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Abstract—This study analyzes earthquake interoccurrence

times of northeast India and its vicinity from eleven probability

distributions, namely exponential, Frechet, gamma, generalized

exponential, inverse Gaussian, Levy, lognormal, Maxwell, Pareto,

Rayleigh, and Weibull distributions. Parameters of these distribu-

tions are estimated from the method of maximum likelihood

estimation, and their respective asymptotic variances as well as

confidence bounds are calculated using Fisher information matri-

ces. Three model selection criteria namely the Chi-square criterion,

the maximum likelihood criterion, and the Kolmogorov–Smirnov

minimum distance criterion, are used to compare model suitability

for the present earthquake catalog (YADAV et al. in Pure Appl

Geophys 167:1331–1342, 2010). It is observed that gamma, gen-

eralized exponential, and Weibull distributions provide the best

fitting, while exponential, Frechet, inverse Gaussian, and lognormal

distributions provide intermediate fitting, and the rest, namely

Levy, Maxwell Pareto, and Rayleigh distributions fit poorly to the

present data. The conditional probabilities for a future earthquake

and related conditional probability curves are presented towards the

end of this article.

Key words: Northeast India, Probability distributions,

Fisher information matrix, Earthquake recurrence.

1. Introduction

The northeast of India and its adjoining regions

(20�–32�N and 87�–100�E) have been one of the

most seismically active areas over historical time.

Since 1846, twenty earthquakes of magnitudes

greater or equal to 7.0 have occurred in this region.

Among these, two great earthquakes, namely the

Shillong Plateau earthquake of 12 June 1897

Ms 8:7ð Þ and the Independence Day Assam earth-

quake of 15 August 1950 Ms 8:6ð Þ rocked the whole

northeastern region causing extensive loss of human

life and property in the Indian subcontinent (GUPTA

et al. 1986; GUPTA and SINGH 1986; BILHAM and

ENGLAND 2001).

Statistical properties of time intervals between

successive earthquakes in northeast India and its

surrounding regions have been the subject of

numerous studies in order to provide long-term pre-

diction for the next big earthquakes. A number of

scientists, namely PARVEZ and RAM (1997), YADAV

et al. (2010), PASARI and DIKSHIT (2013) have earlier

carried out recurrence interval estimation of the study

region. They used four probability distributions,

namely exponential, gamma, lognormal, and Weibull

(two-parameter and three-parameter) distributions in

their analysis. Apart from these probability distribu-

tions, the ones that are commonly used in recurrence

modeling are the Pareto group of distributions

(KAGAN and SCHOENBERG 2001; FERRAES et al. 2003;

PISARENKO et al. 2010), the Gaussian distribution

(PAPAZACHOS et al. 1987), the inverse Gaussian or

Brownian passage time distribution (MATTHEWS et al.

2002; KAGAN 2007), the Rayleigh distribution (FERR-

AES et al. 2003; YAZDANI and KOWSARI 2011), the

Levy distribution (SOTOLONGO-COSTA et al. 2000), the

negative binomial distribution (DIONYSIOU and PAP-

ADOPOULOS 1992), the generalized gamma distribution

(BAK et al. 2002), and the triple exponential distri-

bution (KIJKO and SELLEVOLL 1981). Nevertheless, the

most appropriate distribution function to represent

earthquake interevent times still remains under

debate. As a result, it has now been a common

practice to apply all competing models on a given

catalog, and analyze recurrence interval from the best

fitted model(s).

In a similar manner, an attempt is made in this

study to analyze earthquake interoccurrence times of

northeast India and its adjoining regions from eleven

probability distributions, namely exponential, Frechet
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(inverse Weibull), gamma, generalized (exponentiated)

exponential, inverse Gaussian, Levy, lognormal, Max-

well, Pareto, Rayleigh, and Weibull distributions.

Parameters of these distributions are estimated from the

method of maximum likelihood estimation (MLE), and

their respective asymptotic variances as well as confi-

dence bounds are calculated using the concept of the

Fisher information matrix (FIM). The performances of

these distributions are evaluated from three statistical

criteria: the Chi-square criterion, the maximum likeli-

hood criterion and its modification, named as Akaike

information criterion (AIC), and the Kolmogorov–

Smirnov minimum distance criterion. In addition to the

statistical model developments, we calculate condi-

tional probability values (for different elapsed times)

for a large earthquake M � 7:0ð Þ in the study region.

