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Abstract—We present in this paper a new formula representing

the magnetic anomaly expressions produced by most geological

structures. Using the new formula we developed a simple and fast

numerical method to determine simultaneously the depth and shape

of a buried structure from second-horizontal derivative anomalies

obtained from magnetic data with filters of successive window

lengths. The method involves using a nonlinear relationship

between the depth to the source and the shape factor and a com-

bination of observations at four points with respect to the

coordinate of the source center with a free parameter (window

length). The relationship represents a parametric family of curves

(window curves). For a fixed free parameter, the depth is deter-

mined for each shape factor. The computed depths are plotted

against the shape factors representing a continuous monotonically

increasing curve. The solution for the shape and depth of the buried

structure is read at the common intersection of the window curves.

This method can be applied to residuals as well as to the observed

magnetic data consisting of the combined effect of a local structure

and a second-order regional or less. The method is applied to

synthetic data with and without random errors and tested on three

field examples from India, Brazil and the USA. In all cases the

shape and depth of the buried structures are in good agreement with

the actual ones.

Key words: Magnetic data, new formula, interpretation,

window curves method, noise.

1. Introduction

Many of the geological structures in mineral and

oil exploration can be classified into four categories:

spheres, cylinders, thin sheets and geological con-

tacts. These four simple geometric forms are

convenient approximations to common geological

structures often encountered in the interpretation of

magnetic data. Few methods have been developed to

determine simultaneously both the depth and the

shape of a buried structure from magnetic data.

BARBOSA et al. (1999), HSU (2002) and GEROVSKA and

ARAUZO-BRAVO (2003) presented criteria for deter-

mining the correct structural index that is related to

the shape of the source and is applied in magnetic

interpretation using the Euler deconvolution method.

ABDELRAHMAN and HASSANEIN (2000) developed a

parametric–curves method (window–curves method)

to determine simultaneously the shape and the depth

of a buried structure from a residual magnetic

anomaly profile. SALEM et al. (2004) presented a

method for interpreting a residual magnetic anomaly

where a linear equation involving a symmetric

anomalous field and its horizontal gradient is derived

to provide the depth and the shape of the buried

structures. ABDELRAHMAN et al. (2013) described a

procedure for automated determination of the best-fit

model parameters including the depth and shape of

the buried structure from magnetic data. ABDELRAH-

MAN and ESSA (2005) developed a least-squares

depth–shape curves method to simultaneously define

the shape and the depth of a buried structure from a

residual magnetic anomaly profile. It is evident from

this review that the accuracy of the results obtained

by most of these methods depends upon the accuracy

to which the residual anomaly can be separated from

the observed magnetic data.

Finally, to address the above regional–residual

separation problem, ABDELRAHMANet al. (2007)

developed a least-squares method to define simulta-

neously the shape and the depth of a buried structure

from magnetic data. The method is based on com-

puting the variance of depths determined from all

second-derivative anomaly profiles. The variance is

considered a criterion for determining the correct

shape and depth of the buried structure. On the other

hand, ABDELRAHMAN et al. (2002) presented a semi-

automatic method to determine the depth to the local

and deep-seated structures from a magnetic anomaly
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profile and suggested a procedure to estimate the

shape of both structures. However, the above two

methods are generally lengthy and tedious in deter-

mining the shape and the depth of the buried

structure.

In the present paper we have developed a

simple and fast numerical method to determine

simultaneously the depth and shape of a buried

structure from second-horizontal derivative

anomalies obtained from magnetic data with filters

of successive window lengths using a new formula

representing the magnetic anomaly expressions

produced by simple geological structures. This

method can be applied to residuals as well as to the

observed magnetic data. The method was applied to

synthetic data with and without random errors and

tested on three field examples from India, Brazil

and the USA.

