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Abstract—An easy and practical method for interpreting resi-

dual gravity anomalies due to simple geometrically shaped models

such as cylinders and spheres has been proposed in this paper. This

proposed method is based on both the deconvolution technique and

the simplex algorithm for linear optimization to most effectively

estimate the model parameters, e.g., the depth from the surface to

the center of a buried structure (sphere or horizontal cylinder) or

the depth from the surface to the top of a buried object (vertical

cylinder), and the amplitude coefficient from the residual gravity

anomaly profile. The method was tested on synthetic data sets

corrupted by different white Gaussian random noise levels to

demonstrate the capability and reliability of the method. The results

acquired show that the estimated parameter values derived by this

proposed method are close to the assumed true parameter values.

The validity of this method is also demonstrated using real field

residual gravity anomalies from Cuba and Sweden. Comparable

and acceptable agreement is shown between the results derived by

this method and those derived from real field data.

Key words: Gravity anomaly, sphere-like structure, cylinder-

like structure, deconvolution technique, simplex algorithm, linear

optimization.

1. Introduction

Geological structures in mineral and petroleum

exploration can be approximated by simple geological

structures such as faults, spheres, cylinders, sheets, or

dikes. According to this approximation, many meth-

ods have been introduced for interpreting gravity field

anomalies due to simple geometric models in an at-

tempt to best-estimate the gravity parameter values,

e.g., the depth to a buried object and the amplitude

coefficient. These interpretation methods include

graphical methods (NETTLETON 1962, 1976), ratio

methods (BOWIN et al. 1986; ABDELRAHMAN et al.

1989), the Fourier transform (ODEGARD and BERG

1965; SHARMA and GELDART 1968), Euler deconvolu-

tion (THOMPSON 1982), a neural network (ELAWADI

et al. 2001), the Mellin transform (MOHAN et al. 1986),

least-squares minimization approaches (GUPTA 1983;

LINES and TREITEL 1984; ABDELRAHMAN 1990; ABDEL-

RAHMAN et al. 1991; ABDELRAHMAN and EL-ARABY

1993; ABDELRAHMAN and SHARAFELDIN 1995a), and

Werner deconvolution (HARTMANN et al. 1971; JAIN

1976). KILTY (1983) extended the Werner deconvo-

lution technique to the analysis of gravity data using

both the residual anomaly and its first and second

horizontal derivatives; KU and SHARP (1983) further

refined the method by using iteration for reducing and

eliminating the interference field and then applied

Marquardt’s non-linear least squares method to further

refine automatically the first approximation provided

by deconvolution. SALEM and RAVAT (2003) presented

a new automatic method for interpretation of magnetic

data, called AN-EUL. Their method is based on a

combination of the analytic signal and the Euler de-

convolution method (AN-EUL). With the AN-EUL

method, both the location and the approximate ge-

ometry of a magnetic source can be deduced. FEDI

(2007) described the theory for gravity and magnetic

fields and their derivatives for any order and proposed

a method called depth from extreme points (DEXP) to

interpret any potential field. The DEXPmethod allows

estimating of source depths, density, and structural

index from the extreme points of a three-dimensional

(3D) field scaled according to specific power laws of

the altitude. SALEM and SMITH (2005) presented an al-

ternative method to estimate both the depth and model

type using the first order local wave number approach

without the need for third order derivatives of the field.
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In their method, normalization of the first order local

wavenumber anomalies is achieved and a generalized

equation to estimate the depth of some two-dimen-

sional (2D) magnetic sources regardless of the source

structure is obtained. SILVA and BARBOSA (2003)

derived the analytical estimators for the horizontal and

vertical source position in 3D Euler deconvolution as a

function of the x, y, and z derivatives of the magnetic

anomaly within a data window. BARBOSA et al. (1999)

proposed a new criterion for determining the structural

index based on the correlation between the total

magnetic field anomaly and the estimates of an un-

known base level. SALEM et al. (2008) developed a new

method for the interpretation of gridded magnetic data

based on derivatives of the tilt angle, where a simple

linear equation, similar to the 3D Euler equation, can

be obtained. Their method estimates both the

horizontal location and the depth of magnetic bodies,

but without specifying prior information about the

nature of the sources. FEDI et al. (2009) proposed a new

method based on a 3D multiridge analysis of the po-

tential field. The new method assumes a 3D subset in

the harmonic region and studies the behavior of the

potential field ridges, which are built by joining ex-

treme points of the analyzed field computed at

different altitudes.