1.1. Study Area and Earthquake Data File

Description

In the present work, we investigate earthquake

inter-occurrence time by analyzing the northeastern

India catalog, including events with magnitude

above 7.0 (YADAV et al. 2010). This region has

been tectonically very active due to the collision and

ongoing convergence between Indian plate with

Tibet in the north and the Burmese landmass

towards the east (NANDY 1986, 2001; BILHAM and

ENGLAND 2001). There are a number of active thrust

faults, namely main frontal thrust, main boundary

thrust, main central thrust, Lohit thrust, Misami

thrust, and the Bame-Tuting fault (GSI 2000). On the

basis of epicentral distributions of past earthquakes,

faulting pattern, ground evidences, and geotectonic

features, the northeast region and its vicinity can be

divided into five smaller seismotectonic zones:

eastern (upper) Himalayan collision zone, Indo-

Myanmar subduction zone, Syntaxis zone of Hima-

layan arc and Bermese arc (the Mishmi massif), the

Brahmaputra valley, and the Shillong plateau

(KAYAL 1996; NANDY 2001; THINGBAIJAM et al.

2008). Besides, this region, according to the seismic

zoning map of India (BIS 2002), falls under zones V,

IV, and III, with magnitudes exceeding 8, 7, and 6,

respectively.

Table 1 provides a list of 20 major earthquake

events M � 7:0ð Þ from northeast India and its

adjoining regions covering a period from 1846 to

1995. The geographical epicentral locations of these

events are shown in Fig. 1. It is worthwhile to note

here that the study region has not experienced any

earthquake of magnitude M � 7:0 since 1995. There-

fore, the present catalog (YADAV et al. 2010)

essentially accounts for all main shocks with magni-

tude M � 7:0 for the period 1846–2013.

2. Probabilistic Modeling of Earthquake Recurrence

Let T be a positive random variable of the

recurrence time with cumulative distribution func-

tion F tð Þ, density function f tð Þ, survival function

S tð Þ, and hazard function h tð Þ. Further, we assume

that s is the time elapsed since the last event and v

is the waiting time. Having s as known, waiting

time v is random. Thus, our concern is to estimate v

so that an earthquake appears within s; sþ vð Þ,
knowing that no earthquake occurred in the last

s 0\s\tð Þ years. Bringing the concept of reliabil-

ity into the picture and calling the overall structure

as an earthquake system, S tð Þ illustrates the proba-

bility that an earthquake will occur later than time t

and h tð Þ defines the instantaneous rate of earthquake

occurrence. S tð Þ and h tð Þ are defined by

S tð Þ ¼ 1� F tð Þ and h tð Þ ¼ f tð Þ
1�F tð Þ.

We further introduce a random variable V corre-

sponding to the waiting time v. Noting that V is

linearly related to the random variable T (through the

elapsed time s), its distribution function becomes

F sþ vð Þ. Therefore, the conditional probability of an

earthquake in time interval s; sþ vð Þ, knowing that

no earthquake occurred in the last s years, can be

defined as

P V � sþ vjV � sð Þ ¼ F sþ vð Þ � F sð Þ
1� F sð Þ v[ 0ð Þ:

ð1Þ

Eleven different probability distributions are

considered in this study. These distributions and their

probability density functions are presented in

Table 2. The associated model parameters along with

their generic role are also highlighted. The genesis of

these distributions (except, generalized exponential),

their model properties, and interrelations among
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themselves may be found in JOHNSON et al. (1995).

For the generalized exponential, the same may be

found in GUPTA and KUNDU (1999, 2007).

