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Abstract—In this short note, I comment on the research of

PISARENKO et al. (Pure Appl. Geophys 171:1599–1624, 2014)

regarding the extreme value theory and statistics in the case of

earthquake magnitudes. The link between the generalized extreme

value distribution (GEVD) as an asymptotic model for the block

maxima of a random variable and the generalized Pareto distribu-

tion (GPD) as a model for the peaks over threshold (POT) of the

same random variable is presented more clearly. Inappropriately,

PISARENKO et al. (Pure Appl. Geophys 171:1599–1624, 2014) have

neglected to note that the approximations by GEVD and GPD work

only asymptotically in most cases. This is particularly the case with

truncated exponential distribution (TED), a popular distribution

model for earthquake magnitudes. I explain why the classical

models and methods of the extreme value theory and statistics do

not work well for truncated exponential distributions. Conse-

quently, these classical methods should be used for the estimation

of the upper bound magnitude and corresponding parameters.

Furthermore, I comment on various issues of statistical inference in

PISARENKO et al. and propose alternatives. I argue why GPD and

GEVD would work for various types of stochastic earthquake

processes in time, and not only for the homogeneous (stationary)

Poisson process as assumed by PISARENKO et al. (Pure Appl. Geo-

phys 171:1599–1624, 2014). The crucial point of earthquake

magnitudes is the poor convergence of their tail distribution to the

GPD, and not the earthquake process over time.

1. Introduction

This short note is a comment on the paper

‘‘Characterization of the Tail of the Distribution of

Earthquake Magnitudes by Combining the GEV and

GPD Descriptions of Extreme Value Theory’’ by

PISARENKO et al. (2014, hereafter referred to as PIS-

ARENKO et al.). In a continuation of the research of

PISARENKO et al. (2008), the authors suggest applying

both generalized extreme value distribution (GEVD)

and generalized Pareto distribution (GPD) to the

distribution of extreme magnitudes for estimating the

upper bound magnitude and the quantiles of the

maximum magnitude of a defined time period. They

also present the cumulative distribution function

(CDF) of the truncated exponential distribution

(TED) as a distribution model for earthquake mag-

nitudes (see, e.g., COSENTINO et al. 1977). This is a

popular method often applied in hazard models, e.g.,

for the Euro-Mediterranean region (SEISMIC HAZARD

HARMONIZATION IN EUROPE [SHARE] 2014). The CDF

of the TED is written as

F xð Þ ¼
0; x\mmin;

1�expð�b x�mminð ÞÞ
1�exp �b mmax�mminð Þð Þ ; mmin � x � mmax;

1; x [ mmax:

ð1Þ

Here, the exponential function is preferred rather than

the power function with base 10, as the exponential

function is normally used in mathematics (e.g.,

HANNON and DAHIYA 1999). The parameter mmax

represents the upper bound magnitude, and its esti-

mation has been the subject of many studies

(PISARENKO et al. 1996; KIJKO and GRAHAM 1998;

RASCHKE 2012).

As mentioned previously, Pisarenko et al. suggest

applying the GEVD and the GPD for the estimation

of the upper bound magnitude, and explain the link

between GEVD and GPD. I present this link in a

more straightforward and transparent manner in the

following section. I also explain why these models

and methods of extreme value statistics do not work

well in the case of the TED and other truncated

exponential distributions. In Sect. 3, I comment on

various issues concerning the parameter estimation

for GPD and GEVD by Pisarenko et al.
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Additionally, Pisarenko et al. decluster the earth-

quake catalogs and consider only the main events

before applying extreme value analysis to the

empirical earthquake data. This is based on their

assumption that the event occurrence must follow a

homogeneous Poisson process. This is, in fact, not

necessary for applying extreme value models, as I

will explain in Sect. 4. Finally, my comments are

summarized in Sect. 5.

The notations of extreme value theory and sta-

tistics mentioned in the following chapters are

provided in Table 1 of the appendix, which also

includes the corresponding symbols employed by

Pisarenko et al.