However, only a few techniques have addressed

the task of determining the shape of a buried struc-

ture. These techniques include, for example, the

Walsh transform (SHAW and AGARWAL 1990), least-

squares methods (ABDELRAHMAN and SHARAFELDIN

1995b; ABDELRAHMAN et al. 2001a, b), and a con-

strained and penalized nonlinear optimization

technique (TLAS et al. 2005). Generally, determining

the depth, shape factor, and amplitude coefficient of a

buried structure is performed by these methods based

on the residual gravity anomaly, where the accuracy

of the results depends on the accuracy in which the

residual anomaly can be separated and isolated from

the observed gravity anomaly.

Recently, ASFAHANI and TLAS (2012) proposed an

efficient approach to interpret residual gravity

anomalies in order to estimate the gravity parameters,

e.g., depth, amplitude coefficient. and geometric

shape factor of simple buried bodies, such as a

sphere, horizontal cylinder, or vertical cylinder. The

method is based on non-convex and nonlinear Fair

function minimization, adaptive simulated annealing,

and a stochastic optimization algorithm. The main

advantage of this approach is that the buried body

shape is considered an unknown factor and can be

estimated as an independent parameter. However, this

approach suffers from a discrepancy and has some

disadvantages because it sometimes necessitates the

use of multi-starting or initial parameter guesses in

order to assure global convergence or to reach the

global minima of the objective function.

A recent publication by TLAS and ASFAHANI (2014)

focused on interpretation of magnetic anomalies

based on the deconvolution technique to transform

the non-convex and the nonlinear minimization

problem into a linear one, to avoid being trapped in a

local minima of the objective function and, hence,

obtain a solution using a linear optimization algo-

rithm for definitively reaching the global minima of

the minimization problem.

In the present paper, a new practical interpretation

methodology is proposed for interpreting residual

gravity field anomalies and accurately estimating

model parameter values, e.g., the depth to the top or

to the center of a body and the amplitude coefficient

related to a buried sphere or a cylinder-like structure.

The method also uses the deconvolution technique to

avoid the local minima, where the nonlinear opti-

mization problem describing the suitable simple

geometric-shaped model of a structure is transformed

into a linear optimization one. The linear problem is

thereafter solved by the very well-known algorithm in

linear optimization called the simplex algorithm of

Dantzig (PHILLIPS et al. 1976) in order to definitely

reach the global minima.

The reliability and capability of the proposed in-

terpretative method is demonstrated using synthetic

data sets corrupted by different white Gaussian ran-

dom noise levels of 7 and 10 %. The results acquired

show that the estimated parameter values derived by

this method are very close to the assumed true pa-

rameter values.

The validity of this method is also demonstrated

using real field gravity anomalies from Cuba and

Sweden. Comparable and acceptable agreement is

shown between the results derived by this proposed

method and those obtained by other interpretation

methods.
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Moreover, the depth obtained by such a method is

found to be in high accordance with that obtained

from real field data.

2. Theory

Theoretical residual gravity anomalies due to

various geological models are treated in this paper.

2.1. Interpretation of a Residual Gravity Anomaly

due to a Sphere Model

The general expression of a residual gravity

anomaly (V) at any point M(x) along the x-axis of a

sphere–like structure in a Cartesian coordinate system

(Fig. 1) can be given according to GUPTA (1983) as:

VðxiÞ ¼ k
1

x2i þ z2ð Þ
3
2

ði ¼ 1; . . .;NÞ ð1Þ

where z is the depth to the center of the buried sphere

body and k is the amplitude coefficient given by

k ¼ 4
3
pGqR3z, where q is the density contrast, G is

the universal gravitational constant, R is the radius,

and xiði ¼ 1; . . .;NÞ is the horizontal position

coordinate.