Table 2 shows that the usual domains for ten

distributions are the whole positive real line, while

for Pareto distribution, the domain a;1ð Þ is

restricted by the completeness parameter a. Further,
three distributions, namely gamma, generalized

exponential, and Weibull, when b ¼ 1, coincide

with the exponential distribution, meaning these

distributions are somewhat generalizations or

extensions of classical exponential distribution. In

addition, it is observed (GUPTA and KUNDU 1999)

that generalized exponential distribution shares

many physical properties (e.g., shapes of density

function or hazard function) with gamma and Wei-

bull models and, thus, could be a potential model to

represent earthquake interevent times. Besides,

Table 2 includes a number of heavy-tailed (tail is

thicker than that of exponential model) distributions:

Frechet, Levy, lognormal, Pareto, and Weibull

b\1ð Þ. As a whole, we have tried to combine all

possible type of distributions for a well-defined

conclusion for the most appropriate model(s) for the

present earthquake catalog of northeast India and the

adjoining region.

Apart from the probability density function,

characterization of hazard function has become very

popular in seismic recurrence studies (DAVIS et al.

1989; SORNETTE and KNOPOFF 1997; MATTHEWS et al.

2002). The various shapes of hazard functions pro-

vide salient information of earthquake reliability.

More specifically, increasing hazard function implies

that chances of an earthquake increase with time

(similar to the elastic rebound theory, REID 1910),

whereas decreasing hazard function means the

opposite, and the constant hazard function refers to

the chances of an earthquake being independent of

elapsed time. It is easy to observe that (a) exponential

distribution has constant hazard function, (b) gamma,

generalized (exponentiated) exponential, and Weibull

distributions possess monotone hazard functions,

(c) Frechet (inverse Weibull), inverse Gaussian,

lognormal, and Weibull distributions offers both

monotone and non-monotone hazard shapes, and

(d) Pareto distribution has a decreasing hazard func-

tion. Different plots of these hazard functions may be

available upon request to the authors.

Table 1

List of earthquakes that occurred in the study region for magnitude M C 7.0 (after YADAV et al., 2010)

S. No Date Location Focal depth (km) Magnitude

Year Month Day Hour Min Sec Latitude (N) Longitude (E)

1 1846 12 10 26.00 93.00 7.5

2 1868 6 30 24.50 91.50 7.5

3 1885 1 1 25.40 90.00 7.3

4 1897 6 12 11 5 25.90 91.90 60 8.7

5 1908 12 12 26.50 97.00 7.5

6 1912 5 23 2 24 21.00 97.00 25 7.9

7 1918 7 8 10 22 24.50 91.00 60 7.6

8 1923 9 9 22 3 42.00 25.25 91.00 7.1

9 1931 1 27 20 9 25.60 96.80 60 7.6

10 1943 10 23 21.50 93.50 7.2

11 1946 9 12 15 20 23.50 96.00 60 7.5

12 1947 7 29 13 43 28.50 94.00 60 7.9

13 1950 8 15 14 9 28.50 96.70 8.6

14 1951 11 18 9 35 45.00 30.50 91.00 8.0

15 1954 3 21 23 42 24.40 95.20 180 7.5

16 1961 2 4 8 51 24.90 93.34 141 7.6

17 1976 5 29 14 0 18.50 24.53 98.71 10 7.0

18 1988 8 6 0 36 24.60 25.15 95.13 91 7.2

19 1991 1 5 14 57 11.50 23.61 95.90 20 7.1

20 1995 7 11 21 46 39.78 21.97 99.20 12 7.1
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3. Parameter Estimation

Using the interevent times of successive earth-

quakes (as listed in Table 1), the model parameters of

all 11 distributions have been estimated using the

MLE method. The detailed procedure of the MLE

method may be found in HOGG et al. 2005. The

estimated model parameter values are shown on

Table 4.

Characterizations of the estimated parameters are

essential in order to quantify the uncertainty in the

estimation process. However, most of the time, the

exact distributions of the estimated model parameters

are not available. In such cases, the law of large

samples is used as a proxy to asymptotically estimate

the variance-covariance matrix Rĥ and confidence

bounds of the estimated parameters ðĥÞ. In this study,

we have exact distribution of the estimated Pareto

parameters only (QUANDT 1966). The exact variances

of the Pareto parameters are given (QUANDT 1966)

below.

r2 âð Þ ¼ a2nb

nb� 2ð Þ nb� 1ð Þ2
n[

2

b

� �

r2 b̂
� �

¼ b2n2

n � 2ð Þ2 n � 3ð Þ
n[ 3ð Þ

ð2Þ

For other distributions, we calculate FIM

I ĥ
� �

and combine it with the Cramer–Rao lower-

bound theorem defined as Rĥ � nI ĥ
� �h i�1

. A brief

discussion on FIM is provided in ‘‘Appendix 1’’.

