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Abstract—We used the focal mechanisms of crustal earth-

quakes (depth \40 km) in the period 1909–2012 and the

available GPS velocities, derived from the data collected between

1999 to 2011, to estimate the magnitude and directions of

maximum principal stress and strain rates in Iran. The Pearson

product moment correlation was used to find the correlation

between the stress field obtained from the focal mechanism stress

inversion and that obtained using the seismic and geodetic strain

rates. Our assumption is that stresses in a continuum are pro-

duced by tectonic forces and the consequent deformation on the

crustal scale. Therefore, the direction of the stress and strain (or

strain rate) are ideally to be the same. Our results show a strong

correlation between the directions of the principal components of

stress and strain (rate) obtained using the different data/methods.

Using weighted average analysis, we present a new stress map

for Iran.

Key words: Geodetic strain rate, seismic strain rate, stress

inversion, Iran stress map.

1. Introduction

Many studies have associated the tectonics of Iran

with the convergence of the Arabian and Eurasian

plates. This convergence is mainly accommodated in

the Zagros Mountains, in the west and the south west

of Iran, Alborz and Kopeh Dag in the north and the

north eastern part of Iran and the N–S strike slip

faulting in eastern Iran (Fig. 1) (JACKSON, 1992; DE-

METS et al., 1994; WALKER and JACKSON, 2004). A few

studies associated the tectonics of the Talesh region

and northwestern Iran with the SW motion of the

south Caspian basin with respect to Iran (e.g., JACK-

SON et al., 2002). Recent global positioning system

(GPS) studies have provided a precise distribution of

deformation in Iran (NILFOROUSHAN et al., 2003;

VERNANT et al., 2004a, b; BAYER et al., 2006; HESSAMI

et al., 2006; WALPERSDORF et al., 2006; MASSON et al.,

2006, 2007; TAVAKOLI et al., 2008; PEYRET et al.,

2009; DJAMOUR et al., 2010, 2011; MOUSAVI et al.,

2013). Following other studies (PAPAZACHOS and

KIRATZI, 1992; JACKSON et al., 1994; KREEMER et al.,

2000), MASSON et al. (2005) combined the geodetic

strain rate field with the strain rate field deduced from

seismicity to distinguish seismic from aseismic

deformation in Iran using a non-uniform triangular

mesh. Several other studies investigated the local or

regional stress fields in Iran using a focal mechanism

stress inversion of earthquakes in the Zagros (GIL-

LARD and WYSS, 1995; LACOMBE et al., 2006;

NAVABPOUR et al., 2007, 2008), the Alborz (ZANCHI

et al., 2006) and the Kopeh Dag (ZAMANI et al.,

2008).

Recent studies analyze different aspects of rup-

ture propagation of earthquakes in geometrically

complex fault systems to estimate the initiation,

propagation and arrest of rupture (SOWERS et al.,

1994; POLIAKOV et al., 2002; KAME and YAMASHITA,

2003; KAME et al., 2003; BHAT et al., 2004; FLISS

et al., 2005; WESNOUSKY, 2006). In all of these

analyses the direction of maximum compression in

the pre-existing stress field has a strong impact on

the propensity of the rupture path to bend on to the

potential branch path and to control the arrest or

further propagation of rupture.

Besides providing an overall picture of the tec-

tonic state of stress in Iran, knowledge of the

geometrical complexities of the Iranian fault systems

and of the direction of the pre-existing stress field
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may also significantly improve hazard assessments in

populated areas. From the time of the Damghan

earthquake (22 December 865, M7.9) to the recent

twin earthquakes in Tabriz (11 August 2012, M6.3

and M6.4), Iran has suffered with more than 664,000

fatalities due to earthquakes (official reports). Our

aim, in this paper, is to use all available geodetic data

(1999–2011) and focal mechanism of earthquakes

(1909–2012) to determine a stress map of Iran. If we

assume that stresses in a continuum are produced by

the application of tectonic forces and its consequent

deformation on the crustal scale, then the direction of

the principal components of the stress and strain (or

strain rate) tensors must ideally be the same. In the

next three sections we present the analysis of the

various seismic and geodetic data. We then combine

these multidisciplinary data to produce the stress

map. This stress map is then used to discuss the

various tectonic regimes in Iran.

2. Focal Mechanism Stress Inversion (FMSI)

According to MCKENZIE (1969), the crustal stress

tensor cannot be estimated with confidence by relying

on the focal mechanism of only one earthquake.

Instead, one needs an inversion technique to estimate

the stress tensor from a larger number of earthquakes

in a region. Here, we used focal mechanism stress

inversion (FMSI) as described by MICHAEL (1984,
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Figure 1
Focal mechanism of earthquakes in Iran in the period 1909–2011. The gray mechanisms are from JACKSON et al. (1995) and the blue ones from

the global CMT catalog. 200 km 9 200 km cells are used, and these are sequentially numbered starting from 1 in the northwest corner to 54

in the northeast of Iran
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1987, 1991) (ZMAP software [WYSS, 2001]) to derive

the spatially uniform time-averaged components of

the stress field in Iran. The stress tensor is described

by the three orthogonal orientations of the three

principal stresses r1, r2 and r3 and a relative measure

of stress, the stress ratio which is defined by

u ¼ ðr1�r2Þ
rs�r1

, and which represents the shape of a de-

viatoric ellipsoid. The calculation of the variance

shows how well the result fit to a homogeneous stress

field. In order to find the 95 % confidence region, the

method finds 95 % of the stress tensors that are

closest to the best value based on the normalized

scalar product of two stress tensors according to the

Eq.:

P3
i¼1

P3
j¼1 MijNij

P3
i¼1

P3
j¼1 M2

ij

� �0:5 P3
i¼1

P3
j¼1 N2

ij

� �0:5
: ð1Þ

Here the components of the two stress tensors

M and N are denoted by Mij and Nij, respectively.

