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Abstract—We have developed three different least-squares

minimization approaches to determine, successively, the depth, dip

angle, and amplitude coefficient related to the thickness and density

contrast of a buried dipping fault from first moving average

residual gravity anomalies. By defining the zero-anomaly distance

and the anomaly value at the origin of the moving average residual

profile, the problem of depth determination is transformed into a

constrained nonlinear gravity inversion. After estimating the depth

of the fault, the dip angle is estimated by solving a nonlinear

inverse problem. Finally, after estimating the depth and dip angle,

the amplitude coefficient is determined using a linear equation.

This method can be applied to residuals as well as to measured

gravity data because it uses the moving average residual gravity

anomalies to estimate the model parameters of the faulted structure.

The proposed method was tested on noise-corrupted synthetic and

real gravity data. In the case of the synthetic data, good results are

obtained when errors are given in the zero-anomaly distance and

the anomaly value at the origin, and even when the origin is

determined approximately. In the case of practical data (Bouguer

anomaly over Gazal fault, south Aswan, Egypt), the fault param-

eters obtained are in good agreement with the actual ones and with

those given in the published literature.

Key words: Gravity dipping faults, depth, dip angle and

amplitude coefficient solutions, moving average method, three

least-squares methods.

1. Introduction

Estimation of the depth and the dip angle of a

plane of a faulted structure from gravity anomalies

has drawn considerable attention. Most numerical

methods have focused on determining the depth only

of the faulted structure from gravity data. The

methods include, for example, least-squares minimi-

zation approaches (GUPTA 1983; LINES and TREITEL

1984; ABDELRAHMAN et al. 2003; ABDELRAHMAN and

ESSA 2013), Euler Deconvolution method (REID et al.

1990), special functions method (PHILLIPS et al. 2007),

and quasi-singular points methods (ELISEYEVA 1998;

UTYUPIN and MISHENIN 2012).

Few methods are used for interpreting gravity

anomalies caused by a dipping faulted thin slab

model to find the dip angle of faulted structure. A

curve-matching technique was discussed by GEL-

DART et al. (1966). PAUL et al. (1966) showed the

use of upward continuation of the observed

anomaly in estimating the dip angle. Based on the

Hilbert transform relationship between two deriv-

atives, GREEN (1976) pointed out how the vertical

derivative can be used in interpreting the dip

angle. ABDELRAHMAN et al. (1989) and GUPTA and

POKHRIYAL (1990) developed methods to estimate

the dip angle based on determining the maximum

and minimum gravity. However, most of these

methods use a few characteristic points and dis-

tances, nomograms, and standardized curves to

determine the model parameters. As a result, the

drawback to these approaches is that they are

highly subjective and, therefore, can lead to large

errors in estimating the depth and the dip angle of

a buried fault from the gravity anomaly profile.

Also, the accuracy of the depth and dip estimates

obtained by most of these methods depends upon

the accuracy to which the residual anomaly can be

separated from observed gravity data.
Very recently, ESSA (2013) described a variance

analysis method to interpret gravity data due to a

dipping fault from numerical horizontal gravity gra-

dients. However, his method can not be applied to a

composite gravity anomaly of a buried dipping faul-

ted thin slab and first-order regional polynomial.

Also, ABDELRAHMAN et al. (2013) developed a least-
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squares window curves method to determine simul-

taneously the depth and the dip angle of a buried

dipping fault from moving residual gravity anoma-

lies. However, the window curves method is a

graphical method, and hence it is highly subjective in

determining the model parameters of the buried fault

structure from gravity data.

We present a new numerical method that uses

three different least-squares approaches to determine

the depth, dip angle, and the amplitude coefficient of

a buried dipping fault from first moving average

residual gravity anomalies. A scheme for analyzing

the gravity data has been formulated for determining

the model parameters of the fault. The validity of the

method is tested on a synthetic example and on a field

example from Egypt.

