occurrence of the main

trend inversion (i.e. 10/12/2008). Moreover, an

additional DI1 peak occurs at the end of 2007—early

2008, i.e. almost one year prior to the main trend

Figure 8
RADARSAT-1 SqueeSARTM time series over Voghera and

Pontecurone. a LOS velocities for descending (left) and ascending

(right) mode data processed with SqueeSARTM by TRE S.r.l.;

b Automated classification in descending (left) and ascending

(right) mode, based on PS-Time classification tool by BERTI et al.,

2013; c Semi-automated classification descending (left) and

ascending mode, based on the Deviation Index (DI) approach by

Cigna et al. (2012)

b
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inversion. Though less pronounced (DI1 of 4.2), this

peak could indicate an early temporal break that sole

visual inspection of the TS likely would have not

identified.

The evidence discussed above with regard to DS

A4WEI is also found within the TS of the neigh-

bouring PS and DS, and therefore relates to

instability affecting the entire local area in

Pontecurone.

Figure 9
a Semi-automated classification of RADARSAT-1 SqueeSARTM ascending time series based on DI1 over the village of Pontecurone (cf.

Fig. 8c overlapped onto Virtual Earth image (Bing Maps � 2013 Microsoft Corporation), with indication of the north–eastern quarter (see

white square), where b the highest values of DI1 were retrieved (range: 2.8–5.3). c Time series and d graph of DI1 vs. tb for the DS A4WEI.

Red dashed line marks the a priori tb in November 2008
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The computation of the TS of the LOS velocities

was performed on the averaged TS of both the

SqueeSARTM ascending and descending datasets, for

the area where the DI1 spatial distribution showed the

highest values. The velocity calculated for the two

periods, preceding and following tb, confirms obser-

vations based on the first two methodologies, and

shows land subsidence at -3 to 05 mm/year rates

occurring between 2003 and 2008, followed by

10 mm/year uplift (Fig. 10). By computing the

velocity TS over 6-month long intervals, seasonal

components can be recognised and, in particular, we

identify negative LOS velocities until October/

November, which are followed by periods of uplift

in winter and early spring. Between 2003 and 2008,

land subsidence seems stronger than uplift, whereas

in the following period (between 2008 and 2010) the

opposite is observed. The long-term trend across the

full TS confirms the bi-linear trend detected by PS-

Time automated classification, as well as the high

DI1 values observed within this sector of the

processed area.

The most likely cause of the observed seasonality

is related to groundwater oscillations due to

extraction from deep and confined aquifers for

agricultural use (Fig. 10), consequent variation of

pore water pressure and ground settlement and/or

heave. Maximum water levels are reached in spring,

while minimum levels in early autumn, after irriga-

tion. Long-term oscillations are related to wet and dry

periods, e.g., from 2003 to 2008 a drier period caused

general decrease of water levels, whereas from 2009

to 2010 a wetter period caused general increase of

piezometric levels.

4.2. Landslide, Case History of Crociglia

Crociglia landslide is a typical earth slide-earth

flow that affects the weathered clay shale units

widely outcropping in the NW Apennines. Borehole

investigations suggested that the sliding surface is

located at depths between 5 m and 15 m from the

ground level, and recent field surveys evidenced

presence of damage in residential buildings.

The analysis of RADARSAT-1 SqueeSARTM

VLOS in ascending and descending mode shows an

active sector within the urban settlement (Fig. 11a).

The landslide affects a west-facing, gentle slope

Figure 10
a Spatially averaged time series for ascending and descending geometry; b LOS velocity time series for Pontecurone, using 6-month long

averaging window, and 1 year interpolation windows. Results are shown for both ascending and descending RADARSAT-1 datasets, and

compared with ground water levels (source: Regione Piemonte–Settore Acque)
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(10�), and the main direction of the movement is

horizontal, along the E-W direction, as confirmed by

negative VLOS in the descending dataset (i.e. -7 to

-10 mm/year), and positive VLOS in the ascending

(i.e. ?4 to ?6 mm/year) dataset.