Table 1

Characteristic amplitude coefficient K and inclination parameter h for vertical, horizontal and total magnetic field anomalies due to thin

sheets and horizontal cylinders (after GAY 1963, 1965)

Thin sheets Horizontal cylinders

Field Amplitude coefficient (K) Inclination parameter (h) Amplitude coefficient (K) Inclination parameter (h)

Vertical 2 k t T
0

o/z I
0

o 2 d 2 k T
0

oS/z2 I
0

o - 90�
Horizontal 2 k t T

0

osin a/z I
0

o - d - 90� 2 k T
0

oS/z2 sin a I
0

o - 180�
Total

2 k t T
0
o sin Io

z sin I
0
o

2 I
0

o - d - 90� 2 k T
0

o S = z2 sin Io

sin I
0
o

2 I
0

o - 180�
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Figure 1
A composite total magnetic anomaly consisting of the combined effects of a residual component due to a thin sheet (profile length = 60 m;

K = 200 nT; z = 3 m; h = 45�; q = 1.0) and a regional component represented by a second-order polynomial
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2. Theory

Careful examination of the total, vertical and

horizontal magnetic anomaly expressions of the

sphere (meridian profile) (RAO et al. 1977; PRAKASA

RAO and SUBRAHMANYAM 1988), the horizontal cyl-

inder (PRAKASA RAO et al. 1986) and the thin sheet

(GAY 1963) led to the following generalized formula

which represents magnetic anomalies produced by

most simple geologic models:

Tðxi; zÞ ¼ K
Az2 þ Bxi þ Cx2

i

ðx2
i þ z2Þq ; i ¼ 0; 1; 2; 3; . . .;N;

ð1Þ

where

A ¼

3 sin2 h� 1

2 sin h

� cos h

cos h

cos h=z

8
>>>>>><

>>>>>>:

; B ¼

� 3z sin h

� 3z cos h

� 3z sin h

2z sin h

� sin h

8
>>>>>><

>>>>>>:

; C

¼

3 cos2 h� 1

� sin h

2 cos h

� cos h

0

8
>>>>>><

>>>>>>:

;

for a sphere ðtotal fieldÞ
for a sphere ðvertical fieldÞ
for a sphere ðhorizontal fieldÞ
for a horizontal cylinder;

thin sheet ðFHDÞ; geological

contact ðSHDÞ ðall fieldsÞ
for a thin sheet; geological

contact ðFHDÞ ðall fieldsÞ:
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Figure 2
Data analysis of Fig. 1 using the present second derivative method
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Figure 3
The family of window curves of z as a function of q for s = 1, 2, 3, 4 and 5 m as obtained from noise free magnetic anomaly (Eq. 13) using

the present approach. Estimates of q and z are, respectively, 1.0 and 3.0 m
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Figure 4
A noisy composite total magnetic anomaly consisting of the combined effects of a residual component due a sphere (profile length = 60 m;

K = 3,000 nT; z = 6 m; h = 60�; q = 2.5) and a regional component represented by a second-order polynomial
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for a sphere (total field) for a sphere (vertical field) for

a sphere (horizontal field) for a horizontal, cylinder,

thin sheet (FHD), geological contact (SHD) (all fields)

for a thin sheet, geological contact (FHD) (all fields).

In Eq. (1) z is the depth of the body, xi is the

position coordinate, K is the amplitude coefficient, h
is an inclination parameter, FHD and SHD denote the

first and the second horizontal derivatives of the

magnetic anomaly, respectively, and q is the shape

factor. As examples, the shape factors for a sphere, a

horizontal cylinder, and a thin sheet are 2.5, 2.0, and

1.0, respectively. Examples of K and h for the case of

the sphere are the magnetic moment and effective

angle of magnetization in the plane of the principle

profile coinciding with the x-direction, respectively.

In the case of thin sheet and horizontal cylinder, the

values of K and h are shown in Table 1.

In Table 1 k is magnetic susceptibility contrast; Io

is the true inclination of the geomagnetic field; T
0

o and

I
0

oare, respectively, the effective intensity and effec-

tive inclination of the geomagnetic field in the

vertical plane normal to the strike of the body; t and

d are, respectively, the thickness and the dip of the

thin sheet; S is the cross-sectional area of the hori-

zontal cylinder; a is the azimuth of the body

measured in a clockwise direction from magnetic

north. In all cases the values of C and h can be used

for detailed interpretation.

Equation (1) is similar to Eq. (6) of ABDEL-

RAHMAN et al. (2013) but not identical because their

equation depends on the anomaly value at the

origin and can be only used to interpret residual

magnetic anomalies. However, our new formula

(Eq. 1) can be used to develop new methods to
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Figure 5
Data analysis of Fig. 4 using the present second derivative method
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interpret both residual and observed magnetic

anomalies as follows.