In addition, the Fisher–trace information (FTI),

defined as the trace of the FIM, is derived for each

Figure 1
Epicentral locations of earthquakes of magnitude M � 7 (as listed in Table 1) that occurred in the study region (northeast India and

surrounding regions) after 1846 till 2013 (after YADAV et al. 2010)
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distribution. The FTI offers an overall measure of

the total amount of uncertainty associated with the

distribution (GUPTA and KUNDU 2006). The larger

the FTI, the better is the approximation.

Now considering the asymptotic normality of

the MLE estimated parameters, we derive the

asymptotic confidence bounds, or confidence

intervals, for each parameter (LAWLESS 1982). The

1� dð Þ% two-sided confidence bounds of the

parameter h is obtained as

bh � zd=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bh� �r

\h\bh þ zd=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bh� �r

; ð3Þ

zd=2 is the critical value corresponding to a sig-

nificance level of d=2 on the standard normal

distribution.

The FIMs and FTIs corresponding to the presently

studied distributions are listed in Table 3, whereas

the asymptotic standard deviations and confidence

bounds are shown in Table 4.

Tables 3 and 4 provide much information

related to the distribution properties; for instance,

the estimated shape parameters for gamma, gen-

eralized exponential, and Weibull models are

found to be greater than 1.0, meaning the associ-

ated hazard functions of these distributions are

monotonically increasing; the FTI for the gen-

eralized exponential distribution is the largest,

which implies that this distribution is more precise

in providing estimated parameter values (which is

actually true as can be seen from Table 4). At this

point, however, it may also be noted that, for some

parameters (e.g., shape parameter of gamma or

inverse Gaussian parameters), we see that the

numerical figure of the asymptotic standard devi-

ation is quite large. But, it does not necessarily

mean that the associated distribution will fit very

poorly to the data. Therefore, the emphasis should

be on estimating the final propagation in the con-

ditional probability values (discussed later in Sect.

5) with model parameter uncertainties as inputs,

rather than deciding directly from the numerical

standard deviation values of the estimated

parameters.

Table 2

Probability distributions and their density functions

Distribution Density function Parameters

PDF Domain Role Assumption

Exponential 1
a e

� t
a t [ 0 a-scale a[ 0

Frechet (inverse Weibull) babt�b�1e�
t
að Þ

�b

t [ 0 a-scale a[ 0

b-shape b[ 0

Gamma 1
C bð Þ

tb�1

ab e�
t
a t [ 0 a-scale a[ 0

b-shape b[ 0

Generalized (exponentiated) exponential ab 1� e�atð Þb�1
e�at t [ 0 1=a-scale a[ 0

b-shape b[ 0

Inverse Gaussian

ffiffiffiffiffiffiffi
b

2pt3

q
exp � b t�að Þ2

2a2 t

h i
t [ 0 b=a-shape a[ 0

b[ 0

Levy
ffiffiffiffi
a
2p

p
e
� a

2t

t
3=2 t [ 0 a-scale a[ 0

Lognormal 1

tb
ffiffiffiffi
2p

p exp � 1
2

ln t�a
b

� �2� �
t [ 0 a-log-scale �1\a\1

b-shape b[ 0

Maxwell
ffiffi
2
p

q
t2

a3 exp � 1
2

t
a

	 
2h i
t [ 0 a-scale a[ 0

Pareto b ab

xbþ1 t [ a a-scale a[ 0

b-shape b[ 0

Rayleigh t
a2 exp � t2

2a2

� �
t [ 0 a-scale a[ 0

Weibull b
ab tb�1e�

t
að Þ

b

t [ 0 a-scale a[ 0

b-shape b[ 0
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4. Model Selection

In order to prioritize the competing models, we

apply the three model selection criteria, namely the

Chi-square criterion, the maximum likelihood crite-

rion and its modifications, known as the AIC, and the

Kolmogorov–Smirnov minimum distance criterion.