2. Method

The formula for the gravity anomaly generated

along the profile normal to the strike of a dipping

faulted thin slab having infinite strike length (Fig. 1) is

given by the following equation (TELFORD et al. 1976)
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Reverse fault

Normal fault

x = 0

Figure 1
The two-dimensional gravity dipping fault model
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gðxi; z; h; aÞ

¼ K pþ tan�1 xi

z
þ cot a

� �
� tan�1 xi

h
þ cot a

� �� �
;

ð1Þ

where z and h are the depths of the centers of the

upper and lower portions of the layer, respectively, a
is the angle of dip, K is the amplitude coefficient

related to the thickness t, and density contrast of the

faulted slab, and xi is the horizontal coordinate

position.

In cases where the throw of the fault is extremely

large, i.e., h approaches infinity, then Eq. (1) can be

reduced to (ESSA 2013; ABDELRAHMAN et al. 2013)

gðxi; z; aÞ ¼ K pþ tan�1 xi

z
þ cot a

� �� �
: ð2Þ

Equation (2) does not distinguish either from a

normal or reverse fault but it can be used to estimate the

model parameters of the fault which might be used to

gain geological insight concerning the subsurface.

The first moving average (grid method) is an

important and simple technique for the separation of

gravity anomalies into residual and regional compo-

nents. The basic theory of the first moving average

method is described by GRIFFIN (1949) and applica-

tion of least-squares to the first moving average is

described by AGOCS (1951). The first moving average

residuals (grid residuals) are proportional to the sec-

ond derivative values (RAO and RADHAKRISHNAMURTHY

1965) and hence have high resolving power, partic-

ularly when the graticule spacing is very large.

Let us consider three observation points (xi - s,

xi, and xi ? s) along the anomaly profile, where

s = 1, 2,., M spacing units and is called the window

length. The first moving average residual gravity

anomaly R(xi, z, a, s) at point xi is defined as

(ABDELRAHMAN and EL-ARABY 1993):

R ðxi; z ; a; sÞ

¼ K

2
2 tan�1 xi

z
þ cot a

� �
� tan�1 xi þ s

z
þ cot a

� ��

� tan�1 xi � s

z
þ cot a

� ��
: ð3Þ

For all depths and angles, Eq. (3) gives the fol-

lowing value at xi = 0

Rð0Þ ¼ K

2
2 tan�1 cot að Þ � tan�1 s

z
þ cot a

� ��

� tan�1 �s

z
þ cot a

� ��
; ð4Þ

where R(0) is the first moving average residual

gravity anomaly value at the origin.

Using Eq. (4), (3) can be written as:

The moving average residual gravity anomaly

profile attains its zero value at xo which is the nearest

zero-anomaly distance from the origin of the moving

average residual gravity anomaly profile. Thus, set-

ting Eq. (5) to zero, we obtain:

2 tan�1 xo

z
þ cot a

� �
� tan�1 xo þ s

z
þ cot a

� ��

� tan�1 xo � s

z
þ cot a

� ��
¼ 0; ð6Þ

from which we get

cot a ¼ �xo

z
; ð7Þ

because the numerical sum of the two terms

[tan�1ðxoþs
z
þ cot aÞ þ tan�1ðxo�s

z
þ cot aÞ] in Eq. (6)

is equal to zero. The nearest xo value from the origin

is read either directly from the anomaly profile or by

interpolation between observations.

R ðxi; z; a; sÞ ¼ Rð0Þ
2 tan�1 xi

z
þ cot a

� �
� tan�1 xiþs

z
þ cot a

� �
� tan�1 xi�s

z
þ cot a

� �h i

2 tan�1 cot að Þ � tan�1 s
z
þ cot a

� �
� tan�1 � s

z
þ cot a

� �h i ; ð5Þ
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Substituting Eq. (7) into Eq. (5), we obtain the

following non-linear equation in z

Rðxi; z; sÞ ¼ Rð0ÞWðxi; z; sÞ; ð8Þ

where

Wðxi; z; sÞ

¼
2 tan�1 xi�xo

z

� �
� tan�1 xiþs�xo

z

� �
� tan�1 xi�s�xo

z

� �h i

2 tan�1 �xo

z

� �
� tan�1 s�xo

z

� �
þ tan�1 sþxo

z

� �h i :