2. Comments on the Extreme Value Theory

The first important results utilizing the extreme

value theory were achieved by FISCHER and TIPPETT

(1928), GNEDENKO (1943). Today, this theory is a

well-established field within probability theory and

mathematical statistics. There are numerous available

studies dealing with many aspects of this field (e.g.,

LEADBETTER et al. 1983; DE HAAN and FERREIRA 2006;

FALK et al. 2011). One fundamental aspect of the

extreme value theory is the distribution of peaks over

threshold (POT, see, e.g., COLES 2001, Chap. 4;

BERILANT et al. 2004a, b, Sect. 5.3), which is defined

as

Y ¼ X � xthreshold; Y [ 0; ð2Þ

with a real-valued random variable X and the excess

Y over a certain threshold. The threshold acts in the

same way as mmin in Eq. (1). Under certain condi-

tions, the CDF of Y increasingly approximates the

GPD as the threshold increases. The CDF of the GPD

is written as

H xð Þ¼ 1� 1þcx=r�ð Þ�
1
c; c 6¼0; x[0 and x\�r�=c if c\0

1�exp �x=r�ð Þ c¼0; x[0;
;

ð3Þ

where r* is the scaling parameter and c is the

extreme value index (also called the tail index). With

the Weibull case, the finite right endpoint is c\ 0,

with the Gumbel case it is c = 0, and with the Fré-

chet case it is c[ 0. The Gumbel case also represents

the exponential distribution (ED). There, the scale

parameter r* is equivalent to the reciprocal scale

parameter 1/b of the TED of Eq. (1) with an infinite

mmax.

If the tail of a distribution is a member of one of

the domains of attraction of the GPD, then the CDF

of the block maxima

Z ¼ max X1;X2; . . .;Xnf g ð4Þ

can be approximated by the GEVD in the case of a

large block (sample) size n (see, e.g., BEIRLANT et al.

2004a, b, Sect. 5.1), with CDF

The block size can also be determined by the

defined length of time of a given period of obser-

vation. The actual and exact distribution of the

block maximum Z is simply formulated for inde-

pendent and identically distributed random variables

X with

G xð Þ ¼ FðxÞn: ð6Þ

The probability that the maximum Z B x is equal to

the probability of no realization with X[ x in the block

(sample). In the case of a large n, we can apply the

Poisson approximation (see, e.g., FALK et al. 2011, Part

I). This means that the number of realizations X[ x is

binomially distributed, which can be approximated by

the Poisson distribution and can be written as

G xð Þ ¼ Pr m ¼ 0 X [ xjf g ¼ expðnð1 � FðxÞÞ: ð7Þ

G xð Þ ¼ exp � 1 þ cðx � lÞ=rð Þ�
1
c

� �
; c 6¼ 0; x[ l� r

c if c[ 0 otherwise x\l� r
c

exp � exp � x�l
r

� �� �
; c ¼ 0

: ð5Þ
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Furthermore, n and F(x) can be replaced by H(x)

and the (average) number of excesses nthreshold in the

case of a large sample size n. Hence, we obtain

[bounds of x according to Eqs. (5, 9a–9c)]

G xð Þ ¼ exp �nthreshold 1þ cðx� xthresholdÞ=r�ð Þ�
1
c

� �
; c 6¼ 0

exp �nthreshold exp � x�xthreshold

r�
� �� �

; c¼ 0
:

ð8Þ

This equation is equivalent to Eq. (5) with the

following parameter transformation

r ¼ n
c
thresholdr

�; ð9aÞ

l ¼ xthreshold � r� 1 � n
c
threshold

� �
=c if c 6¼ 0; ð9bÞ

l ¼ xthreshold þ r� log nthresholdð Þ if c ¼ 0; ð9cÞ

and the extreme value index c is the same. This

transformation is already well known and needs no

further explanation (see, e.g., COLES 2001, Chap. 4).

Note that a distribution, which is a member of one

domain of attraction of the GEVD and GPD, has only

one exact asymptotic extreme value index c, although

different estimations can be obtained.

A crucial point is the convergence speed: how fast

does the GEVD approximate the distribution of block

maxima in Eq. (6) and the GPD approximate the

actual tail of the distribution? For example, the

exponential distribution is equal to the GPD with an

extreme value index of c = 0 and the tail of an ED is

again an ED. The convergence speed is infinite.