In ‘‘Appendix 2’’, a brief discussion on each of these

methods is provided.

In the Chi-square test, as there is no specified

method to choose the number and size of class

intervals (JOHNSON et al. 1995; BOERO et al. 2004;

MURTHY et al. 2004), we calculate Chi-square values

corresponding to six classes (\3, 3–6, 6–9, 9–12,

12–15,[15) as well as five classes (\3, 3–6, 6–10,

10–15,[15). This would, in fact, throw some light on

the sensitivity of the Chi-square test. The model

selection results are shown in Table 5.

Table 3

Fisher information matrix (FIM) and Fisher trace information (FTI)

Distribution Fisher information

FIM I hð Þð Þ FTI

Exponential 1
a2 0.0163

Frechet
b2

a2
1
a 1þ w 1ð Þð Þ

1
a 1þ w 1ð Þð Þ 1

b2
w0 1ð Þ þ w2 2ð Þ
	 


" #
1.5577

Gamma
b
a2

1
a

1
a w0 bð Þ

� �
2.5315

Generalized exponential

a11 a12

a21 a22

� �

a11 ¼
1

a2
1þ b b� 1ð Þ

b� 2
w0 1ð Þ � w0 b� 1ð Þð Þ þ w b� 1ð Þ � w 1ð Þð Þ2

� �

� b
a2

w0 1ð Þ � w bð Þ þ w bð Þ � w 1ð Þð Þ2
h i

;b 6¼ 2

a12 ¼ a21 ¼
1

a
b

b� 1
w bð Þ � w 1ð Þð Þ � w bþ 1ð Þ � w 1ð Þð Þ

� �
;b 6¼ 1

a22 ¼
1

b2

86.1161

Inverse Gaussian

1
2b2

0

0 b
a3

" #
0.0247

Levy 1
2a2 0.0360

Lognormal

2
b2

0

0 1
b2

" #
3.8526

Maxwell 6
a2 0.1898

Pareto

b
a2 bþ2ð Þ � 1

a bþ1ð Þ
� 1

a bþ1ð Þ
1
b2

" #
3.7192

Rayleigh 4
a2 0.0844

Weibull
b2

a2 � 1
a 1þ w 1ð Þð Þ

� 1
a 1þ w 1ð Þð Þ 1

b2
w0 1ð Þ þ w2 2ð Þ
	 


" #
1.0158
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Table 5 shows that v21 values for the exponential

(2.85), gamma (2.71), and Weibull (2.76) distribu-

tions are the least (within a tolerable limit), although

the generalized exponential (3.05) is not very far

away. Similarly, v22 value for the exponential (1.18)

distribution is the minimum, and v22 values for the

gamma (1.19), generalized exponential (1.51), and

Weibull (1.35) distributions appear next to the

exponential distribution. Moreover, we see that the

decision from the Chi-square criterion, for the present

catalog, is not very sensible for the choice of the

number or size of class intervals.

Table 4

Estimated parameter values and their asymptotic standard deviations and confidence bounds

Model Parameter values Asymptotic standard deviation Confidence interval (95 %)

Lower Upper

Exponential a 7.825523 ra 1.795298 4.306739 11.344307

Frechet a 3.556466 ra 0.768384 2.050433 5.062499

b 1.118057 rb 0.199992 0.726073 1.510041

Gamma a 1.499642 ra 0.495271 0.528911 2.470373

b 5.218260 rb 1.641766 2.000399 8.436121

Generalized exponential a 0.175373 ra 0.029881 0.116806 0.233940

b 1.700093 rb 0.470480 0.777952 2.622234

Inverse Gaussian a 7.825523 ra 2.308987 3.299908 12.351138

b 7.116776 rb 1.882572 3.426935 10.806617

Levy a 3.727170 ra 1.209254 1.357032 6.097308

Lognormal a 1.723978 ra 0.143150 1.443404 2.004552

b 0.882439 rb 0.202445 0.485647 1.279231

Maxwell a 5.621909 ra 0.526540 4.589891 6.653927

Paretoa a 0.876712 ra 0.105778 0.669387 Capped at 0.876712

b 0.538923 rb 0.150581 0.243784 0.834062

Rayleigh a 6.885405 ra 0.789810 5.337377 8.433433

Weibull a 8.559719 ra 1.523594 5.573475 11.545963

b 1.356785 rb 0.242695 0.881103 1.832467

a For the Pareto distribution, we have calculated (QUANDT 1966) exact standard deviations ra;rb
	 