The unknown depth z in Eq. (8) can be obtained

by minimizing

uðzÞ ¼
XN

i¼1

LðxiÞ � Rð0ÞWðxi; z; sÞ½ �2; ð9Þ

where L(xi) is the first moving average residual

gravity anomaly at xi calculated from the observed

gravity data g(xi) using the following equation

LðxiÞ ¼
2gðxiÞ � gðxi � sÞ � gðxi þ sÞ

2
; ð10Þ

and where R(0) is the value of the moving average

residual gravity anomaly at the origin and remains

fixed in the process.

Setting the derivative of u(z) with respect to z to

zero leads to the following nonlinear equation in z;

f ðzÞ ¼ 2
XN

i¼1

LðxiÞ � Rð0ÞWðxi; z; sÞ½ �W�ðxi; z; sÞ ¼ 0;

ð11Þ

where

W�ðxi; z; sÞ ¼
d Wðxi; z; sÞ

dz
:

Equation (11) can be solved for z using standard

methods for nonlinear equation. Here, it is solved by

Newton–Raphson method (PRESS et al. 1986). The

source depth is estimated by solving one non-linear

equation in z.

Substituting the estimated depth (zc) as a fixed

parameter in Eq. (5), we obtain:

R ðxi; a; sÞ ¼ Rð0ÞVðxi; a; sÞ; ð12Þ

where

The unknown dip angle (a) in Eq. (12) can be

obtained by minimizing

wðaÞ ¼
XN

i¼1

LðxiÞ � Rð0ÞVðxi; a; sÞ½ �2: ð13Þ

Setting the derivative of w(a) with respect to a
to zero leads to the following nonlinear equation in

a;

q ðaÞ ¼ 2
XN

i¼1

LðxiÞ � Rð0ÞVðxi; a; sÞ½ �V�ðxi; a; sÞ ¼ 0;

ð14Þ

where

V�ðxi; a; sÞ ¼
d Vðxi; a; sÞ

da
:

Equation (14) can be solved for a using

standard methods for nonlinear equation. Here,

it is solved also by the Newton–Raphson method

(PRESS et al. 1986). The source dip angle is

estimated by solving one nonlinear equation

in a.

Setting the estimated dip angle (ac) and the esti-

mated depth (zc) in Eq. (3) as fixed parameters, we

obtain:

Vðxi; a; sÞ ¼
2 tan�1 xi

zc
þ cot a

� �
� tan�1 xiþs

zc
þ cot a

� �
� tan�1 xi�s

zc
þ cot a

� �h i

2 tan�1 cot að Þ � tan�1 s
zc
þ cot a

� �
� tan�1 � s

zc
þ cot a

� �h i :
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R ðxi; sÞ ¼
K

2
2 tan�1 xi

zc

þ cot ac

� ��

� tan�1 xi þ s

zc

þ cot ac

� �
� tan�1 xi � s

zc

þ cot ac

� ��
:

ð15Þ

Finally, applying the least-squares method to

Eq. (15), the unknown amplitude coefficient K can be

determined from

Theoretically, one value of s is enough to estimate

the model parameters (z, a, K). In practice, more than

one value of s is desirable because of the presence of

noise in data.

An interpretation scheme based on the above

equations for analyzing field data is as follows:

1. Determine the origin of the anomaly profile using

geological or other geophysical data.