Let us consider four observation points (xi– 2s,

xi - s, xi ? s, xi ? 2s) along the anomaly profile

where s = 1, 2, 3,…, m spacing units is called the

window length or graticule spacing of any residual or

derivative filter (HAMMER 1977). Using Eq. (1) the 1st

horizontal derivative magnetic anomaly using a cen-

tral difference formula is given by:

Txðxi; z; sÞ ¼
K

2s

Az2 þ B xi þ sð Þ þ C xi þ sð Þ2

xi þ sð Þ2þz2
� �q

8
<

:

�Az2 þ B xi � sð Þ þ C xi � sð Þ2

xi � sð Þ2þz2
� �q

9
=

;
:

ð2Þ

The 2nd horizontal derivative magnetic anomaly

is obtained from Eq. (2) as

Txxðxi; z; sÞ ¼
K

4s2

Az2 þ B xi þ 2sð Þ þ C xi þ 2sð Þ2

xi þ 2sð Þ2þz2
� �q

8
<

:

�2
Az2 þ Bxi þ Cx2

i

ðx2
i þ z2Þq

þAz2 þ B xi � 2sð Þ þ C xi � 2sð Þ2

xi � 2sð Þ2þz2
� �q

9
=

;
:

ð3Þ

Following ABDELRAHMAN and ABO-EZZ (2001),

Eq. (3) gives the following numerical second deriv-

ative values at xi = s

TxxðsÞ ¼
K

4s2

Az2 þ 3Bsþ 9Cs2

ð9s2 þ z2Þq � 2
Az2 þ Bsþ Cs2

ðs2 þ z2Þq
�

þAz2 � Bsþ Cs2

ðs2 þ z2Þq
�

;
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Figure 6
The family of window curves of z as a function of q for s = 1, 2, 3, 4 and 5 m as obtained from the noisy composite total magnetic anomaly

(Eq. 14) using the present approach. Estimates of q and z are, respectively, 2.46 and 5.90 m
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which is reduced to:

TxxðsÞ ¼
K

4s2

Az2 þ 3Bsþ 9Cs2

ð9s2 þ z2Þq
�

� Az2 þ 3Bsþ Cs2

ðs2 þ z2Þq
�

; xi ¼ þs ð4Þ

Similarly, Eq. (3) gives the following numerical

derivative values at xi = -s, xi = ?2s, and xi = -2s,

respectively

Txxð�sÞ ¼ K

4s2

Az2 � 3Bsþ 9Cs2

ð9s2 þ z2Þq
�

�Az2 � 3Bsþ Cs2

ðs2 þ z2Þq
�

; xi ¼ �s ð5Þ

Txxðþ2sÞ ¼ K

4s2

Az2 þ 4Bsþ 16Cs2

ð16s2 þ z2Þq
�

þ 2
Az2 þ 2Bsþ 4Cs2

ð4s2 þ z2Þq þ Az2�2q

�

;

xi ¼ þ2s ð6Þ

Txxð�2sÞ ¼ K

4s2
Az2�2q � 2

Az2 � 2Bsþ 4Cs2

ð4s2 þ z2Þq
�

þAz2 � 4Bsþ 16Cs2

ð16s2 þ z2Þq
�

; xi ¼ �2s: ð7Þ

Subtracting Eq. (5) from Eq. (4) we obtain

TxxðþsÞ � Txxð�sÞ ¼ 3KB

2s

1

ð9s2 þ z2Þq �
1

ðs2 þ z2Þq
� �

;

ð8Þ

and subtracting Eq. (7) from Eq. (6) we obtain

Txxðþ2sÞ � Txxð�2sÞ ¼ 2KB

s

1

ð16s2 þ z2Þq �
1

ð4s2 þ z2Þq
� �

:

ð9Þ

In this way we are able to eliminate A and C from

Eq. (3) by introducing four pieces of information,

namely, Txx(?s), Txx(-s), Txx(?2s), and Txx(-2s).

Dividing Eq. (8) by Eq. (9) we obtain the fol-

lowing non-linear equation in z:
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Figure 7
A composite total magnetic anomaly consisting of the combined effects of a residual component due a horizontal cylinder (profile

length = 60 m; K = 500 nT; z = 4 m; h = -55�; q = 2.0) in which an error of 1 m is introduced into the horizontal position xi and a

regional component represented by a second-order polynomial
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where

F ¼ TxxðþsÞ � Txxð�sÞ
Txxðþ2sÞ � Txxð�2sÞ :

In this way we are able to eliminate K and B from

Eqs. (8) and (9).