Correspondingly, LEADBETTER et al. (1983) showed

that the block maxima of an exponentially distributed

random variable converge to a GEVD with an

extreme value index of c = 0. For application of the

GEVD, no large size of the block maxima is needed

(BEIRLANT et al. 2004a, b, Fig. 2.9).

The TED is similar to the exponential distribution

when the upper bound mmax is relatively high. This

applies in many cases, such as the magnitude distri-

bution according to the well-known Gutenberg–

Richter law. According to LEADBETTER et al. (1983),

the extreme value index of the TED is c = -1, which

means that the POT of a TED converges to a uniform

distribution. However, the convergence is often poor

due to the similarity between ED and TED. Figure 1

presents the POTs of various TEDs with parameter

xthreshold = mmin of Eqs. (1, 2) and the corresponding

GPD with an extreme value index of c = -1. The

scale parameter of the GPD is determined by

r* = mmax. While it is obvious that different TEDs

with equal upper bounds have the same asymptotic

tail distribution, the approximation of the TEDs by a

GPD works only for very small differences of

mmax - mmin in relation to the parameter b (b & 2.3

in the case of earthquake magnitudes). Similarly, the

block size must be very large for the approximation

of Eq. (6) with the GEVD to work for the TED. This

is in line with previous results by RASCHKE (2012,

Sect. 2.6), wherein the upper bound mmax can be

better estimated by the methods described by PIS-

ARENKO et al. (1996), KIJKO and GRAHAM (1998), and

RASCHKE (2012) than by extreme value statistics.

Of course, there are alternatives to the TED model

for the distribution of magnitudes. The generalized

truncated exponential distribution (GTED) model

recently formulated by RASCHKE (2014) is one such

alternative. In all cases, the magnitude distribution is

similar to the ED (as a GPD with an extreme value

index of c = 0) in a large share of the definition

range of the random variable (cf., Gutenberg–Richter

law). This implies a poor convergence of the upper

tail of the magnitude distribution to the correspond-

ing asymptotic GPD with an extreme value index of

c\\0, and hence I strongly advise against applying

classical extreme value statistics for the approxima-

tion of earthquake magnitudes.

3. Comments on Statistical Inference

Pisarenko et al. apply the GEVD using the block

maxima method and the GPD using the POT method

to estimate the upper bound magnitude and the

quantile of the maximum magnitude for a defined

time period. In both cases, the procedures they use

are confusing and inconsistent with those of classical

extreme value statistics. Pisarenko et al. consider

different lengths T of time periods for the block

maxima method. This is unusual, but possible, and is

oriented towards the classical POT with different

thresholds. The authors apply the moment method for

estimating GEVD parameters, referring to PISARENKO

et al. (2008), which is in contrast to the commonly

used extreme value statistics, as presented, e.g., by

Vol. 173, (2016) Comment on Pisarenko et al. 703



Coles (2001, Sect. 3.3) and BEIRLANT et al. (2004a, b,

Sect. 5.1). Based on these references, PISARENKO et al.

should have used the probability-weighted moment

(PWM) and maximum likelihood (ML) methods. The

authors justify their choice by noting the better esti-

mation results in PISARENKO et al. (2008). This

argument is weak, however, because PISARENKO et al.

(2008) did not investigate the asymptotic behavior of
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Figure 1
Demonstration of the poor convergence speed of the tail of the TED to the GPD for different scale parameters b of the TED und upper bounds

mmax, m = 0. In all cases, the GPDs have an extreme value index of c = -1 and the same upper bound as the TEDs: a mmax = 2, b as a but

with logarithmized scale, c mmax = 0.5, d as c but with logarithmized scale, e mmax = 0.2, f as e but with logarithmized scale
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the moment method, and only numerically investi-

gated the case of an extreme value index with c =

-0.2. In addition, the PWM and ML methods do not

work well for an extreme value index of c\-0.5

(COLES 2001, Sect. 3.31), as is the case for TED with

c = -1. The ML method has a large bias (HOSKING

et al. 1985, Fig. 2), and the PWM has lower effi-

ciency compared with the ML method (HOSKING et al.