Table 1

Numerical results of the present method applied to the dipping fault synthetic example (K = 200 mGal, z = 6 m, a = 45�, profile

length = 80 m, and sampling interval = 1 m) noise-corrupted data (with 2 % of random noise) using a fixed initial guess of a = 10�

Initial guess

of depth (z)

(m)

Computed depth

(z) from Eq. (11)

(m)

% of

error in z

Computed dip angle

(a) from Eq. (14)

(�)

% of error

in a
Computed amplitude

coefficient (K) from Eq. (16)

(mGal)

% of error

in K

1 5.80 -3.27 45.18 0.40 193.88 -3.06

2 5.93 -1.22 43.90 -2.44 197.77 -1.11

3 6.15 2.49 46.48 3.28 206.91 3.45

4 6.15 2.44 45.42 0.94 204.84 2.42

5 5.96 -0.70 45.19 0.41 197.58 -1.21

6 6.05 0.85 45.90 2.00 200.58 0.29

7 6.04 0.72 45.89 1.98 199.99 -0.01

8 6.20 3.36 47.39 5.32 208.72 4.36

9 5.91 -1.44 44.44 -1.24 195.59 -2.21

10 5.79 -3.57 43.05 -4.32 190.24 -4.88

Table 2

Numerical results of the present method applied to the dipping fault synthetic example (K = 200 mGal, z = 6 m, a = 45�, profile

length = 80 m, and sampling interval = 1 m) noise-corrupted data (with 2 % of random noise) using a fixed initial guess of z = 2 m

Initial guess of

dip angle (a)

(�)

Computed depth

(z) from Eq. (11)

(m)

% of

error in z

Computed dip angle

(a) from Eq. (14) (�)

% of

error in a
Computed amplitude

coefficient (K) from Eq. (16)

(mGal)

% of error

in K

10 6.13 2.22 44.95 -0.12 203.57 1.78

20 5.90 -1.75 45.11 0.25 196.67 -1.66

30 6.23 3.81 44.85 -0.34 205.88 2.94

40 5.88 -1.96 46.01 2.24 197.04 -1.48

50 5.92 -1.35 44.55 -1.00 195.39 -2.30

60 6.02 0.30 44.61 -0.86 202.11 1.06

70 6.19 3.15 45.70 1.55 207.54 3.77

80 5.83 -2.91 44.67 -0.74 197.38 -1.31

Kc ¼
2
PN

i¼1 LðxiÞ 2 tan�1 xi

zc
þ cot ac

� �
� tan�1 xiþs

zc
þ cot ac

� �
� tan�1 xi�s

zc
þ cot ac

� �h i
PN

i¼1 2 tan�1 xi

zc
þ cot ac

� �
� tan�1 xiþs

zc
þ cot ac

� �
� tan�1 xi�s

zc
þ cot ac

� �h i2
: ð16Þ
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2. Digitize the anomaly profile at several points

including the central point xi = 0.

3. Apply several moving average filters of successive

window lengths to the digitized data. In this way

several moving average residual anomaly profiles

are obtained.

4. For each moving average residual gravity anomaly

profile, estimate the depth (z), dip angle (a), and

amplitude coefficient (K) from Eqs. (11), (14), and

(16), respectively.

5. Determine the average value of the estimated

parameters obtained in the step 4 from all moving

average residual gravity anomaly profiles.
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3. Effect of Using Different Initial Guesses

To demonstrate the dependence or independence of

initial guesses of z and a in estimating the depth, the

dip angle, and the amplitude coefficient of a synthetic

2 % noise-corrupted gravity anomaly due to a dipping

fault (K = 200 mGal, z = 6 m, a = 45�, profile

length = 80 m, and sampling interval = 1 m) from its

moving average residual gravity anomalies of window

length of 5 m using Eqs. (11), (14), and (16), respec-

tively, the following experiment is presented.

The usefulness of the present method can be

demonstrated by some extreme examples, namely,

estimating the parameters of the indicated fault using
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A map showing error response in dip angle estimates. a Using

synthetic data and b using data with random errors. Abscissa

percent error imposed in R(0). Ordinate percent error imposed in

xo. Contour interval = 0.5 %
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different initial guess values of the depth (1, 2, 3,…,

and 10 m) in case an initial guess of dip angle equals

10 degrees. We then use different initial guess values

of the dip angle (10�, 20�, 30�,…, and 80�) in case an

initial guess of depth equals 2 m. The results of this

experiment are shown in Tables 1 and 2, respectively.

