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Abstract—Numerical simulations of complex earthquake

cycles are conducted using a two-degree-of-freedom spring-block

model with a rate- and state-friction law, which has been supported

by laboratory experiments. The model consisted of two blocks

coupled to each other and connected by elastic springs to a con-

stant-velocity, moving driver. By widely and systematically

varying the model parameters, various slip patterns were obtained,

including the periodic recurrence of seismic and aseismic slip

events, and several types of chaotic behaviour. The transition in the

slip pattern from periodic to chaotic is examined using bifurcation

diagrams. The model system exhibits typical period-doubling

sequences for some parameter ranges, and attains chaotic motion.

Simple relationships are found in iteration maps of the recurrence

intervals of simulated earthquakes, suggesting that the simulated

slip behaviour is deterministic chaos. Time evolutions of the

cumulative slip distance in chaotic slip patterns are well approxi-

mated by a time-predictable model. In some cases, both seismic

and aseismic slip events occur at a block, and aseismic slip events

complicate the earthquake recurrence patterns.

Key words: Earthquake cycle, spring-block model, chaos,

rate- and state-dependent friction, numerical simulation.

1. Introduction

Plate boundaries and active faults are commonly

segmented, and earthquakes repeatedly occur at each

segment. For example, large earthquakes have occur-

red at recurrence intervals of 90–150 years along the

Nankai trough in southwestern Japan, and the source

regions of these earthquakes can be divided into five

segments (ISHIBASHI 2004). The fact that earthquakes

can recur at a segment has been used in long-term

earthquake forecasting (Working Group on California

Earthquake Probabilities 2008). However, it is still

difficult to predict large earthquakes precisely, due to

their complex patterns of occurrence. The recurrence

times and rupture areas are variable, due to interactions

between fault segments, as demonstrated by numerical

simulations (WARD 1996; RUNDLE et al. 2006; KATO

et al. 2007; AALSBURG et al. 2010).

A single-degree-of-freedom spring-block model

has previously been applied as a simple model of

stick–slip and earthquake cycles; in the present study

we attempt to understand the conditions necessary for

the occurrence of the unstable slip and physical

properties that control earthquake cycles (GU et al.

1984; RICE and TSE 1986). Simulations of complex

earthquake cycles can be performed using a two-

degree-of-freedom spring-block model, where two

blocks are connected by a spring. Using this model

with velocity-weakening friction, HUANG and

TURCOTTE (1990) examined the effects of interactions

between two blocks on earthquake cycles. By using

appropriate model parameters, they successfully used

this approach to reproduce earthquake cycles similar

to those found along the south central San Andreas

fault (California) and in the Nankai trough. HUANG

and TURCOTTE (1992) systematically examined the

same model, but with spatial heterogeneity of the

frictional parameters. They showed that the system

generally exhibited chaotic behaviour, except for a

few isolated windows of periodic recurrence of

earthquakes. As the coupling stiffness increased, the

two blocks tended to slip simultaneously, with vari-

ous recurrence intervals. The transition from periodic

to chaotic slip behaviour was achieved through

repeated period-doubling bifurcations.

Whilst velocity-weakening friction has been

assumed in many models of seismicity, rate- and

state-dependent friction laws have also been applied.
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Whilst there may be a the lack of experimental data

available in support of the velocity-weakening fric-

tion law, the rate- and state-dependent friction laws

well describe several natures of rock friction

observed in the laboratory (MARONE 1998). A single-

degree-of-freedom spring-block model has been used

with rate- and state-dependent friction to investigate

the details of the sliding behaviour and stability in the

system concerned (RICE and TSE 1986; GU and WONG

1991). ERICKSON et al. (2008) showed that a single-

degree-of-freedom spring-block model exhibits

complex slip behaviour when the steady-state friction

shows extremely velocity weakening. MA and

HE (2001) used a two-degree-of-freedom spring-

block model with a rate- and state-dependent friction

law to examine complex sliding processes, and found

that period-doubling bifurcation occurred for some

friction parameters, where large events and small

events occurred alternately. Using the same two-

block model, HE (2003) examined the effects of the

spring coupling stiffness on slip patterns; it was found

that a higher stiffness tended to generate simpler slip

patterns in the periodic recurrence of earthquakes,

while more complicated or chaotic slip patterns

occurred for a lower stiffness. YOSHIDA and KATO

(2003) used a two-degree-of-freedom spring-block

model to examine the interactions between a block

with unstable frictional properties and a block with

stable or conditionally stable frictional properties,

and successfully explained the occurrence of slow

earthquakes. In other work, MITSUI and HIRAHARA

(2004) connected five blocks in series in order to

simulate complex earthquake cycles along the Nankai

trough; the five blocks represented the five segments

in which earthquakes have historically taken place.