The set of Eq. (1) consists of N nonlinear

equations as a function of the parameters k and z.

To avoid this nonlinearity, the following proposed

deconvolution technique will be used. First and for

simplification, Vi will be used instead of VðxiÞ ði ¼
1; . . .;NÞ in the rest of this paper.

By multiplying the two sides of Eq. (1) by the

term x2i þ z2
� �3

2 and re-arranging it, it can be found

V2
i x6i þ 3V2

i x4i q1 þ 3V2
i x2i q2 þ V2

i q3 � q4 ¼ 0

ði ¼ 1; . . .;NÞ ð2Þ

where

q1 ¼ z2 ð3Þ

R
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Figure 1
Diagrams of simple geometrical structures (sphere, horizontal cylinder, and vertical cylinder)
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q2 ¼ z4 ð4Þ

q3 ¼ z6 ð5Þ

q4 ¼ k2 ð6Þ

The optimal solution ðq1; q2; q3; q4Þ of the set of

linear Eq. (2) can be found by solving the following

nonlinear optimization problem onto the real space R4:

min
q2R4

f ðqÞ ¼
XN

i¼1

V2
i x6i þ 3V2

i x4i q1 þ 3V2
i x2i q2 þ V2

i q3 � q4

� �2

ð7Þ

Subject to q1; q2; q3; q4 � 0

The quadratic objective function f(q) of the

nonlinear optimization problem (7) is convex onto

the non-negative orthant of the real space R4. This

mathematically means that for any solution

q1; q2; q3; q4ð Þ 2 R4 that satisfies the following opti-

mality conditions of Karush-Kuhn-Tuker (KKT)

(PHILLIPS et al. 1976):

qi � 0 8i ¼ 1; . . .; 4

qi

of ðqÞ
oqi

¼ 0 8i ¼ 1; . . .; 4

of ðqÞ
oqi

� 0 8i ¼ 1; . . .; 4

9
>>>>>=

>>>>>;

ð8Þ

will surely be the global minima of the convex non-

linear optimization problem (7).

The KKT optimality conditions (8) for the

nonlinear optimization problem (7) are satisfied

through solving the following linear optimization

problem:

min
P4

i¼1

ui

subject to
of ðqÞ
oqi

� ui ¼ 0 8i ¼ 1; . . .; 4
qi; ui � 0 8i ¼ 1; . . .; 4

9
>>=

>>;
ð9Þ

Or

where ðq1; q2; q3; q4Þ are structural variables, while

ðu1; u2; u3; u4Þ are artificial variables (surplus vari-

ables). The artificial variables ðu1; u2; u3; u4Þ are

added only in order to measure the deviations

between the two sides of Eq. (10) (requirements of

the simplex algorithm), and also to define the

objective function of the linear optimization program

(10). These variables ðu1; u2; u3; u4Þ will be dropped

when the optimal values of structural variables

ðq1; q2; q3; q4Þ are reached.

The linear optimization problem (10) is thereafter

solved by the Simplex algorithm that starts auto-

matically with initial parameter guesses; zeros for

min u1 þ u2 þ u3 þ u4 subject to

3
PN

i¼1

V4
i x8i

� �
q1 þ 3

PN

i¼1

V4
i x6i

� �
q2 þ

PN

i¼1

V4
i x4i

� �
q3 �

PN

i¼1

V2
i x4i

� �
q4 � u1 ¼ �

PN

i¼1

V4
i x10i

� �

3
PN

i¼1

V4
i x6i

� �
q1 þ 3

PN

i¼1

V4
i x4i

� �
q2 þ

PN

i¼1

V4
i x2i

� �
q3 �

PN

i¼1

V2
i x2i

� �
q4 � u2 ¼ �

PN

i¼1

V4
i x8i

� �

3
PN

i¼1

V4
i x4i

� �
q1 þ 3

PN

i¼1

V4
i x2i

� �
q2 þ

PN

i¼1

V4
i

� �
q3 �

PN

i¼1

V2
i

� �
q4 � u3 ¼ �

PN

i¼1

V4
i x6i

� �

3
PN

i¼1

V2
i x4i

� �
q1 þ 3

PN

i¼1

V2
i x2i

� �
q2 þ

PN

i¼1

V2
i

� �
q3 � Nð Þq4 � u4 ¼ �

PN

i¼1

V2
i x6i

� �

q1; q2; q3; q4; u1; u2; u3; u4 � 0

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

ð10Þ
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ðq1; q2; q3; q4Þ and right hand side values of Eq. (10)