of the estimated parameters

Table 5

Model selection using three criteria: the minimum Chi-square v2value
	 


criterion, the maximum log-likelihood criterion lnLð Þ, and the

Kolmogorov–Smirnov (K–S) minimum distance criterion

Distribution Minimum Chi-square Maximum likelihood K–S Min. distance

v21 v22 lnL AIC K–S distancea

Exponential 2.8505 1.1820 -58.0904 118.1808 0.1532 (2.3397)

Frechet 5.9953 3.5943 -59.3054 122.6108 0.1326 (11.5095)

Gamma 2.7116 1.1906 -56.9075 117.8149 0.1482 (11.5095)

Generalized exponential 3.0500 1.5111 -56.8924 117.7849 0.1532 (11.5095)

Inverse Gaussian 4.3583 2.3657 -57.4499 118.8997 0.1732 (11.5095)

Levy 10.1131 7.5517 -63.5945 129.1891 0.3224 (21.5699)

Lognormal 3.8715 1.9995 -57.3392 118.6783 0.1609 (11.5095)

Maxwell 18.6984 16.4250 -65.6992 133.3983 0.2454 (11.5095)

Pareto 16.3595 12.6241 -63.5011 131.0021 0.3055 (2.3397)

Rayleigh 10.2023 9.0612 -59.5618 121.1235 0.2507 (3.4466)

Weibull 2.7594 1.3535 -56.8651 117.7303 0.1440 (11.5095)

v21 and v22 are the Chi-square values corresponding to six classes (\3, 3–6, 6–9, 9–12, 12–15,[15) and five classes (\3, 3–6, 6–10, 10–15,

[15), respectively; lnL log-likelihood value, AIC value of Akaike information criterion
a The numbers in parenthesis are the abscissa values, where the K–S distance is achieved
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On the other hand, AIC values corresponding to

the gamma (117.82), generalized exponential

(117.78), and Weibull (117.73) distributions appear

to be the least among all AIC values. Therefore, AIC

suggests the gamma, generalized exponential, and

Weibull models to be the most suitable ones to rep-

resent the present earthquake catalog of northeast

India and its adjoining regions. Besides, we see that

the exponential (118.18) distribution has also a quite

smaller AIC value.

The Frechet distribution has the minimum K–S

distance (0.1326); the Weibull (0.1440), gamma

(0.1482), exponential (0.1532), and generalized

exponential (0.1532) distributions have also quite

smaller K–S distances, giving an impression that

these distributions may suitably fit the present data.

To be more certain, we assess the overall matching

among these distributions with the empirical distri-

bution function by simultaneously plotting in Fig. 2.

Figure 2 reveals quite interesting facts: (i) the

K–S distance value for the Frechet distribution,

although it is the minimum, it fits poorly to the

overall data set, (ii) the gamma, generalized expo-

nential, and Weibull distributions match quite well to

the empirical distribution, and these three

distributions themselves are very close to each other,

almost indistinguishable, (iii) the calculated K–S

values for exponential and generalized exponentials,

although they were very similar, the K–S plot sug-

gests the generalized exponential to be more

appropriate than the exponential distribution.

From the above discussion on model selection, it

may be inferred that broadly three categories of dis-

tributions have emerged: the gamma, generalized

exponential, and Weibull distributions have the best

fitting, while exponential, Frechet, inverse Gaussian,

and lognormal distributions have intermediate fitting,

and the rest, namely Levy, Maxwell Pareto, and

Rayleigh distributions fit poorly to the present data.