Equation (10) can be solved for z using standard

methods for non-linear equation. Here it is solved by

a fixed point iteration method. The iteration form is

obtained by multiplying Eq. (10) by z
F
and rearranging

the right and left sides of the equation to be of the

form z = w(z). The result is as follows:

zf ¼
3zj

4F

s2 þ z2
j

� �q

� 9s2 þ z2
j

� �qh i
16s2 þ z2

j

� �q

4s2 þ z2
j

� �q

9s2 þ z2
j

� �q

s2 þ z2
j

� �q

4s2 þ z2
j

� �q

� 16s2 þ z2
j

� �qh i

8
<

:

9
=

;
;

ð11Þ

where zj is the initial depth parameter and zf is the

revised depth parameter; zf will be used as the zj for

the next iteration. The iteration stops when
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Data analysis of Fig. 7 using the present second derivative method

f ðz; q; sÞ ¼ 3

4

s2 þ z2
j

� �q

� 9s2 þ z2
j

� �qh i
16s2 þ z2

j

� �q

4s2 þ z2
j

� �q

9s2 þ z2
j

� �q

s2 þ z2
j

� �q

4s2 þ z2
j

� �q

� 16s2 þ z2
j

� �qh i

8
<

:

9
=

;
� F

0

B
@

1

C
A ¼ 0: ð10Þ
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|zf - zj| B e, where e is a small predetermined real

number close to zero.

The advantage of this method over the other meth-

ods that use a second derivative filter is that the effect of

a second-order regional polynomial is removed com-

pletely. This is because of the fact that the second

derivative filter will reduce the 2nd-order regional

effect to a constant regional field and at the same time

the subtraction of the numerical value of Txx(-s) from

the value of Txx(?s) and the subtraction of the value

Txx(-2s) from The value of Txx(?2s) (Eqs. 8, 9) will

eliminate the constant regional field in the data.

The depth is determined by solving one non-linear

equation in z. One value of s is theoretically sufficient

to determine the depth to the buried structure from

Eq. (11), but in practice more than one value of s is

desirable because of the presence of noise and

interference from neighboring sources. However, the

accuracy of the result obtained using Eq. (11)

depends up on the accuracy with which the shape

factor can be determined from other geological and/

or geophysical data.

3. Solution Using the Window Curves Method

Because the shape of the buried structure is

sometimes difficult to determine from geological

and/or other geophysical data, Eq. (11) can be used

not only to determine the depth but also to estimate

simultaneously the shape of the buried structure. The

procedure is as follows:

1. Determine the origin of the anomaly profile

(xi = 0) using the method described by STANLEY

(1977) in case of no other geological or geophys-

ical data. A straight line joining the maximum to

the minimum of the anomaly profile will intersect

the anomaly curve at the point xi = 0.

2. Digitize the anomaly profile at several points

including the central point xi = 0.
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Figure 9
The family of window curves of z as a function of q for s = 1, 2, 3, 4 and 5 m as obtained from the composite total magnetic anomaly (Eq. 15)

using the present approach. Estimates of q and z are, respectively, 2.2 and 10.3 m
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3. Subject the digitized values to a separation

technique using the second derivative method.

The numerical second derivative anomaly value

at point xi is computed from observed magnetic

data (T(xi)) using the equation

TxxðxiÞ ¼
Tðxi þ 2sÞ � 2TðxiÞ þ Tðxi � 2sÞ

4s2
: ð12Þ

4. Apply several second derivative filters of suc-

cessive window lengths to the input data. In this

way several second derivative magnetic anomaly

profiles are obtained.

5. Apply Eq. (11) to each of the second derivative

anomaly profiles, yielding depth solutions (z) for

all possible q values. Then the computed depths

are plotted against the shape factors representing

a parametric family of the curves (window

curves). The correct solution for z and q occurs

at the common intersection of the window curves.