1985, Fig. 4). The authors do not present an argument

for why the moment method could work better for

small extreme value indexes with c B -0.25.

PISARENKO et al. also apply the ML method to esti-

mate the Kolmogorov distance for the GEVD [their

Eq. (26)], which is not consistent with their point

estimation using the moment method. The Kolmogo-

rov distance is used by the authors to detect the optimal

threshold of the POT analysis. This distance represents

the test statistics of the Kolmogorov–Smirnov good-

ness-of-fit test. The idea of applying goodness-of-fit

statistics for threshold selection is not new. The pro-

cedure described by GOEGEBEUR et al. (2008), for

example, includes goodness-of-fit statistics, is based

on a stringent theory, and is validated by numerical

investigation of different situations. Pisarenko et al.,

however, provide no such validation.

POT analysis is generally used in extreme value

statistics for estimating an extreme value index, as the

sample size is normally larger than that of the block

maxima. Further, the GPD uses only two parameters,

both of which result in a smaller estimation error of

the extreme value index than the estimation using the

block maxima. As mentioned previously, the authors

estimate the parameters of the GPD in POT analysis

using the ML method. In the case of a small sample

size, the ML method does not work well for a small

extreme value index of c B -0.25 (HÜSLER et al.

2011, Figs. 3, 5). In addition, the equations of the ML

method do not solve every sample in the case of

c\-0.5 according to Grimshaw (1993). The esti-

mation method described by HÜSLER et al. (2011,

2014) has no such limitation, and is hence recom-

mended for a small extreme value index. It is

important to remember that the extreme value index

of the TED is c = -1.

A further crucial point is the error quantification

in the Pisarenko et al. estimation procedure, which

includes a bootstrap, an averaging, and a Monte Carlo

simulation for applying the GEVD and GPD. Finally,

the authors use the average of the estimated param-

eters for different block lengths in the case of a

GEVD and different thresholds in the case of a GPD.

I do not see the advantage in such averaging. On the

contrary, if simple point estimation is used, the

asymptotic variance–covariance matrix of the esti-

mation method can be used for quantifying the

estimation error (HÜSLER et al. 2011, Chap. 2.1). The

authors also quantify the standard deviation of the

estimation error in a different manner, in which they

apply reshuffling according to the bootstrap method

using 100 reshuffled samples, which would seem to

be too few according to DASGUPTA (2008). The

standard deviations (standard errors) shown in their

Figs. 2–8 are computed using this procedure. Con-

fusingly, there are different standard deviations for

the lower and upper lines in these figures (e.g., Fig. 6,

T = 7), although there is only one standard deviation.

Furthermore, Pisarenko et al. compute the standard

deviation and the mean squared error (MSE) using

Monte Carlo simulations with 500 generated samples

of a GEVD and GPD in the case of POT analysis. The

resulting standard deviations differ widely between

the bootstrap and Monte Carlo simulations. For

example, for the GEVD of the Harvard catalog, we

have an MSE(c) = 0.047 for T = 80 days, which

means a standard deviation of Std(c) & 0.21. The

standard deviation in the authors’ corresponding

Fig. 2, however, has the value Std(c) = 0.02–0.025

for T = 75 days, which is only a small fraction of

0.21. I strongly reject their interpretation that ‘‘this is

not surprising since the latter gives only the scatter

conditional to the same unique data sample’’, as the

bootstrap method is specifically used for quantifying

the error distribution and its corresponding standard

error (DASGUPTA 2008). Such a sizable difference

may be an indicator that approximating the distribu-

tion of extreme magnitudes by GEVD and GPD does

not work well.

This leads again to the key issue of poor con-

vergence speed in applying GPD and GEVD to

earthquake magnitudes. As mentioned above, the

GEVD and corresponding estimation methods do not

work well for the TED (RASCHKE 2012). The upper

Vol. 173, (2016) Comment on Pisarenko et al. 705



bound magnitude should be estimated using the

methods described by PISARENKO et al. (1996), KIJKO

and GRAHAM (1998), HANNON and DAHIYA (1999), or

RASCHKE (2012), where the quantile of a maximum

magnitude of a defined time period can be computed

by the inverse of Eq. (7). The inherent limitations of

the extreme value theory and statistics also apply to

other distribution models for magnitudes, as they are

very similar to the ED, according to the Gutenberg–

Richter law.