5. Conditional Probability

Having identified the suitable models in the pre-

ceding section, we now apply those models to

calculate conditional probability [using (1)] of an

earthquake M � 7:0ð Þ for an elapsed time of 18 years

(i.e., July 2013). These values are listed in Table 6.

Table 6 shows that the conditional probability

(from the gamma, generalized exponential, and

Figure 2
Empirical distribution function and the fitted distributions functions
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Weibull distributions) of a large magnitude earth-

quake reaches 0.8–0.9 by 2020–2027. Besides, it may

be observed that the gamma and generalized expo-

nential distributions produce similar (up-to second

decimal place) conditional probability values for the

present catalog. This emphasizes the scope and suit-

ability of the comparatively new generalized

exponential distribution in seismic recurrence studies.

The conditional probability curves, generated

from conditional probability values, for a combina-

tion of waiting time and elapsed time are presented in

Fig. 3. These curves play a significant role in seismic

zonation and microzonation, urban planning and

insurance, designing of important structures such as

schools, hospitals, mega-malls, and nuclear power

plants, and related concerns (SSHAC 1997; KAGAN

and SCHOENBERG 2001; BAKER 2008; YADAV et al.

2010).

6. Summary and Conclusions

Forecasting of large earthquakes, in a specified

region, has been an important task for seismologists

and earthquake professionals. The present research

contributes to this endeavor by focusing on eleven

probability distributions, namely exponential, Fre-

chet, gamma, generalized exponential, inverse

Gaussian, Levy, lognormal, Maxwell, Pareto,

Rayleigh, and Weibull to analyze earthquake inter-

event times of large M � 7:0ð Þ earthquakes in the

seismically active northeast India and its adjoining

regions. We have briefly explained several model

characteristics of these distributions, parameter esti-

mations from the maximum likelihood method, and

model selections using three goodness-of-fit methods.

In addition, we have paid special attention to the

problem of uncertainty measurement of the estimated

model parameters. Finally, towards the end of this

article, we have presented a number of conditional

probability curves (also known as hazard curves) for

elapsed time s ¼ 0; 5; 10; . . .; 60 years. These curves

reveal very high seismicity in the study region.

The present study brings out the following

results:

1. The gamma, generalized exponential, and Weibull

distributions provide the best fitting, while expo-

nential, Frechet, inverse Gaussian, and lognormal

distributions provide intermediate fitting, and the

rest, namely Levy, Maxwell Pareto, and Rayleigh

distributions fit poorly to the present earthquake

catalog of northeast India and its adjoining

regions.

2. The conditional probability (from the gamma,

generalized exponential, and Weibull distribu-

tions) of a large magnitude earthquake M � 7:0ð Þ
in the study regions reaches 0.8–0.9 by

2020–2027.

Table 6

Estimated conditional probability for an elapsed time of 18 years (i.e., July 2013) for the study region as obtained from exponential, Frechet,

gamma, generalized exponential (GE), inverse Gaussian (IG), lognormal (LN), and Weibull models

v Year Exponential Frechet Gamma GE IG LN Weibull

2 2015 0.23 0.10 0.29 0.29 0.20 0.20 0.34

5 2018 0.47 0.23 0.58 0.58 0.41 0.41 0.66

8 2021 0.64 0.32 0.75 0.75 0.57 0.56 0.83

11 2024 0.75 0.39 0.85 0.85 0.67 0.66 0.92

14 2027 0.83 0.45 0.91 0.91 0.75 0.74 0.96

17 2030 0.89 0.50 0.95 0.95 0.81 0.80 0.98

20 2033 0.92 0.55 0.97 0.97 0.86 0.84 0.99

23 2036 0.95 0.58 0.98 0.98 0.89 0.87 [0.99

26 2039 0.96 0.61 0.99 0.99 0.91 0.89 [0.99

29 2042 0.98 0.64 0.99 0.99 0.93 0.91 [0.99

32 2045 0.98 0.66 [0.99 [0.99 0.95 0.93 [0.99

35 2048 0.99 0.68 [0.99 [0.99 0.96 0.94 [0.99

38 2051 0.99 0.70 [0.99 [0.99 0.97 0.95 [0.99
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Figure 3
Conditional probability curves (hazard curves) for elapsed time s ¼ 0; 5; 10; . . .; 60 years, using gamma, generalized exponential (GE),

inverse Gaussian (IG), lognormal (LN), Frechet (also called as inverse Weibull IW), and standard Weibull (SW) distribution for earthquake

events of M � 7 in northeast India and its surrounding region. The dot-line represents the hazard curve corresponding to an elapsed time of