4. Theoretical Examples

4.1. Noise Free Data

The composite magnetic anomaly in nanoteslas of

Fig. 1 consisting of the combined effect of a total

magnetic anomaly due to a thin sheet (K = 200 nT;

z = 3 m; h = 45�; q = 1.0) and 2nd-order regional

polynomial was computed by the following

expression:

TðxiÞ ¼ 200
3 cos 45oð Þ � xi sin 45oð Þ

x2
i þ 32ð Þ þ 0:03x2

i � 2xi þ 10;

Thin sheet modelþ second-order regional polynomial:

ð13Þ

The magnetic anomaly T(xi) is processed using

five free parameters (window length) (s = 1, 2, 3,

4 and 5 m). The numerical second derivative

anomaly was computed from the input data using

Eq. (12).
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A composite total magnetic anomaly consisting of the combined effects of a residual component due to a dipping dike (h = 4 m; d = 2 m;

a = 40�; K = 100 nT; profile length = 60 m; sampling interval = 1 m) and a regional component represented by a second-order polynomial
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Equation (11) was applied to each of the five

second horizontal derivative magnetic anomaly pro-

files (Fig. 2) yielding depth solutions for all possible

(q) values. The range of the shape factor value is

chosen to be from 0.8 to 2.5. The spacing of the

q values is chosen to be 0.1. The computed depths are

plotted against the shape factors representing the

parametric family of the window curves. The results

are summarized in Fig. 3. The correct solution for

q and z occurs at the common intersection of the

window curves. Figure 3 shows the intersection at the

correct location of q = 1.0 and z = 3.0 m. The depth

and the shape of the buried structure are in excellent

agreement with the actual depth and shape of the thin

sheet model.

The five window curves shown in Fig. 3 inter-

sect at a single point representing the correct

solution for the shape factor and depth parameters.

When using the correct q value we obtained the

correct z value for any s value while using wrong

q values different z-solutions are obtained for each

s value. This is true because when the correct

q value is used the original Eq. (1) is correct and

therefore the second derivative approximation

expressions are valid and f(z, q, s) = 0 is valid

and has the same solution for any value of s. By

contrast, with a wrong value of q the solution f(z, q,

s) = 0 is incorrect and different for every value of

s as shown in Fig. 3.

It is also shown in Fig. 3 that the iteration method

(Eq. 11) does not converge to a depth solution in

some cases when we use a smaller q value than the

actual q value. This criterion can be used to inform us

about the range of the shape factor. When there is no

convergence the actual shape factor must be greater

than the assumed shape factor.

4.2. Effect of Random Noise

We have computed a composite magnetic anomaly

consisting of the combined effect of a total magnetic

anomaly due to a sphere (K = 3,000 nT; z = 6 m;
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Figure 11
Data analysis of Fig. 10 using the present second derivative method

Vol. 172, (2015) A New Method for Depth and Shape Determinations 449



h = 60�; q = 2.5) and 2nd-order regional polynomial

(Fig. 4) using the following expression:

TðxiÞ

¼3;000
x2

i 3cos2 60oð Þ�1ð Þ�18xi sin 120oð Þþ36 3sin2 60oð Þ�1
� �

x2
i þ62ð Þ2:5

( )

þ0:01x2
i þxi�15;

sphere modelþ second-order regional polynomial:

ð14Þ

To test the stability of our method in the

presence of noise the computed magnetic anomaly

T(xi) was contaminated with random errors with a

noise level of 10 nT (Fig. 4). The numerical second

horizontal derivative magnetic anomaly profiles

obtained from the noisy composite magnetic anom-

aly using five window lengths (s = 1, 2, 3, 4 and

5 km) are shown in Fig. 5. Following the same

interpretation method the results are shown in

Fig. 6.

Figure 6 shows the window curves intersect at

approximately q = 2.46 and z = 5.9 m. This dem-

onstrates that the present method will give reliable

model parameters (z and q) even when the magnetic

anomaly is contaminated with noise. However, when

interpreting highly noisy data there is no unique

intersection point. In this case it is recommended to

use the standard deviation or variance of depths for

each q value to obtain the reasonable results. The

minimum of standard deviation or variance of depths

is considered as a criterion for determining the

correct depth and shape of the buried structure

(ABDELRAHMAN et al. 2006a, b).
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Figure 12
A family of window curves of z as a function of q for s = 1, 2, 3, 4 and 5 m as obtained from the composite total magnetic anomaly (Eq. 16)

using the present approach. Estimates of q and z are, respectively, 1.23 and 5.3 m
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4.3. Effect of a Wrong Origin

This procedure begins with selecting the origin

(xi = 0) using STANLEY’s (1977) method and may

lead to errors in the depth and the shape when

interpreting real data. We investigate this problem in

this subsection.