for ðu1; u2; u3; u4Þ. The Simplex algorithm will find

the optimal values of q1; q2; q3; q4; u1; u2; u3; u4ð Þ 2
R8 which satisfy the KKT optimality conditions (8)

for the nonlinear optimization problem (7) in a

bounded number of iterations.

For more details about the simplex algorithm of

Dantzig for linear optimization problems, readers are

referred to: PHILLIPS et al. (1976), HILLIER and

LIEBERMAN (1986) and BRADLEY et al. (1977).

After knowing the optimal values of q1, q2, and

q3, the best estimate of the depth to the center of the

buried sphere body (z) can be easily found by using

simultaneously Eqs. (3, 4, and 5) as:

z ¼ q1ð Þ
1
2þ q2ð Þ

1
4þ q3ð Þ

1
6

3
ð11Þ

The best estimate of the amplitude coefficient (k) can

easily be obtained by using Eq. (6) as:

k ¼ � ffiffiffiffiffi
q4

p ð12Þ

The sign of k can be easily assigned by using the

statistical criterion of preference called the root mean

square error (RMSE; COLLINS 2003), based on the

minimal value, between the field data anomaly and

the computed one, using the estimated values of z and

k. The mathematical formula of this criterion is given

as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

Vi Observedð Þ � Vi Computedð Þð Þ2

N

vuuut
;

ð13Þ

where Vi Observedð Þ and Vi Computedð Þ ði ¼
1; . . .;NÞ are the observed and the computed values at

the point xi ði ¼ 1; . . .;NÞ, respectively.

2.2. Interpretation of a Residual Gravity Anomaly

due to a Vertical Cylinder Model

The residual gravity effect (V) of a vertical

cylinder-like structure at any point on the free surface

along the principal profile in a Cartesian coordinate

system (Fig. 1) is also given according to GUPTA

(1983) as:

VðxiÞ ¼ k
1

x2i þ z2ð Þ
1
2

ði ¼ 1; . . .;NÞ ð14Þ

where z is the depth from the surface to the top of the

body and k is the amplitude coefficient given by

k ¼ pGqR2. Following the same manner as in the

sphere model, the parameters related to the gravity

anomaly produced by the vertical cylinder can be

estimated by the following equations:

z ¼ ffiffiffiffiffi
q1

p ð15Þ

k ¼ � ffiffiffiffiffi
q2

p ð16Þ

where q1 and q2 are obtained by solving the following

linear optimization problem using the simplex

algorithm:

min u1 þ u2 subject to
PN

i¼1

V4
i

� �
q1 �

PN

i¼1

V2
i

� �
q2 � u1 ¼ �

PN

i¼1

V4
i x2i

� �

PN

i¼1

V2
i

� �
q1 � Nð Þq2 � u2 ¼ �

PN

i¼1

V2
i x2i

� �

q1; q2; u1; u2 � 0

9
>>>>>>=

>>>>>>;

ð17Þ

2.3. Interpretation of Residual Gravity Anomaly due

to a Horizontal Cylinder Model

The residualgravity effect (V) of ahorizontal cylinder-

like structure at any point on the free surface along the

principal profile in a Cartesian coordinate system (Fig. 1)

is also given according to Gupta (1983) as:

VðxiÞ ¼ k
1

x2i þ z2ð Þ ði ¼ 1; . . .;NÞ ð18Þ

where z is the depth from the surface to the center of

the body and k is the amplitude coefficient given by

k ¼ 2pGqR2z. Following the same manner as in the

sphere model, the parameters related to the gravity

anomaly produced by horizontal cylinder can be es-

timated by the following equations:

z ¼ ffiffiffiffiffi
q1

p ð19Þ

k ¼ q2 � q3 ð20Þ

where q1, q2 and q3 are obtained by solving the fol-

lowing linear optimization problem using the simplex

algorithm:
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min u1 þ u2 subject to

PN

i¼1

V2
i

� �
q1 �

PN

i¼1

Vi

� �
q2 þ

PN

i¼1

Vi

� �
q3 � u1 ¼ �

PN

i¼1

V2
i x2i

� �

PN

i¼1

Vi

� �
q1 � Nð Þq2 þ Nð Þq3 � u2 ¼ �

PN

i¼1

Vix
2
i

� �

q1; q2; q3; u1; u2 � 0

9
>>>>>>>=

>>>>>>>;

ð21Þ

2.4. Interpretation of a Synthetic Gravity Anomaly

due to a Horizontal Cylinder Model

with Different Levels of Gaussian Random Noise

A synthetic gravity anomaly VðxiÞ ði ¼
1; . . .;NÞ due to a horizontal cylinder-like structure

is generated from Eq. (18) using the following model

parameter values: depth to the center of the structure,

z = 15 m; and the amplitude coefficient,

k = 1,500 mGal. m2 (Fig. 2).

Based on this generated synthetic anomaly, two

additional gravity anomalies are regenerated; by

perturbing it with different Gaussian random noise

maximum levels of 7 and 10 %, respectively.

Figure 2 shows the data set of the synthetic

gravity anomaly of a profile 23 m in length digitized

at a 1-m sampling step generated with a maximum

10 % level of Gaussian random noise.

Both regenerated gravity anomalies are conse-

quently interpreted by the proposed method by

considering a priori that the sources causing these

anomalies are a horizontal cylinder, a sphere, and a

vertical cylinder. The results acquired for the three

models are shown in Table 1.

Table 1 shows clearly that the obtained minimal

RMSE for the two anomalies are related to the

horizontal cylinder model. This means that the

residual gravity anomaly must be preferably modeled

as a horizontal cylinder. The results presented in

Table 1 show also that the estimated parameter

values derived by this proposed interpretation method

are very close to the true parameter values. This

clearly proves the efficiency and capability of this

proposed interpretation method.

Moreover, it is noticed from Table 1 that the

amplitude coefficient parameter (k) is found to be

more sensitive to random noise than the depth

parameter (z). With k being a multiplier factor, this

explains the sensitivity and the differences between

the estimated and the true model values.

3. Applications

Residual gravity field anomalies over various

geological structures were interpreted by the pro-

posed method. The field gravity anomalies were

interpreted according to three different geological

structures, e.g., a sphere, a horizontal cylinder, and a

vertical cylinder. The resulting model with the lowest

RMSE was selected as the best model for estimating

the parameters of the interpreted residual gravity

anomaly.

3.1. Interpretation of the Chromites Residual Gravity

Field Anomaly

Figure 3 shows a normalized residual field gravity

anomaly measured over a chromites deposit in

Camaguey Province, Cuba (ROBINSON and CORUH

1988). This gravity anomaly was reinterpreted by the

proposed method. The results acquired are shown in

Table 2, which includes the results of assuming a

priori that the source of this anomaly wa a sphere, a

vertical cylinder or a horizontal cylinder model.

0

1

2

3

4

5

6

7

8

-15 -12 -9 -6 -3 0 3 6 9 12 15

V(x)(mGal)

x (m)

Synthe�c anomaly with

10% noise

Computed anomaly

Figure 2
Diagrams of the computed anomaly and synthetic data set due to an

horizontal cylinder, adding a maximum of 10 % random noise

(sampling step is 1 m)
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Table 2 shows precisely that the minimal RMSE was

obtained for the horizontal cylinder, meaning the

residual gravity anomaly is preferably modeled as a

horizontal cylinder. The depth obtained in this case

(z = 17.71 m) is found to be in a good agreement

with that obtained from borehole information

(z = 21 m) (ROBINSON and CORUH 1988). The com-

puted gravity anomaly was drawn according to these

estimated horizontal cylinder model parameters, as

shown in Fig. 3. The comparison between field and

computed anomalies clearly indicates close agree-

ment, attesting to the capability and validity of the

method.