3. Earthquake Data and FMSI Results

Since the main assumption in the stress inver-

sion is that the stress field is uniform in each cell,

we generated a mesh assuming that different pat-

terns of faulting can be observed in each cell.

Table 1

Result of the focal mechanism stress inversion (FMSI)

Cell r1 r2 r3 Variance u

Azimuth Rake Azimuth Rake Azimuth Rake

4 46.9 14.8 137.3 1.9 -125.6 75 0.11 0.47

6 22.6 1.7 -67.6 8.3 123.9 81.4 0.051 0.25

7 21.7 6.4 -179 83.1 -68.5 2.4 0.048 0.42

8 -82.1 8.5 10.6 17.6 163 70.3 0.059 0.59

9 -29.3 13.2 -130.1 38.8 75.9 48.1 0.098 0.42

10 -65.3 35.4 13.6 53.3 30.5 8.2 0.14 0.45

11 -106.1 4.9 161.4 24.6 -5.7 64.7 0.13 0.16

14 13.3 1.8 -77.4 22.3 107.7 67.7 0.073 0.31

15 -142.1 2.3 118.7 75.3 -51.6 14.5 0.049 0.19

16 50.4 11.3 -172.4 74.6 -41.6 10.2 0.043 0.4219

19 -155.8 5.1 -56.8 60.8 111.2 28.6 0.043 0.82

20 37.6 8.5 -160.6 81 -52 2.8 0.056 0.32

23 -161.1 23.8 50.9 62.4 -65.3 13 0.21 0.41

24 93.2 6.3 2.2 9.2 -142.6 78.8 0.04 0.24

25 -9.4 2.8 -100.3 18.3 88.9 71.4 0.041 0.37

26 20.6 42 111.2 0.7 -157.9 48 0.047 0.9

30 8.8 1.7 -81.6 12.7 106 77.1 0.11 0.23

31 170.2 16 55.1 55.9 -90.4 29.1 0.016 0.31

32 -6.2 7.6 84.7 7 -143.2 79.6 0.038 0.45

33 -5.7 6.1 97.5 65 -98.4 24.1 0.071 0.12

34 11.4 18.5 107.5 17.6 -121.8 63.9 0.026 0.72

35 0.5 1.2 -97.8 81.5 90.6 8.4 0.049 0.31

36 57.8 11.3 -54.7 63.2 153 24.8 0.045 0.21

39 38.7 14.1 -108.8 73.3 130.8 8.6 0.021 0.28

40 48.6 1.8 -42.2 25 142.4 64.8 0.11 0.26

41 -137.8 3.7 -40.1 64.3 130.2 25.4 0.023 0.11

43 -151.8 10.3 -40.1 63.9 113.5 23.6 0.032 0.23

44 -102.1 11.2 -3.4 37.6 154 50.1 0.15 0.61

45 42 7.2 -58.4 54.9 136.9 34 0.054 0.16

48 -113.8 19.3 113.2 62.7 -17.2 18.4 0.0021 0.32

50 -130.5 6.3 138.1 10.5 -10 77.6 0.013 0.18

51 -132.8 5.5 4.8 82.6 136.5 4.9 0.0053 0.47

53 -118.8 25.7 34.8 54.2 145.2 35.8 0.0052 0.39

Data are obtained from the global CMT catalogue and JACKSON et al. (1995). Minimum number of earthquakes used to obtain FMSI is three
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Having a different geometry and pattern for fault-

ing, one can estimate the average of spatial stress

field in different cells. In this study we use a

uniform mesh, with square cells (200 km 9

200 km) that are wide enough to assure the exis-

tence of complexity in the pattern of faulting in

each cell and, at the same time, allows for the

possible variation of the state of stress between

adjacent cells.

We compute the stress field in each cell, using the

focal mechanism of crustal earthquakes (shallower

than 40 km). We use two data sets. The first dataset is

based on JACKSON et al. (1995) and covers the period

1909–1976. The second dataset uses the global CMT

catalog and covers the period 1977–2012. Many of

the focal mechanisms derived by JACKSON et al.

(1995) are based on surface faulting which were

accompanied by these events. The spatial distribution

of the focal mechanisms used in this study is shown

in Fig. 1. This figure clearly shows that most of the

focal mechanisms are concentrated in the Zagros,

Alborz, Kopeh Dagh and Talesh Mountains and

around the Lut block in eastern Iran. The main

assumption of FMSI is that a perturbation in the stress

field as a result of different sources of heterogeneity

can be neglected with respect to the regional stress

field. This assumption is valid if a large number of

data are used. However, this is not always the case. In

particular, in our inversion in a number of cells (cells

10, 16, 24, 26, 45, 48 and 53), the number of events

was as low as 3. The FMSI results are presented in

Table 1 and Fig. 2. It is important to note; however,
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Figure 2
Direction of maximum principal axes of compressional and extensional stresses obtained from FMSI. Empty cells indicate that there were not

enough data
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that one of the main objectives of this study is to

compare and combine these results with the seismic

and geodetic inversions.