We computed a composite total magnetic anom-

aly consisting of the combined effect of a total

magnetic anomaly due to a horizontal cylinder

(K = 5,000 nT; z = 10 m; h = -55�; q = 2) and

2nd-order regional polynomial (Fig. 7) from the

following expression after introducing an error of

1 m to the horizontal coordinate:

TðxiÞ ¼ 5;000
100� ðxiþ 1Þ2
� �

cos �55oð Þ þ 20ðxiþ 1Þ sin �55oð Þ

ðxiþ 1Þ2þ 102
� �2

� 0:03x2
i þ 2xi� 5;

Horizontal cylinder modelþ second-order regional polynomial:

ð15Þ

A separation technique using a second derivative

method was applied to the composite magnetic

anomaly T(xi). Five successive second derivative

window lengths (s = 1, 2, 3, 4 and 5 m) were applied

to the composite anomaly (Fig. 8). We applied our

interpretation method to the second derivative anom-

alies thus obtained. The results are shown in Fig. 9.
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Figure 13
A composite vertical magnetic anomaly consisting of the combined effect of an intermediate structure (thin sheet with K = 200 nT; z = 5 m;

q = 1; h = 40�) (anomaly 1), a deep-seated structure (sphere with K = 80,000 nT; z = 15 m; q = 2.5; h = 10�) (anomaly 2) and an

interference from neighboring magnetic rocks (horizontal cylinder with K = 80 nT; z = 2 m; q = 2; h = 30�) (anomaly 3)
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Figure 9 shows the parametric curves intersect at

approximately z = 10.3 m and q = 2.2. The errors in

depth and shape factor are about 3 and 10 %,

respectively. This demonstrates that the present

method will give reasonable model parameters

(z and q) even when the origin of the magnetic

anomaly profile is determined approximately.

4.4. Application to a Dipping Dike Model

The geometrical shape of the dipping dike is

different from the simple geometries described in

Eq. (1). In this subsection we will investigate the

applicability of the present method to the magnetic

anomaly of a buried dipping dike.

We computed a composite total magnetic anomaly

consisting of the combined effect of a total magnetic

anomaly due to a dipping dike (K = 100 nT; h = 4 m;

d = 2 m; a = 40�) and 2nd-order regional polynomial

(Fig. 10) from the following expression:

TðxiÞ ¼ K sin a tan�1 xi þ d

h

� 	

� tan�1 xi � d

h

� 	


� cos a
2

ln
xi þ dð Þ2þh2

xi � dð Þ2þh2

 !#

� 0:01x2
i þ xi � 15;

dipping dike model þ second-order regional polynomial:

ð16Þ

where h is the depth to the top of the dike from the

plane of observation, d is the half-width of the dike

and a is the index parameter and K is the amplitude

coefficient (MCGRATH and HOOD 1970).

A separation technique using a second derivative

method was applied to the composite magnetic

anomaly T(xi). Four successive second derivative
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Figure 14
Data analysis of Fig. 13 using the present second derivative method
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window lengths (s = 2, 3, 4 and 5 m) were applied to

the composite anomaly (Fig. 11). We applied our

interpretation method to the second derivative anom-

alies thus obtained and the results are shown in

Fig. 12.

Figure 12 shows the window curves intersect at

approximately z = 5.3 m and q = 1.23. This sug-

gests that the shape of the dipping dike is slightly

different from the shape of thin sheet model

(q = 1.0). Accordingly, our interpretation method

may be extended to infer a distinction in shape

between a thin sheet, horizontal cylinder and a

dipping dike.