We verified numerically that our method does not

depend on initial guesses of depth (z) and dip angle

(a). The maximum error in the model parameters is

5 %. This demonstrates that our method works well

in cases where any initial guesses of the depth and dip

angle are used, even when the data is noise-corrupted.

4. Error Response of the Method

4.1. Effect of Errors in xo and R(0)

In studying the error response of the three least-

squares method, synthetic examples of a composite

gravity anomaly consisting of the sum of the gravity

effects of a dipping faulted thin slab (K = 100 mGal,

z = 10 m, a = 50�, profile length = 80 m, and

sampling interval = 1 m) and a linear regional

polynomial (Fig. 2) were considered. The model

equation is

DgðxiÞ ¼ 100 pþ tan�1 xi

10
þ cot 50�

� �� �

þ 5xi þ 5:
ð17Þ

The composite gravity anomaly is subjected to a

regional–residual separation technique using the

moving average method with a window length of

3 m (Fig. 3).

Errors of ±1, ±2, ±3, ….,±5 % of the

magnitude value of R(0) and xo were added to

both in the correct values of R(0) and xo. Following

the interpretation method, values of three model

parameters (z, a, K) were computed and the

percentage of errors in the model parameters were

mapped (Figs. 4a, 5a, 6a). When the zero-anomaly

distance (xo) and the residual anomaly value at the

origin R(0) have errors of equal magnitude and of

opposite signs simultaneously, the interpreted depth,

dip angle, and amplitude coefficient values will not

differ much from the true values. When both R(0)

and xo possess errors of equal magnitude and of the

same signs simultaneously, the interpreted z and a
values will vary by up to 2 %, but K will vary up

to 3.5 %. When xo has no error, the percentage of

error in model parameters is 1.5 %. Finally, when

R(0) has no error, the maximum percentage of error

in the model parameters is 2 %. In all cases, the

error in the parameters is smaller than the imposed

error. This demonstrates that the present approach

is less sensitive to the exact values of both R(0)

and xo than traditional approaches.

The composite gravity anomaly is then contam-

inated with random errors of 2 % of the anomaly

value at each xi and is subjected to the moving

average method with a window length of 3 m

(Fig. 3). Following the same interpretation method,

the percentage of error in the model parameters is

obtained (Figs. 4b, 5b, 6b). In the case examined, an

initial guess of 5 m for the depth is used in solving

Eq. (11) and an initial guess of 30� for the dip angle is

used in solving Eq. (14).

We verified numerically that the maximum errors

of the estimated depth, dip angle, and amplitude

coefficient are within 8, 6.5, and 12 %, respectively.

These results show that our technique is robust in the

presence of noise.

4.2. Effect of Wrong Origin

Uncertain knowledge of the origin may lead to

error in the model parameters (z, a, K) when inter-

preting real data. In this subsection we investigate

this effect.

In Eq. (17), the origin of the dipping faulted thin

slab was assumed to be chosen incorrectly by

introducing errors (offset) of ±2, ±1.75, ±1.5,…,

±0.25 m in the horizontal coordinate xi using

synthetic data with and without random errors.

Following the same interpretation method, the results

are shown in Fig. 7. In all cases examined, an initial

guess of 5 m for the depth is used in solving Eq. (11)

and an initial guess of 30� for the dip angle is used in

solving Eq. (14).

In cases using noise-free synthetic data, the

estimated depth and amplitude coefficient are in

excellent agreement with the actual ones. However,

the percentage of error in the dip angle increases with
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increasing offset. The maximum error in a is about

15 % when the offset is extremely large (2 m).