Figure 3 shows the FMSI result for each cell with a

95 % confidence limit. As can be seen from Fig. 3, the

low seismicity in cells 10, 16, 24, 26, 45, 48 and 53

could give rise to areas with low confidence limits. The

results show the distinct tectonic settings of Iran. A

northeastward compression along the Makran sub-

duction zone changes to a northwestward compression

in the transition zone between the Makran subduction

zone and the Zagros collision zone, while to the west of

the Zagros belt, the direction of compression changes

towards the northeast. The dominant direction of

compression in eastern Iran and along the Kopeh Dag is

towards the northeast, which is in agreement with the

direction of compression east of the southern Alborz

mountain range. However, in the southern Caspian Sea

and the northern Alborz, this direction is rotated to

almost east–west. The compressional axis of stress

changes its direction again in the Talesh region, in

northwestern Iran, towards the northwest.

4. Seismic Strain Rate (SSR)

In a seismically active region like Iran, earth-

quakes are related to many faults which are complex

in geometry and are distributed irregularly. In such

cases, the tectonic process can be described by its

deformation rate, where fractures at the source are

assumed to be randomly distributed (KOSTROV, 1974;

KOSTROV and DAS, 2005). In order to calculate the

components of the strain rate tensor, we used KOST-

ROV (1974) formulation in each cell:

_eij ¼
1

2ltV

XN

n¼1

Mn
ij: ð2Þ

Here, l is the modulus of rigidity and Mn
ij is the ij-

the component of the moment tensor of earthquake n

with scalar moment M0 and n̂, the unit normal vector

to the fault plane and d̂, the unit slip vector, with

Mij ¼ M0 nidj þ njdi

� �
(STEIN and WYSESSION, 2001).

Here the assumption is that earthquakes have occur-

red in volume V and over a time interval of t. We

assume a continental crustal rigidity of l = 3 9 1010

Pa and a seismogenic thickness of 15 km as estimated

by other studies (JACKSON and MCKENZIE, 1988;

HATZFELD et al., 2003; TALEBIAN and JACKSON, 2004).

5. SSR Results

The same data and grid that were used in FMSI,

have been used to calculate the SSR. Table 2 and Fig. 4

present the direction and magnitude of the principal

axes of seismic strain rate obtained from Eq. 2. The

magnitude of the seismic strain rates illustrates the

variable rate of deformation in different cells as well as

the dominant state of deformational regime in terms of

compression or extension. Figure 4 shows that, in

Zagros, the seismic strain rate obtains its highest value

in cell 7 in the northwestern part of Zagros with a

predominantly compressional deformation regime

(compare the size of the red and blue circles, repre-

senting the magnitude of compression and extension,

respectively). In the other regions, most of the seismic

deformation derived from modern seismicity, is related

to eastern Iran and the southwestern Caspian Sea (NW

Alborz). In neighboring cells of 44 and 33, as well as in

cells 41 and 36, the dominant deformation regime

changes abruptly from compression to extension. The

other peculiar feature is the dominant extensional

strain, observed in cells 19 and 30, in the collision zone

between Arabian and Eurasian plates.

6. Combination of GPS Velocities

The GPS velocities are usually estimated either in

regional or global reference frames based on the

extent of the network and its application. In geodesy,

global reference frames such as International Ter-

restrial Reference Frames (ITRFs) are generally of

interest and in tectonic studies stable-plate frames,

such as Eurasia-fixed, are more suitable to study

relative plate movements or to detect movements

around active faults.

In recent years, the active tectonic deformation of

Iran has been constrained by several geodetic studies

using either campaign-mode surveys or/and permanent

GPS stations (NILFOROUSHAN et al., 2003; VERNANT

et al., 2004a, b; BAYER et al., 2006; HESSAMI et al., 2006;

Vol. 171, (2014) Crustal stress map of Iran: insight from seismic and geodetic computations 1223
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WALPERSDORF et al., 2006; MASSON et al., 2006, 2007;

TAVAKOLI et al., 2008; PEYRET et al., 2009; DJAMOUR

et al., 2010, 2011; MOUSAVI et al., 2013). Because each

individual velocity solution was obtained by different

processing strategies, or by choosing a different ref-

erence frame, the published GPS velocities cannot be

directly merged, even if they are declared or are

transformed in the same reference frame. For example,

the velocity differences computed for common stations

between the solutions in the Eurasia-fixed frame were

1–3 mm/year, which later, after using transformation

parameters between solutions, improved to 0.5 mm/

year (see below for details). Therefore, the first

important step for combination is to unify the reference

frames by mathematical methods and generate a

combined velocity field in that unified frame (e.g.,

DONG et al., 1998, NOCQUET, 2012).