4.5. Application to Complicated Regionals

and Interferences

The composite vertical magnetic anomaly of

Fig. 13 consisting of the combined effects of an

intermediate structure of interest (thin sheet with

K = 200 nT; z = 5 m; q = 1; h = 40�), a deep-

seated structure (sphere with K = 80,000 nT;

z = 15 m; q = 2.5; h = 10�) and an interference

from neighboring magnetic rocks (horizontal cylinder

with K = 80 nT; z = 2 m; q = 2; and h = 30�) was

computed by the following expression:

TðxiÞ ¼ 200
5 cos 40oð Þ � xi sin 40oð Þ

x2
i þ 52ð Þ

Thin sheet ðvertical component)

þ 80;000
450� xi þ 60ð Þ2
� �

sinð10oÞ � 45 xi þ 60ð Þ cosð10oÞ

ððxi þ 60Þ2 þ 152Þ2:5

Sphere ðvertical component)

þ 80
4� xi � 25ð Þ2
� �

cosð30oÞ þ 4 xi � 25ð Þ sinð30oÞ

ððxi � 25Þ2 þ 22Þ2
:

Horizontal cylinder ðvertical component)

ð17Þ

In this Figure anomaly 1 is the anomaly due to the

intermediate structure of our interest, anomaly 2 is

the anomaly due to the deep-seated structure and
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Figure 15
The family of window curves of z as a function of q for s = 1, 2, 3, 4 and 5 m as obtained from the composite vertical magnetic anomaly

(Eq. 17) using the present approach. Estimates of q and z are, respectively, 1.05 and 5.05 m
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Figure 16
A vertical magnetic anomaly over a spherical feature in the Bankura area, West Bengal, India (after VERMA and BANDOPADHYAYA 1975)
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Figure 17
Data analysis of Fig. 16 using the present second derivative method
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anomaly 3 is the anomaly due to the interference

from neighboring sources. The origin of the sphere

model (deep-seated structure) is located at xi = -

60 m and the origin of the horizontal cylinder model

(neighboring source) is located xi = 25 m as shown

in Eq. (17).

The composite magnetic anomaly (T(xi)) is

subjected to a separation technique using the

second derivative method. Five successive second

derivative windows were applied to input data

(Fig. 14). Equation (11) was applied to each of the

five second derivative profiles yielding depth solu-

tions for each shape factor. The results are given in

Fig. 15.

Figure 15 shows most of the curves intersect at

z = 5.05 m and q = 1.05. The results are generally

in excellent agreement with the model parameters

shown in Eq. (17). When magnetic data have a

complicated regional and interference from neigh-

boring sources the maximum error in depth is 1 %

and in shape is 5 %. Good results are obtained by

using the present algorithm for depth and shape
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Figure 18
The family of window curves of z as a function of q for s = 312.5, 375.0, 437.5 and 500.0 m as obtained from the Bankura magnetic anomaly

using the present approach. Estimates of q and z are, respectively, 2.58 and 1,430 m

Table 2

Comparative results of the Bankura field example

Parameters Using RAO

et al. method

(1973)

Using VERMA and

BANDOPADHYAY

method (1975)

Using PRAKASA RAO and

SUBRAHMANYAN method

(1988)

Using

ABDELRAHMAN

et al. method

(2007)

Using

ABDELRAHMAN

et al. method

(2013)

Using ABDELRAHMAN

and ESSA (present

method)

Depth

z (m)

1,320 1,320 1,520 1,460 1,450 1,430

Shape

factor q

2.5 (assumed) 2.5 (assumed) 2.5 (assumed) 2.5 (determined) 2.5 (determined) 2.58 (determined)
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determinations, which are of primary concern in

magnetic prospecting and other geophysical work.

5. Field Examples

To examine the applicability of the present

method the following three mineral field examples

are presented.

5.1. Bankura Anomaly

Figure 16 shows a vertical magnetic anomaly

profile from Bankura area, west Bengal, India (VERMA

and BANDOPADHYAY 1975). It represents a vertical

anomaly due to a spherical mass of Gabbroic

composition. The origin of the vertical anomaly

profile (xi = 0) was determined using the method

described by PRAKASA RAO and SUBRAHMANYAM

(1988). The anomaly profile was digitized at an

interval of 62.5 m. Four successive windows

(s = 312.5, 375, 437.5 and 500 m) were used to

obtain the second horizontal derivative magnetic

anomalies (Fig. 17). Equation (11) was applied on the

anomaly profiles to determine the depths for each

q value. The range of q values was taken from 1.5 to

2.5 every 0.1. The results are shown in Fig. 18.