On the other hand, in cases using data with

random error, we verified numerically that the

maximum error in depth is 6 %. The dip angle

obtained is within 13 %, whereas the amplitude

coefficient is within 11 %. This indicates that good

results would be obtained by using the present

algorithm when the origin of the structure is only

approximately determined. It may be noted that the

maximum error in alpha is about 15 % in the case of

noise-free data. On the other hand, the maximum

error is about 13 % in the case of noise-corrupted

data. This may be because when using noise-free

synthetic data, the depth and the amplitude coefficient

determined by the present method do not affected by

the value of the offset in the origin, whereas the error

in the estimated dip angle increases with increase in

the offset (Fig. 7). On the other hand, when using

noise-corrupted data, the estimated depth is affected

by the presence of the random errors in the data

which in turns affects the error in the dip angle.

Accordingly, the error in the dip angle when using

noise-corrupted data is less or greater than the error in

case of using noise-free data.

4.3. Effect of Window Length

The same noise-corrupted gravity anomaly was

subjected to seven moving average windows (s = 2,

3,…,8 m). Following the same interpretation method,

the estimated model parameters, the average value of

each parameter, and the standard deviation are given

in Table 3. In all cases examined, an initial guess of

5 m for the depth is used in solving Eq. (11), and an

initial guess of 30� for the dip angle is used in solving

Eq. (14).

We verified numerically that the method does not

depend on the window length when using synthetic

data without random errors. On the other hand, the

method depends on window length when the data are

contaminated with random noise. In this case, for
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Figure 7
Error response in model parameter estimates when using synthetic

data with and without random errors

Table 3

Numerical results of the present method applied to the dipping fault synthetic example (K = 100 mGal, z = 10 m, a = 50�, profile

length = 80 m, and sampling interval = 1 m) noise-corrupted data (with 2 % of random noise) using seven successive window lengths

(s = 2, 3,…, 8 m)

Window

length (s)

(m)

Computed depth

(z) from Eq. (11)

(m)

% of

error in z

Computed dip angle

(a) from Eq. (14)

(�)

% of error

in a
Computed amplitude

coefficient (K) from Eq. (16)

(mGal)

% of error

in K

2 11.16 11.60 54.81 9.61 117.31 17.31

3 9.98 -0.15 49.41 -1.19 101.10 1.09

4 8.54 -14.59 43.34 -13.32 80.09 -19.91

5 9.88 -1.23 50.72 1.43 99.35 -0.65

6 9.75 -2.54 48.77 -2.46 97.51 -2.49

7 9.76 -2.36 49.36 -1.28 97.67 -2.33

8 9.74 -2.63 49.37 -1.26 97.30 -2.70

Average value 9.83 -1.7001 49.39 -1.2103 98.62 -1.38

Standard deviation ±0.76 ±3.37 ±10.83
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each s value, different measurements with different

sets of random errors are used in computing the

moving average residual gravity anomalies. How-

ever, the average values of the model parameters

obtained using several window lengths are in very

good agreement with the actual model parameters

because of their small standard deviation. The small

standard deviation values indicate that the average

gets closer to the true parameter values. As a result, it

is recommended to apply more than one value of s to

field data to obtain reliable model parameters.

5. Application to Field Data

To illustrate the practical application of the theory

developed in the previous section, a Bouguer gravity

anomaly profile over the Gazal fault, south Aswan,

Egypt (Fig. 8) is interpreted to determine the depth,

dip angle, and amplitude coefficient. The fault

affected both the basement and the sedimentary

rocks, and crops out on the surface (ABDELRAHMAN

et al. 1999). The depth to the top of the crystalline

basement is found to be about 200 m as obtained

from drilling information (EVANS et al. 1991). In this

example, the fault trace point is determined on the

gravity profile, as usual, by projecting the point of

intersection between the fault and the ground surface

vertically. The gravity profile has been digitized at an

interval of 31.25 m. The obtained Bouguer gravity

anomalies have been subjected to a separation tech-

nique using the moving average method. Filters were

applied in seven successive windows (s = 156.25,

187.5, 218.75, 250, 281.25, 312.5, and 343.75 m). In

this way, seven moving average residual anomaly

profiles were obtained (Fig. 9). It may be noted that
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Gazal fault gravity anomaly, south Aswan, Egypt
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Moving average residual gravity anomalies due to Gazal fault for

s = 156.25, 187.5, 218.75, 250, 281.25, 312.5, and 343.75 m

Table 4

Interpreted depth, angle of dip, and amplitude coefficient from

moving average residuals of Gazal gravity anomaly, south Aswan,

Egypt using the present method

Window length

(s)