We used the VELROT program, version 1.01

(HERRING et al., 2010) to compare and combine the

velocity fields by estimating translation and rotation

parameters between them. In order to combine the

velocity fields using VELROT, we only chose those

solutions which had enough common stations in Iran

and also those solutions for which the residual

velocities computed for common stations during

transformation was below 1 mm/year. Therefore, we

did not take into account HESSAMI et al. (2006) and

PEYRET (2009) due to lack of enough and good com-

mon stations with other solutions. We also ignored

solutions by NILFOROUSHAN et al. (2003), VERNANT

et al. (2004a, b) and MASSON et al. (2006), but used the

latest solutions by DJAMOUR et al. (2010, 2011) and

MASSON et al. (2007) instead, as these had observed

the same stations but with longer time spans and more

surveys, thus providing more reliable velocities.

Finally, we used the velocity fields of BAYER et al.

(2006), MASSON et al. (2007), WALPERSDORF et al.

(2006), TAVAKOLI et al. (2008), DJAMOUR et al. (2010,

2011) and MOUSAVI et al. (2013). These solutions

reported their velocity fields either in ITRF or/and in

Arabia-fixed or/and in Eurasia-fixed frames. The dif-

ferent ITRF realizations (ITRF2000, ITRF2005 and

the latest one, ITRF2008) used in these studies were

noted for velocity combinations. Supplementary

Table A1 shows the combination steps, input solutions

for each step, input and target reference frames, and

the RMS of the velocity residuals. The small RMS

values in Supplementary Table A1 show the good

agreement between different solutions (about

0.5 mm/year). The final combined velocity solution is

listed in Supplementary Table A2 and shown in Fig. 5

and is used for the geodetic strain rate estimations.

Table 2

Principal axes of seismic strain rate obtained in this study in 10-10

year-1

Cell _e1 (compressional) _e2 (extensional) Azimuth of _e1

4 -0.625 0.342 79.5

6 -5.214 0.749 83.7

7 -4.93 24.1 44.4

8 -29.04 3.56 45.2

9 -11.47 11.28 -36.0

10 -5.360 3.70 -8.9

11 -374 375 54.6

14 -5.734 6.097 40.4

15 -4.796 0.651 6.3

16 -0.405 0.364 50.6

19 -1.08 84.57 59.7

20 -12.77 6.28 72.6

23 -12.35 0.04 52.5

24 -63.8 70.30 88.2

25 -14.2 14.7 -11.4

26 -27.7 1.6 17

30 0.1 49.72 11

31 -1.31 0.26 -27.3

32 -6.77 1.32 -47

33 -98.09 15.46 36.9

34 -42.19 0.8 13.5

35 -7.65 1.67 16.3

36 -363 0.9 28.26

39 -516 575 34.6

40 -17.04 17.26 84

41 -14.6 455 25.94

43 -224 234 45.50

44 -2.0 71.7 29.7

45 -2.73 4.21 39

48 -21.57 22.19 28.3

50 -6.43 8.22 65.6

51 -5.09 5.70 36.5

53 -128 128 60.8

The Azimuth of _e1 is in degrees

Figure 3
Results of FMSI in each cell with 95 % confidence level. The three

principal axes of r1, r2 and r3 are represented by a big open

square, a circle and a triangle, respectively. Wulff nets with

expanded area of confidence levels represent a relatively poor fit to

a homogenous stress field

b
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7. GPS-derived Strain Rates (GSR)

We used the SSPX program (CARDOZO and ALL-

MENDINGER, 2009) to compute the infinitesimal

horizontal strain rates from GPS horizontal velocities

with the same grid pattern as FMSI and SSR. The

SSPX program and its predecessor Strain SimPro

have been successfully used in previous studies for

deformation analysis of GPS networks (ALLMENDING-

ER et al., 2005, 2007; MULLICK et al., 2009; UNGLERT

et al., 2011). This program is able to calculate strain

and strain rates from 2D and 3D displacement and

velocity data; and it can compute all deformation

parameters. Out of the seven different methods in

SSPX to compute the strain or strain rates, we used

the Grid-Distance Neighbor method. Since our GPS

stations are not uniformly distributed and we are

dealing with heterogeneous tectonic deformation in

our study area, the Grid-Distance Neighbor method

works well and produces a more meaningful solution

(ALLMENDINGER et al., 2007). The Grid-Distance

Neighbor method uses weighted least squared

adjustment where each station is weighted by its

distance to the center of the cell:

W ¼ exp
�d2

2a2

� �

; ð3Þ

where W is the weighting factor, d is the distance and

a is a constant that specifies how the closeness of the

stations to the center of the cell influences the strain

solution. Stations within 1a distance contribute more

than 67 % to the solution whereas those at a distance
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Figure 4
Direction and relative magnitude of principal axes of seismic strain rate in Iran (see also Table 2). The blue circles represent magnitude of

extensional strain. The red circles represent magnitude of the compressional strain rate. In some cells, extension (cells 41, 44, 19 and 30) or

compression (7 and 36) are the dominant regime
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greater than 3a contribute \1 % (CARDOZO and ALL-

MENDINGER, 2009). In contrast to the Delaunay

triangulation method where strain rates are estimated

at the center of the non-equal area triangles formed

by the non-equally spaced GPS stations; it gives more

reasonable results and better visualization of the

strain rate directions and magnitudes on an equal-area

regular grid. Of course, the small station spacing and

active deformation results in very high strain rates if

no distance-weighted factor is used (CARDOZO and

ALLMENDINGER, 2009).