Figure 18 shows the curves intersect each other at

z = 1,430 m and q = 2.58. This suggests that the

shape of the buried structure resembles a spherical

model buried at a depth of 1,430 m. The shape and

the depth of the ore body obtained by the present

method agrees very well with those obtained by RAO

et al. (1973), VERMA and BANDOPADHYAY (1975),

PRAKASA RAO and SUBRAHMANYAM (1988), and

ABDELRAHMAN et al. (2007, 2013) as summarized in

Table 2.

5.2. Parnaiba Basin Dike Anomaly

Figure 19 presents a total magnetic anomaly

above a Mesozoic diabase dike intruded into Paleo-

zoic sediments from the Parnaiba basin, Brazil (SILVA

1989, Fig. 10). The depth to the outcropping dike
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Figure 19
A total magnetic anomaly over a Paraniaba dike, Brazil (SILVA 1989, Fig. 10)
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Figure 20
Data analysis of Fig. 19 using the present second derivative method
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Figure 21
The family of window curves of z as a function of q for s = 0.77, 1.155 and 1.54 m as obtained from the Paraniaba magnetic anomaly using

the present approach. Estimates of q and z are, respectively, 1.02 and 2.35 m
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Figure 22
A vertical magnetic anomaly from the Pima copper mine, Arizona (GAY 1963, Fig. 10)
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Figure 23
Data analysis of Fig. 22 using the present second derivative method
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(sensor height) is 1.9 m. This anomaly profile of

21.56 m was digitized at an interval of 0.385 m. Three

successive windows (s = 0.77, 1.155 and 1.54 m)

were used to obtain the second horizontal derivative

magnetic anomalies (Fig. 20). Adapting the same

technique applied in the above example using a range

of q values from 0.5 to 2.5 every 0.1 produced the

results given in Fig. 21. The curves nearly intersect

within a narrow region defined by 2 m \ z \ 2.5 m

and 0.9 \ q \ 1.25. Averaging over the three inter-

sections yields the solution q = 1.02 and z = 2.35 m.

This suggests that the shape of the buried structure

resembles a perfect thin sheet model buried at depth of

2.35 m. This result agrees very well with the surface

geology given by SILVA (1989).

5.3. Pima Copper Mine Anomaly

Figure 22 shows a vertical magnetic anomaly from

the Pima copper mine, Arizona (GAY 1963, Fig. 10)

that represents an anomaly due to a thin dike. Drilling

information showed the mineralized zone to be 11 m

thick which is much less than the actual depth to the top

of the body (64 m). This profile of 750 m was digitized

at an interval of 6.25 m. The digitized values were

subjected to a separation technique using the second

derivative method [Eq. (12)]. Three successive win-

dow lengths (s = 43.75, 50 and 56.25 m) were applied

(Fig. 23). Adapting the same technique applied in the

above examples using a range of q values from 0.5 to

2.5 every 0.1 produced the results given in Fig. 24. The

curves nearly intersect within a narrow region defined

by 46 m \ z \ 70 m and 0.8 \ q \ 1.2. Averaging

over the three intersections yields the solution

q = 0.95 and z = 60 m. This suggests that the shape

of the buried structure resembles a perfect thin sheet

model buried at depth of 60 m. The depth agrees very

well with the depth of 64 m obtained from drilling

(GAY 1963).

6. Conclusions

The problem of determining the shape and depth

of a buried structure from magnetic data can be

solved using the present method. A simple and rapid
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Figure 24
The family of window curves of z as a function of q for s = 43.75, 50.0 and 56.25 m as obtained from the Pima magnetic anomaly using the

present approach. Estimates of q and z are, respectively, 0.95 and 60 m
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numerical approach is formulated to use the anomaly

values at four characteristic points on the second

derivative anomaly profile for determining simulta-

neously the shape and the depth of the buried

structure. The iterative equation for z (Eq. 11) is

ready for computation to construct the window-

curves. The advantages of this method over the least-

squares methods that use second derivative anomalies

to determine the depth and shape of a buried structure

is that this method does not require computation of

analytical or numerical derivatives with respect to the

model parameters. It is also emphasized that the

present method can be applied not only to residuals

but also to measured magnetic data and can be used

to gain geologic insight concerning the subsurface as

illustrated in the three field examples.

Finally, we envisage use of the new formula that

represents the magnetic effect of most simple geo-

metric bodies (Eq. 1) in developing new methods to

interpret magnetic data.
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