(m)

Computed

depth

(z) from

Eq. (11)

(m)

Computed

dip angle

(a) from

Eq. (14)

(�)

Computed

amplitude

coefficient

(K) from Eq. (16)

(mGal)

156.25 185.99 53.56 2.17

187.50 190.62 54.05 2.19

218.75 193.78 54.91 2.22

250.00 196.90 56.30 2.28

281.25 199.02 58.86 2.44

312.50 214.34 61.78 2.64

343.75 235.17 64.74 2.90

Average value 202.26 57.74 2.40

Standard deviation ±17.03 ±4.24 ±0.27
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none of the several moving average residual gravity

anomalies of Fig. 9 look like the residual computed

for synthetic data, shown in Fig. 3. This is may be

due to the presence of gravity interference from

neighboring structures and/or noise. The same pro-

cedure described for the synthetic examples was used

to estimate the depth, dip angle, and amplitude

coefficient of the fault. The value of xo was computed

from each moving average residual gravity anomaly

profile using a linear interpolation technique (DAVIS

1973). The nearest zero-anomaly distance to the

origin on each residual anomaly profile was always

chosen. The result is shown in Table 4. The average

model parameters determined are: z = 202 ± 17 m,

a = 57.7 ± 4o and K = 2.4 ± 0.3 mGal. This sug-

gests that Gazal fault resembles a dipping fault and

not a vertical fault as approximated by ABDELRAHMAN

et al. (2003) who applied least-squares derivative

analysis method to the same field data. The depth

obtained by the present method (202 m) agrees very

well with that obtained from drilling information

(*200 m) (EVANS et al. 1991; their Figs. 1b and 3).

Also, this interpretation agrees very well with the

results obtained by ESSA (2013) and ABDELRAHMAN

et al. (2013).

Using the estimated parameters z, a and K, we

generated the predicted gravity anomaly and sub-

tracted it from the observed anomaly, to see which part

of the observed Bouguer gravity anomaly was

explained. The observed gravity anomaly, the residual

gravity anomaly and the regional gravity anomaly are

shown in Fig. 10. Figure 10 indicates that the regional

gravity anomaly can be represented by a first-order

polynomial. The residual gravity anomaly is related to

the near surface fault structure and regional gravity is

related to the deep-seated structure. Figure 10 shows

also that the shape of the predicted gravity anomaly

(residual anomaly) explains mainly the shape of the

observed gravity anomaly.

Finally, the depth obtained by our method is not

deep enough to be considered ‘‘infinite’’ as defined in

Eq. (2). However, approximation and assumption in

gravity interpretation is usually accepted (HAMMER

1974; NETTLETON 1976). It is evident from this field

example that our method gives good insight from

gravity data concerning the nature of the fault

structure.

6. Conclusions

The problem of determining the depth, dip angle,

and amplitude coefficient of a buried dipping faulted

thin slab from observed gravity data has transformed

into the problem of solving two nonlinear equations

and one linear equation, respectively. The method

involves using the dipping faulted thin slab model

convolved with the same moving average filter as

applied to the observed data. As a result, our method

also can be applied not only to residuals, but also to

measured gravity data. A scheme for interpreting the

gravity data to obtain the model parameters based on

the three least-squares method provides two advan-

tages over the pervious least-squares window curves

techniques: (1) each model parameter is computed

from all observed data, (2) the method does not

require constraining the model parameters of the

buried dipping fault to obtain the actual parameters,

any initial estimate for depth and dip angle works

well, and (3) the method gives good results when the

gravity anomaly is contaminated with random noise.

The depth, dip angle, and the amplitude coefficient

obtained by the present method might be used to gain

geologic insight concerning the subsurface.
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