4. Is a homogeneous Poisson process needed?

Finally, I want to point out that earthquake data

do not need to occur as a homogeneous Poisson

process in order to apply extreme value theory and

statistics. Pisarenko et al. decluster the earthquake

catalog and use only the main events to provide a

homogeneous Poisson process with independent

magnitudes, which is similar, e.g., to ZÖLLER et al.

(2014). But a homogeneous Poisson process is not a

necessary condition for applying GEVD and GPD. A

homogeneous process would imply that the number

of events with a magnitude over a defined threshold

would be Poisson-distributed (JOHNSON et al. 1994,

p. 553), but the GEVD works asymptotically for

different distributions of excess numbers. A simple

example is the maxima of an exponentially distrib-

uted random variable with a fixed, not Poisson-

distributed, block (sample) size that converges

quickly to a GEVD (BEIRLANT et al. 2004a, b,

Fig. 2.9). LEADBETTER et al. (1983, Part II) and FALK

et al. (2011, Part III) provide further extensions. The

GEVD can also be applied for random variables with

serial correlation under certain conditions. The ex-

tremal index, an additional parameter, compensates

for the influence of the serial correlation.

In addition, it has been shown that the parameters

of the GPD can be estimated in a POT analysis even

if there is serial correlation between the members of

excess clusters (RASCHKE 2013a). In this case, the

estimation error can be quantified using the jackknife

method. The crucial point of earthquake magnitudes

is the poor convergence of their tail to the GPD, not

the earthquake process in time.

5. Conclusions

In this comment, I have discussed important

aspects of the research conducted by Pisarenko et al.

from the perspective of extreme value statistics and

theory. In summary, I advise against using the pro-

cedures as applied by Pisarenko et al. GPD and

GEVD work well only for the extremes of TED or

GTED when the block size is very large and/or the

threshold is very close to the upper bound magnitude.

The crucial point of earthquake magnitudes is the

poor convergence of their upper tail to the GPD.

Therefore, the classical methods for estimating the

upper bound of the TED should be applied as shown

by PISARENKO et al. (1996), KIJKO and GRAHAM (1998),

HANNON and DAHIYA (1999), and RASCHKE (2012). The

appropriateness of these methods for other distribu-

tion models such as the GTED should be examined in

further research. Corresponding parameters of the

maximal magnitudes such as the quantile of random

block maxima of a defined time period can be com-

puted by the inverse of Eq. (7) in all cases.

Appendix

See Table 1.

Table 1

Applied symbols and notations

In

comments

In

Pisarenko

et al.

Explanation

b b Scale parameter of the TED [Eq. (1)]

c n, c, f Extreme value index of GPD and GEVD

r* s Scale parameter of GPD, our Eq. (3)

r r Scale parameter of GEVD, our Eq. (5)

l l Location parameter of GEVD, our Eq. (5)

mmin m Defined or selected lower bound

magnitude of the TED, parameter in

Eq. (1)

mmax mmax Upper bound magnitude of the TED

[parameter in Eq. (1)] and also upper

bound of GPD and GEVD for c\ 0 in

case of earthquake magnitudes

n n Sample size, block size; can also be the

average block size for a defined time

period in Eq. (7)
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Table 1

continued

In

comments

In

Pisarenko

et al.

Explanation

nthreshold kT Sample size of the excess; can also be the

average sample size

x x Scale of the real numbers

xthreshold H Threshold in our Eq. (2)

X Random variable

Y X - H Random variable, excess

Y = X - xthreshold, our Eq. (2)

Z Mn, MT Block maximum, maximum magnitude

of a time period, our Eq. (4)

F(x) F(x) Cumulative distribution function (CDF)

of a random variable X; expresses the

probability of non-exceedance X B x

G(x) U(x) CDF of block maximum Z, CDF of the

GEVD, our Eqs. (5–8)

H(x) FH(x) CDF of a random excess Y, CDF of the

GPD

Pr{ajb} Probability of a under the condition of b
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