We estimated the strain rates at the center of

each cell of a 200 9 200 km rectangular grid by

inclusion of 239 Eurasia-fixed GPS velocities

(Fig. 5), Grid-Distance Neighbor method and

a = 150 km (see ALLMENDINGER et al., 2007). As

discussed earlier, the Grid-Distance Neighbor

method, the velocity of the close stations contribute

more to the solutions, and; therefore, a more rea-

sonable strain rate field is estimated for such a

heterogeneous tectonic region where different kine-

matics and deformation mechanisms are observed

(e.g., NILFOROUSHAN et al., 2003; ALLMENDINGER

et al., 2007). Figure 6 and Table 3 show the results

of our geodetic strain rate computation for Iran.

According to the geodetic observations, the north-

eastward shortening is the dominant deformational

regime in the southern, southwestern, eastern and

northeastern parts of Iran. The deviation from this

general trend can be seen only in northwestern Za-

gros as well as the northwestern part of Iran, in the

Talesh region. In general there is a good agreement
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Figure 5
GPS stations (black rectangles) and the combined velocity field with their error ellipses in the Eurasian fixed reference frame (EURA_I08).

The combined velocity field is listed in Supplementary Table A2 and based on BAYER et al. (2006), MASSON et al. (2007), WALPERSDORF et al.

(2006), TAVAKOLI et al. (2008), DJAMOUR et al. (2010, 2011), and MOUSAVI et al. (2013)
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between the direction of the principal axes of geo-

detic strain and what has been computed by seismic

strain and/or stress inversion of focal mechanisms

except in the Zagros–Makran transition zone and the

southern part of the Caspian Sea. In the next section,

we compare the results obtained from the different

methods used in this study and integrate them to

present a new stress field for our study area.

8. Stress and Strain Analyses in Iran

In order to obtain the best model to describe the

directions of principal axes of stress in Iran, we

compare the results of FMSI with those obtained

using seismic and geodetic data. The notion is that

stresses in a continuum are produced by the appli-

cation of tectonic forces and its consequent

deformation in the crustal scale. Therefore, the

direction of the principal axes of the stress and strain

(or strain rate) tensors must ideally be the same.

Figure 7 shows a comparison between the direction

of the maximum principal stress and seismic/geodetic

strain rates in Iran.

We calculated the Pearson product moment cor-

relation between the obtained results from stress

inversion of focal mechanisms with what we obtained

from geodetic and seismic strain rate tensors. The

Pearson’s correlation coefficient between two sets of

variables is defined as the covariance of the two

variables cov(x, y) divided by the product of their

standard deviations (rx and ry) (e.g. GIBONS, 1982) as

given by:

qxy ¼
cov x; yð Þ

rxry

: ð4Þ
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Figure 6
Principal geodetic strain rates derived from combined GPS velocities
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The Pearson’s correlation coefficient defined in

this equation is a measure for the amount of linear

correlation between the two data sets. Pearson’s

density (q) varies from -1 to ?1, where q = ?1

suggests a perfect positive linear relationship between

the two sets of variables. Our results show a strong

correlation between the obtained stress tensor and

strain tensor analysis in this study, with q = ?0.84

the correlation value for the data derived using FMSI

and SSR, q = ?0.78 the correlation value for SSR

and GSR and q = ?0.79 the correlation value for

FMSI and GSR. We also calculated the mean direc-

tion of compressional stress (and strain rate) in each

cell and the absolute value of deviation of each

method of analyzing of stress/strain tensor from this

mean value. We present a new directional stress field

in Iran, by using the following weighted average:

CoefMethod ¼
P

Dev:Methods � Dev:from mean methodj j
P

Dev methods

ð6Þ
X

Dev: methods¼ Dev: from mean FMSIj j
þ Dev: from mean SSRj j þ Dev: from mean GSRj j:

ð7Þ

Here | | denotes the absolute value and ‘‘Dev.

from mean FMSI’’ is the deviation of the FMSI

result in the cell from the mean value of the three

methods, representing the direction of stress, in that

cell. Here, the highest weight is associated with the

method with least deviation from the mean value

and the lowest weight is assigned to the method

with highest deviation from the mean value. The

results of our statistical approach are presented in

Table 4. Figure 8 shows the direction of weighted

average compressional stress in Iran.

9. Results and Discussion

A combination of several GPS velocity fields

extracted form previous studies and the resulting strain-

rate field has helped us to better illustrate the present-

day active deformation in Iran. The relatively dense

network of GPS stations in Zagros, Alborz, NW and NE

Iran (Fig. 5) provided more accurate and reliable

solutions for geodetic strain analysis. The gridding of

the non-uniformly distributed GPS velocities in our

study area also helped us to infer the local deformation

in the areas where no (or a few) GPS stations exist at our

200 km grid resolution. However, in order to provide

more accurate constraints on such complex tectonically

deforming zones in the center and eastern part of Iran,

such gaps should be filled by installation and observa-

tion of more GPS stations.