18 years, i.e., 2013
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Appendix 1

Under the standard regularity conditions (LEH-

MANN 1998), FIM for parameter vector h ¼ h1; h2ð Þ;
say, is defined as follows:

I hð Þ ¼ E
o
oh1

ln f T ; hð Þ
o
oh2

ln f T ; hð Þ

" #
o
oh1

ln f T; hð Þ o
oh2

ln f T; hð Þ
h i !

:

ð4Þ

The FIM can also be expressed (NELSON 1982;

HOGG et al. 2005) as

I hð Þ ¼ E �
o2

oh21
ln f T ; hð Þ o2

oh1oh2
ln f T ; hð Þ

o2

oh2oh1
ln f T ; hð Þ o2

oh22
ln f T ; hð Þ

2
4

3
5
2�2

0
@

1
A:

ð5Þ

Moreover, EFRON and JOHNSTONE (1990) observed

that I hð Þ can also be expressed in terms of the hazard

function as

I hð Þ

¼ E

o
oh1

ln h T ; hð Þ
o
oh2

ln h T ; hð Þ

" #
o
oh1

ln h T ; hð Þ o
oh2

ln h T ; hð Þ
h i !

:

ð6Þ

Depending on the form of density and hazard

functions of a distribution, the most convenient

equation from (4, 5, 6) is used to calculate I hð Þ.

Appendix 2

For simplicity, we assume two competitive mod-

els F and G with density functions f x; h
_

� �
and

g x;u
_

� �
, respectively.

The minimum Chi-square criterion is one of the

conventional techniques for model selection. The

Chi-square criterion consists of three steps: (i) divide

the sample observations t1; t2; . . .; tnf g into k disjoint

groups of moderate length (may be equal or unequal

in size) and record the observed frequencies

n1; n2; . . .; nk(ii) compute the expected frequencies

f1; f2; . . .; fk and g1; g2; . . .; gk based on f x; h
_

� �
and

g x;u
_

� �
, and (iii) calculate Chi-square distances

v2f ;data and v2g;data as v2f ;data ¼
Pk

i¼1
ni�fið Þ2

fi
;

v2g;data ¼
Pk

i¼1
ni�gið Þ2

gi
. If v2f ;data\v2g;data; then distribu-

tion F should be chosen, otherwise, G should be

chosen. In the Chi-square test, the only confusion

arises in selecting the number of class intervals

k. There are no hard and fast rules to select the

interval size (JOHNSON et al. 1995; BOERO et al. 2004;

MURTHY et al. 2004). Thus, a reasonable number of

class intervals with moderate observed frequencies

are preferred in all practical applications.

Themaximum likelihood criterion is entirely based

on the log-likelihood values obtained in MLE. Among

several competitive models, the model for which the

log-likelihood value is the maximum is tagged as the

best model. Themaximum likelihood criterion, despite

its simplicity, has a few drawbacks. For instance, it

assumes that the number of parameters in each com-

petitive model is the same. However, this presumption

hardly holds true in practical situations. As a result,

several modifications have been proposed over dec-

ades. Among these, AIC (AKAIKE 1974) has been

widely used. AIC is defined as AIC ¼ 2k � 2 ln L.

The Kolmogorov–Smirnov (K–S) minimum dis-

tance criterion prioritizes the competing models

based on their ‘closeness’ to the empirical distribu-

tion function of the sample data t1; t2; . . .; tnf g.
Unlike the maximum likelihood criterion, the K–S

minimum distance method does not require any pre-

sumption on the number of parameters in the

competitive models. Besides, the K–S test is a non-

parametric and distribution free test, and; hence, it

avoids the use of special tables unlike the Chi-square

criterion defined previously (JOHNSON et al. 1995).
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