PS-Time automated classification of TS shows

predominance of bi-linear, and linear behaviours only

for a smaller portion of the TS, in both the ascending

and the descending datasets (Fig. 11b). Bi-linear

points extend to the south of the landslide boundaries,

suggesting that instability involves a wider area and

incorporates the southern sector of the village. The

date recording the change in the TS trend is autumn

2008. As for Pontecurone, the BICW index shows

values higher than 1.2, indicating strong bi-linearity.

The computation of DI1 was performed for 160

SqueeSARTM TS in descending, and 230 TS in

ascending mode, by using the tb of November 2008

for both the datasets. The DI1 maps (Fig. 11c)

confirm spatially the extension of the deviations

already evidenced by PS-Time, and DI1 values as

high as 1.5–3.0 are observed, mostly within the

mapped landslide boundaries, and part to the south,

with DI1 peak of 3.4 in the descending dataset for a

point just outside the landslide boundary.

The mobile DI approach shows that the TS of PS

and DS within the landslide boundaries recorded

similar deformation behaviour from the main scarp to

the toe, thereby resulting in similar DI1 vs. tb curves.

Figure 12 shows the example of PS A75VJ from the

descending dataset (which best depicts the occurred

deformation due to the aspect of the slope), located in

the lower part of the landslide. The TS is dominated

by LOS motion away from the satellite (Fig. 12b),

with -7.46 mm/year VLOS and 0.97 coherence.

Visual inspection of the TS highlights trend change

only in the course of 2009, in correspondence with

the last SAR acquisitions. Using a priori tb on 30/11/

2008 the DI takes on the value of 2.5 (Fig. 12a),

whereas the mobile DI provides a clearer picture

(Fig. 12c), by showing a DI1 increase during 2008

and the peak of 4.5 on 14/05/2009. The mobile DI

Figure 12
a Semi-automated classification of RADARSAT-1 SqueeSARTM descending time series based on DI1 over Crociglia landslide (cf. Fig. 11a),

superimposed on landslide inventory (IFFI 2007) and topographic map sheet Regione Lombardia B9C1 scale 1:100000; b Time series and

c graph of DI1 vs. tb for the PS A75VJ. Red dashed line marks the a priori tb in November 2008

Figure 11
RADARSAT-1 SqueeSARTM time series for Crociglia a LOS

velocities based on (left) descending and (right) ascending mode

data processed with SqueeSARTM by TRE S.r.l.. b Automated

classification of RADARSAT-1 SqueeSARTM time series in (left)

descending and (right) ascending mode, based on PS-Time

classification tool by BERTI et al. (2013). c Semi-automated

classification (left) descending and (right) ascending mode, based

on the Deviation Index (DI) approach by Cigna et al. (2012)

b
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calculation allows us to correct the interpretation and

to detect objectively the trend change in 2009 that

was already noted by visual inspection. The a priori tb
of 30/11/2008 therefore cannot be considered the

ideal date to break the TS, though still critical, as the

trend deviation was already in place. The features

observed in the TS of PS A75VJ are also found for

the neighbouring PS and DS, thus indicating similar

deformation behaviour for all the points within the

landslide boundaries.

The analysis of the TS velocity was based on

averages of *20 ascending and *20 descending TS

of points within the landslide boundaries and allowed

identification of two main types of trends. The first

depicts a long-term behaviour and confirms the

evidences from the DI computation and PS-Time

automated classification (Fig. 13a). The period be-

tween 2003 and 2008 shows VLOS of -7 mm/year in

the descending mode and ?4 mm/year in ascending

mode. The velocity TS based on 6 months-long

intervals shows seasonal variations for both

Figure 13
a Spatially averaged SqueeSARTM time series for ascending and descending geometry of RADARSAT-1 datasets; b LOS velocity time series

for Crociglia, using 6 months averaging window, and 1 year interpolation windows. Results are shown for both ascending and descending