The combination of results from geodetic mea-

surements, seismic strain rates and focal mechanism

stress inversion and their robust correlation, provides

a stress map in Iran based on a multi-disciplinary

approach, which should be helpful in explaining the

general tectonic setting of the Iranian Plateau.

The magnitude of the GPS principal strain rate

components and the topography of the study area in

Fig. 6 show that the present-day deformation in most

parts of Iran is mainly compressional. Generally the

compressional strain rate components are perpendic-

ular to the fold axes and thrust faults (Fig. 6). The

computed strain rate magnitudes and directions

change based on the tectonic activity of the local area

defined by the grid cells. Relatively large compres-

sional components of geodetic strain rate are

observed in southeastern Iran, the Makran region and

the coastal area of Oman sea, (cells 45, 46 and 47;

Fig. 6) where oceanic crust of Arabian plate subducts

beneath Eurasian plate (NILFOROUSHAN et al., 2003;

WeightedAVE ¼
CoefFMSI � FMSIþ CoefSSR � SSRþ CoefGSR � GSR

CoefFMSI þ CoefSSR þ CoefGSR

ð5Þ
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MASSON et al., 2007). The lack of seismic activity

near the coast of the Oman Sea is the reason that we

did not determine a seismic strain rate in this area.

There are two possible explanations for this lack of

seismic activity. First, the strain accumulates at the

slab interface, which can give rise to future big

earthquakes, or secondly, there is a free slip condition

in the westernmost part of the Makran subduction

zone. A study by ZARIFI (2007) gives clear evidence

of strong coupling in the western Makran. In addition,

according to STERN (2002), observations of com-

pressional stress in the back arc of the subduction

zones (here, cells 45, 48, 44 and 49) confirm strong

coupling at the slab interface. Therefore, geodetic

measurements in the cells associated with the back

arc of Marakan, with a strong compressional com-

ponent may be evidence of strong coupling at the slab

interface. However, this contradicts the result from

the seismic strain rate inversion. Despite good

agreement in the directions of the principal stress and

strain axes in cells 44 and 48, the magnitude of the

compressional and extensional strain rates show a

strong mismatch between the geodetically measured

and the seismically computed values (see Figs. 4, 6).

We explain this mismatch with the short time span of

the geodetic data in the region and also the occur-

rence of ‘old’ strike slip earthquakes in the overriding

plate in Makran. The trend and mechanism of faulting

in cells 44 and 48 (Figs. 1, 4) show strike slip faults

with fault planes perpendicular to the direction of

compression and may confirm stress partitioning in

this area, where there is an overriding lithosphere.

The rotation of the Arabian plate relative to the

Eurasian plate, which is accommodated by active

subduction at the Makran trench (BELLAHSEN et al.,

2003; REILINGER et al., 2006), can explain the possible

stress partitioning in the overriding lithosphere.

Indeed, BAYER et al. (2006) and PEYRET et al. (2009)

have associated the big component of geodetic

extension rate (2e-8 s-1), in their study, in the

westernmost Makran (cells 45 and 46) to the strike-

slip components of Minab–Zendan fault. The short-

ening direction in those cells has an average 30�
orientation towards NNE. These shortening orienta-

tions based on geodetic measurements change

slightly and based on seismic observations (FMSI)

Table 3

Principal axes of geodetic strain rates obtained in this study in

10-10 year-1

Cell _e1 (compressional) _e2 (extensional) Azimuth of _e1

1 -180.96 201.25 334.04

2 -157.29 187.37 337.23

3 -80.65 60.23 356.16

4 -97.96 34.77 8.74

5 -169.21 28.38 36.62

6 -165.41 13.37 21.14

7 -113.87 26.41 10.05

8 -75.39 6.88 1.85

9 -88.15 122.43 330.44

10 -118.28 210 325.62

11 -59.48 -35.35 10.84

12 -97.76 10.25 21.59

13 -100.08 40.72 16

14 -150.32 64.87 25.28

15 -224.66 69.88 31.06

16 -231.51 33.74 37.41

17 -140.57 -5.97 44.66

18 -227.75 22.03 25.35

19 -250.02 23.62 25.84

20 -182.28 55.80 24.16

21 -98.01 78.98 20.37

22 -97.24 59.28 16.32

23 -155 62.79 27.66

24 -148.94 32.75 34.58

25 -171.46 138.74 25.91

26 -147.97 75.09 20.92

27 -102.61 52.63 12.79

28 -61.27 53.36 8.47

29 -121.88 58.39 7.04

30 -254.97 74.02 11

31 -327.87 69.88 13.05

32 -328.48 48.29 20.01

33 -291.52 69.09 10.60

34 -106 77.25 4.01

35 -110.70 26.79 11.56

36 -138.50 24.51 21.75

37 -133.28 54.74 21.13

38 -156.59 113.65 25.77

39 -188.8 75 26.63

40 -167.69 55.87 27.76

41 -179.52 58.22 30.35

42 -181.74 80.64 31.93

43 -166.17 131.1 32.19

44 -315.57 122.4 24.01

45 -368.21 154 30.81

46 -566.06 142.17 28.83

47 -576.10 132.73 25.69

48 -346.45 159.77 26.02

49 -253.07 212.11 29.96

50 -187.50 234.69 40.77

51 -210.13 111.76 34.06

52 -185.95 105.81 31.63

53 -147.94 51.67 33.77

54 -157.84 23.16 34.06

The Azimuth of _e1 is in degrees

1230 Z. Zarifi et al. Pure Appl. Geophys.



significantly anticlockwise in Makran–Zagros transi-

tion (cells 32, 33) where a transition from oceanic-

continental subduction in Makran to continental–

continental collision in Zagros takes place (BAYER

et al., 2006; PEYRET et al., 2009; REGARD et al., 2004).