3.2. Interpretation of the Karrbo Residual Gravity

Field Anomaly

Figure 4 shows a residual field gravity anomaly of

a profile 25.6 m in length measured over the elon-

gated pyrrhotite ore, Karrbo, Vastmanland, Sweden

(SHAW and AGARWAL 1990). This anomaly has been

also reinterpreted by the proposed method. The

results acquired are shown in Table 3, which includes

the results of assuming a priori that the source of this

anomaly is a sphere, a vertical cylinder, or a

horizontal cylinder model. Table 3 shows precisely

that the minimal RMSE was obtained for the

horizontal cylinder, meaning that the residual gravity

anomaly is preferably modeled as a horizontal

cylinder. The depth obtained in this case

(z = 4.7 m) is found to be in good agreement with

the depth reported by TLAS et al. (2005)

(z = 4.82 m), SHAW and AGARWAL (1990)

(z = 5.8 m), and EL-ARABY (2000) (z = 5.23 m).

The computed gravity anomaly was drawn according

to these estimated horizontal cylinder model pa-

rameters, as shown in Fig. 4. Comparison between

Table 1

Interpretation of a synthetic gravity anomaly with different maximum levels of Gaussian random noise

Source

shape

Model

parameters

True model

parameter values

Estimated model parameter

values with a maximum of

7 % random noise

Estimated model parameter

values with a maximum of

10 % random noise

Horizontal cylinder z (m) 15 14.7 13.8

k (mGal. m2) 1,500 1,469.8 1,322.2

RMSE (mGal) – 0.27 0.41

Sphere z (m) 15 7.5 7.3

k (mGal. m3) 1,500 13,439 12,912

RMSE (mGal) – 14.8 15.6

Vertical cylinder z (m) 15 9.5 8.8

k (mGal. m) 1,500 64.4 61.2

RMSE (mGal) – 9.2 12.9

0

0.2

0.4

0.6

0.8

1

1.2

-50 -40 -30 -20 -10 0 10 20 30 40 50

V(x)(mGal)

x (m)

Observed anomaly
Computed anomaly

Figure 3
Normalized residual gravity field anomaly over a chromites

deposit, Camaguey Province, Cuba. The evaluated curve by the

proposed method is done for the horizontal cylinder model

Table 2

Interpretation of the chromites residual gravity anomaly, Cama-

guey Province, Cuba

Model

parameters

Horizontal

cylinder

Vertical

cylinder

Sphere

z (m) 17.71 7.2 36.4

k 321.85

(mGal m2)

8.7 (mGal m) 2.7 9 104

(mGal m3)

RMSE (mGal) 0.0189 0.08 0.21
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field and computed anomalies clearly indicates close

agreement, attesting to the capability and validity of

the suggested method.

4. Conclusion

Herewith a new approach is proposed for inter-

pretation of residual gravity anomalies due to simple

geometrically shaped models such as a sphere, a

vertical cylinder and/or a horizontal cylinder. The

proposed method is based on both the deconvolution

technique to avoid the local minima and on the

simplex algorithm for linear programming to best-

estimate the model parameters values. The new

method was successfully tested first on synthetic data

sets corrupted by different white Gaussian random

noise levels of 7 and 10 % to demonstrate its re-

liability and capability. The synthetically obtained

results show that the estimated parameter values

derived by this method are very close to the assumed

true parameter values. The validity of this method

was then tested on field data sets, showing acceptable

agreement between the results derived by this method

and those obtained by other interpretation methods.

In addition, the depth obtained by such a proposed

method was found to be in a good agreement with

that obtained from the real field data.

Furthermore, the new proposed method is simple

and easily applied, and is, therefore, strongly rec-

ommended for routine analysis of field gravity

anomalies, in an attempt to determine the best pa-

rameter estimates for the studied structures.
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