RADARSAT-1 datasets, and compared with rainfalls (source: Arpa Lombardia). c resolved E-W and vertical components of the velocity by

combing ascending and descending RADARSAT-1 datasets
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acquisition geometries. Observed acceleration of the

movements in winter-spring is followed by decel-

eration in summer/early autumn (Fig. 13b). We also

computed the E–W and vertical component of the

velocity (Fig. 13c). The projection of the 6-month

VLOS to the steepest slope direction for both geome-

tries shows equivalent results. Average velocity

during the winter is -20 mm/year, whereas velocity

during the summer ranges between -7 and -4 mm/

year. The agreement between ascending and de-

scending datasets, also confirmed by analysis of ERS

data, allows us to consider this result reliable also

without comparison with other monitoring data. The

physical explanation of the observed seasonal trend is

most likely related to seasonal variations in saturation

level of the soil, controlled by rainfall, evapo-

transpiration and snow melting. Long-term variations

are thought to be related to rainfall, as the period

between November 2008 and May 2010 was charac-

terised by two rainy winter-spring periods. The main

event occurred in April 2009, just after the tb that was

identified by both PS-Time and the DI approach, and

the landslide motions mainly occurred in the areas

nearby.

5. Conclusions

Deformation time series (TS) generated through

advanced DInSAR techniques provide valuable in-

formation on the temporal evolution of geological

processes as landslides and subsidence phenomena.

In this work we proposed and validated a

methodology for the analysis of DInSAR TS, aimed

at improving the understanding of the kinematical

behaviour of geohazard processes and enabling also

non-expert users to handle DInSAR deformation time

series.

The proposed methodology consists of three main

steps:

• Pre-processing (see Sect. 1): computation of the

SAR Dataset Quality Index (SDQI) aimed at

evaluating the quality of datasets prior to/in

preparation to the trend analysis. Its assessment is

based on five indexes associated to the

characteristics of the available SAR datasets. SDQI

was computed for several DInSAR datasets ac-

quired by different SAR sensors and processed

with advanced DInSAR techniques, i.e., PSIn-

SARTM, SqueeSARTM, SBAS and SPN. The

purposed SDQI can be applied to any other

DInSAR techniques not tested in this work and it

is an open instrument that can be discussed and

improved by the community. The comparative tests

showed that the optimal time-series should have

the following features: a temporal span of

5–8 years, an almost complete series of images

without long temporal gap (temporal baseline

\180 days for L-band, \90 days for C-band;

\45 days for X-band) and a good spatial baseline

(\1000 m,\300 m;\200 m respectively for L, C

and X band). The spatial resolution of sensor and

the wavelength are also important, and SDQI

approach also accounts for them.

• Post-processing (see Sect. 2): application of four

approaches aimed at mitigating some of the errors

and noise that can affect DInSAR TS and improv-

ing their quality. These approaches are based on

empirical-stochastic observations and address the

removal of regional trends and anomalous motion

values, the correction of possible phase unwrap-

ping errors and the noise reduction trough spatial

averaging. However, such methods for TS quality

improvement need strong control interaction and

input by the DInSAR users and cannot be used with

full automation. In particular, for the phase

unwrapping error correction it is important to

check the geomorphological reliability with ground

truth data to avoid false positives. Application of

these approaches showed good results for the case

histories in our areas of interest.

• Detection and analysis of TS trends (see Sect. 3):

three different methodologies for DInSAR TS

trend analysis were compared with respect to a

common dataset characterized by a very high

quality (SDQI = 0.82) and when necessary, after

quality improvement (as proposed in this work).

These methodologies work on different aspects of

the TS: (1) PS-Time automated classification is

suitable when the deformation behaviour is
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unknown, and is able to suggest trend typology and

other useful parameters (e.g., tb, bi-linearity and

seasonality indices); (2) Deviation Index or DI,

improved with the mobile DI, is suitable to detect

the geological processes when TS show trend

changes in relation to specific events (e.g. sudden

collapse, heavy rainfall, tectonic motion); and (3)

the TS of velocity allows extraction of relevant

temporal features (e.g., seasonality) at the local

scale. The three methodologies were tested on two

areas in Italy affected by urban subsidence and

landslide processes, and showed agreement in

picturing the motion behaviour of the investigated

phenomena. In Pontecurone, the TS analysis

allowed discovering of both seasonal and long-

term ground oscillations, likely related to water

level variations in the aquifers. In Crociglia, long-

term and seasonal trend were detected, showing a

correlation of landslide motions with rainfall

records over 3–6 month long intervals.

The obtained results prove that the proposed

methodology allows maximizing the information

embedded in the DInSAR TS and encourage its im-

plementation by end-users interested in improving the

understanding of the deformation behaviour of geo-

logical processes.
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