Seismic strain rates in adjacent cells 34, 33 and 44

show that the transition zone between Makran and

Zagros can significantly affect the dominant stress

field in the area. The predominantly extensional

regime on the Makran side, (cell 44), is replaced by a

predominantly compressional regime on the Zagros

side (cells 33, 34). Compression is the dominant

regime in most areas of Zagros (see Figs. 4, 6) except

cells 19 and 30 (based on seismic strain rate analysis).

This extensional regime could be due to the presence

of a 1–2 km thick salt layer under the cover sediments

where this mechanically weak salt layer eases the fan-

shaped deformation distribution in the southeastern

part of the Zagros (NILFOROUSHAN and KOYI, 2007).

Geodetic and seismic calculations (GSR, SSR and

FMSI) confirm the heterogeneous deformation in terms

of both magnitude and direction at Zagros. The clear

strain partitioning in the Zagros fold-thrust belt is

observed from the south to the northwest. An almost

orthogonal shortening of the belt (shortening perpen-

dicular to the geological structures and strike of the belt)

in cells 33, 30, 31, 19, 20, 21, 15 and 14 is observed

whereas the shortening direction is rotating anticlock-

wise as derived from geodetic measurements and focal

mechanism stress inversion in the northwestern part of

the belt and trends obliquely to the strike of the belt (cells

14, 6 and 7) (Figs. 3, 6 and 7). This observation has also

been reported by previous studies (HESSAMI et al., 2006;

WALPERSDORF et al., 2006).
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Comparison between direction of principal axes of stress (red) and seismic (black)/geodetic (blue) strain rates in Iran. If not enough

earthquake data are available for a cell, then that cell is left empty
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The main active shortening in the Zagros is

observed in the southeastern part and is taken up by

the frontal structures as illustrated in cells 30, 31 and

19 in Fig. (6). According to geodetic measurements,

the region northwest of Zagros, (cells 3, 4 and 7), is

undergoing relatively less compression and most of

the plate deformation due to convergence is trans-

ferred northward (WALPERSDORF et al., 2006). Note

though that a large compressional seismic strain rate

is observed in cell 7, which is associated to past

earthquakes in this region (Sahneh earthquake, 13

Dec 1957, M7.1). Low rate of deformation as

observed from the geodetic measurements and almost

silent seismic deformation in the central part of Iran,

roughly defined by cells 27, 28, 22, 8, 13 and 21,

supports the idea of the existence of a rigid block in

this region. This has also been suggested by other

studies (REILINGER et al., 2006; VERNANT et al., 2004a,

b). However, one should note that the GPS stations in

these cells are not dense enough to reveal possible

slow movements along active faults, which have been

suggested by JAMALI et al. (2011).

The direction of the compressional strain rate

components (GSR and SSR) and stress (FMSI) in

cells 23 and 26 illustrates the dominant NNE short-

ening in the southeastern part of Alborz (Figs. 2, 4).

Table 4

Statistical analysis of the obtained results in this study

Cell Mean value

of Azimuth

Dev. from mean

(FMSI)

Dev. from

mean (SSR)

Dev. from

mean (GSR)

Weighted average

of Azimuths

4 45.05 1.85 34.45 36.31 45.92

6 42.48 19.88 41.22 21.34 37.33

7 25.38 3.68 19.02 15.33 23.89

8 48.31 49.58 3.12 46.46 46.85

9 148.38 2.32 4.38 2.06 148.93

10 143.81 29.11 27.29 1.81 144.65

11 46.44 27.45 8.15 35.61 49.58

14 26.32 13.02 14.07 1.05 25.84

15 25.08 12.81 18.78 5.97 27.12

16 46.13 4.26 4.46 8.72 47.22

19 36.58 12.38 23.12 10.74 33.70

20 44.78 7.18 27.81 20.62 42.12

23 33.02 14.12 19.48 5.36 31.07

24 72 21.21 16.20 37.41 76.58

25 181.7 11.1 13.1 24.2 178.7

26 19.05 1.09 2.51 1.41 19.81

30 10.26 1.46 0.73 0.73 10.45

31 171.98 1.78 19.28 21.07 171.16

32 168.93 4.86 35.93 31.07 171.04

33 193.93 19.63 22.96 3.3 192.51

34 9.63 1.76 3.86 5.63 10.42

35 9.45 8.95 6.84 2.11 10.26

36 35.93 21.86 7.67 14.19 33.45

39 33.31 5.39 1.29 6.68 33.83

40 53.45 4.85 30.55 25.69 51.41

41 32.83 9.37 6.89 2.48 31.92

43 35.30 7.09 10.20 3.11 34.21

44 43.87 34.03 14.17 19.86 39.73

45 37.27 4.73 1.73 6.46 37.90

48 40.17 26.02 11.87 14.15 36.94

50 51.95 2.46 13.64 11.18 50.95

51 39.25 7.94 2.75 5.19 38.35

53 51.92 9.27 8.87 18.15 54.19

The weighted average Azimuth of compression axis based on focal mechanism stress inversion (FMSI), seismic strain rate (SSR) and geodetic

strain rate (GSR), is presented in the last column
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In the northern Alborz and southern Caspian Sea

there is a mismatch in the direction of shortening

obtained from seismic data and what has been com-

puted based on geodetic measurements (cells 11, 24

and 25). The gradual change in the direction of

compression towards the E–W, based on SSR and

FMSI, in the southern Caspian Sea reflects a west-

ward movement of the south Caspian block with

respect to Eurasia and Iran, as has been suggested by

other researchers (JACKSON et al., 2002; MASSON et al.,

2006). The mismatch with the geodetic measure-

ments in these cells could be related to the relatively

short time span during which the geodetic data were

collected.

The NNW direction of the principal strain rate

and stress axes in cells 1, 2, 9 and 10 (Figs. 3, 4 and

6) represents the changes in the style of deformation

in the northwestern part of Iran (close to the Turkish–

Iranian border). The extensional components of

geodetic strain rate illustrate the change in kinematics

in this region, which has been thought to be related

partly to strike-slip movements along the North

Tabriz fault, to subduction of an old remnant of

oceanic crust beneath the Great Caucasus, to west-

ward motion of the south Caspian basin and to active

delamination in the lesser Caucasus (MASSON et al.,

2006; REILINGER et al., 2006; DJAMOUR et al., 2011).

The direction of shortening in eastern Iran and Kopeh

Dag has a NNE to NE trend. There is a good agree-

ment in direction of shortening between all three

methods of investigation in this study. The tectonic

forces in Kopeh Dag and eastern Iran are thought to

have the same origin. The right lateral shear between

central Iran and Afghanistan feeds the shortening in

Kopeh Dag and eastern Iran via the N–S right lateral

strike slip faults in this region (LYBERIS and MANBY,
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1999; WALKER and JACKSON, 2004). Such a lateral

movement between these two blocks indeed can be

the result of a NE and NNE trend of compression.

Based on SSR, the dominant compressional defor-

mation in cell 36 has changed to dominant

extensional deformation in cell 41. The GSR result

also suggests a bigger extensional component of

deformation in cell 41, in comparison with cell 36.

This may confirm a sharp boundary between central

and eastern Iran. The GSR in all cells in central Iran

(cells 35, 36 and 37) confirm a smaller component of

extension as compared to the neighboring cells in

eastern Iran (cells 40, 41 and 42). The high exten-

sional strain component in Kopeh Dag (based on both

GSR and SSR) can be explained with the deformation

pattern of the Iran–Turan convergence. The 350 km

long NW–SE right lateral strike-slip ‘‘Ashgabat’’

fault in Kopeh Dag is representative of the NNE

direction of shortening and the NW direction of

extension in this region.

We also compared our results with the results

presented in the world stress map of HEIDBACH and

HOHNE (2008), HEIDBACH et al. (2010), the stress

inversion of GILLARD and WYSS (1995) in Zagros,

ZAMANI et al. (2008) in Kopeh Dag, ZANCHI et al.

(2006) in Alborz and, whenever the comparison was

possible (based on the cell allocation), with geodetic

studies of MASSON et al. (2005). We believe there is a

good compatibility among these studies and the

results of our study. Minor mismatches exist which

are caused by differences in the grid size and dif-

ferences in the number of data used. As observed in

our research, different methods of calculations

change the results and can generate mismatches even

when the same dataset is used. Thus, a stress map

obtained using different types of data with a mini-

mum deviation from the average of the stress field

obtained in each individual data sets, gives rise to a

more realistic stress map.

10. Conclusion

In this study, we have used the long-term seismic

activity between 1909 and 2012 and the short-term

crustal deformation constrained by geodetic data

(1999–2011) to compute the crustal stress field in Iran.

The Pearson product moment correlation between the

obtained results shows a strong correlation between

the directions of principal components of the seismic

and geodetic strain rates and stresses. In particular the

correlation coefficient of q = ?0.84 between the

FMSI and SSR results, the correlation coefficient

q = ?0.78 between SSR and GSR and q = ?0.79

between FMSI and GSR (see also Fig. 7) are obtained.

These good agreements between the three inversion

results are used to compute the stress field using a

method based on weighted averages. The new stress

field (Fig. 8) is consistent with the tectonic setting of

Iran. In particular, this new stress map illustrates the

sharp variation in the transition zone between Makran

and Zagros, the stress partitioning in northwestern

Zagros, the northeastward direction of shortening in

Kopeh Dag and eastern Iran, the distinction between

the direction of shortening in southern Alborz versus

the northern Alborz and south Caspian region and the

NW shortening in Talesh and northwestern Iran. This

new stress map, obtained using various sources of data

and computation methods, with a strong positive

correlation between the data and its general agreement

with tectonic activity supports the assertion that this

stress map provides stable estimates of the state of

stress in Iran which should help in further tectonic as

well as seismic hazard studies.
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