These pioneering studies used multi-block models

with rate- and state-dependent friction to examine the

complexities of simulated earthquake cycles in gen-

eral terms. However, they did not examine the

complexities of simulated earthquake cycles for a

sufficiently wide range of friction parameters, nor did

they describe routes to the chaotic behaviour of

earthquake cycles.

In a simulation study using an elastic continuum

model for a subduction fault and rate- and state-

dependent friction, LIU and RICE (2007) examined the

slip behaviour of a region with steady-state velocity-

weakening frictional properties that interacted with a

steady-state velocity-strengthening region. The slip

behaviour depended on a parameter W/h*, where W is

the width of the steady-state velocity-weakening

region and h* is the critical nucleation size for

unstable slip. Increasing W/h* caused the slip

behaviour to change from decaying oscillation, to

periodic aseismic slip oscillation, to aperiodic aseis-

mic oscillation and finally to seismic oscillation.

Complex slip behaviour also occurs when the friction

parameters are non-uniformly distributed on a fault

plane, as demonstrated by HILLERS et al. (2006).

Although continuum models provide more accu-

rate descriptions of real fault systems, excessive

computation times are needed for the numerical

simulations performed using these models to obtain a

statistically meaningful number of results for a wide

range of model parameters. In the present study, we

conduct numerical simulations using a two-degree-

of-freedom spring-block model with a rate- and state-

dependent friction law. By widely and systematically

varying the model parameters, we obtained various

slip patterns and organised them in phase diagrams.

Using these simulation results, we discuss the origins

of the complexities of earthquake cycles and the

implications for long-term earthquake forecasting.

2. Model

The two-degree-of-freedom spring-block model

used in the present study is the same as that used by

YOSHIDA and KATO (2003), except for the evolution

law. Two rigid blocks on a frictional floor are con-

nected by a spring of stiffness k12, and each block is

dragged (using a spring of stiffness k0) by a driver

moving at a rate Vpl in the x direction (Fig. 1). The

equations of motion may be written as

m1d2x1

�
dt2 ¼ k0 Vplt � x1

� �
þ k12 x2 � x1ð Þ � Fnl1;

m2d2x2

�
dt2 ¼ k0 Vplt � x2

� �
þ k12 x1 � x2ð Þ � Fnl2;

ð1Þ

where mi, xi, and li (i = 1, 2) are the mass, the

position coordinate, and the coefficient of friction of

the ith block, respectively. The same normal force Fn

is applied to each of the two blocks.
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We assume that the frictional stress at the base of

each block obeys a rate- and state-dependent friction

law (DIETERICH 1979; RUINA 1983),

li ¼ l� þ ai lnðVi=V�Þ þ bi lnðhi=h�Þ; ð2aÞ

dhi=dt ¼ 1� Vihi=Li; ð2bÞ

where h is a state variable, L is a characteristic slip

distance, and a and b are constants that represent the

rate and time dependence of the friction, respectively.

l* and h* are the steady-state values at a reference

velocity V*, which is chosen to be Vpl in the present

study. We integrate Eqs. 1, 2a and 2b using a fifth-

order Runge-Kutta method with adaptive time-step

control (PRESS et al. 1992).

The differential equation of h is called the state

evolution law, and several types of evolution law have

been proposed and used in numerical simulations (e.g.,

MARONE 1998). We used the ‘‘aging type’’ of evolution

law (2b) in the present study. The same evolution law

was used by MITSU and HIRAHARA (2004) and OHMURA

and KAWAMURA (2007). Another popular evolution law

is the ‘‘slip type’’, as expressed by

dhi=dt ¼ � Vihi=Lið Þ ln Vihi=Lið Þ; ð2cÞ

This type of state evolution law was used in

numerical simulations by YOSHIDA and KATO (2003),

HE (2003) and ERICKSON et al. (2008). Because the

sliding behaviour and the condition for the occur-

rence of unstable slip are different for the two types

of state evolution law (MARONE 1998; RANJITH and

RICE 1999), the simulation results in the present study

cannot be directly compared with those using the slip

type of the state evolution law.

For a - b \ 0, the steady-state friction showed

velocity weakening, which can lead to stick–slip

motion. For a single-degree-of-freedom spring-block

model with a spring stiffness k, the critical stiffness kc

is defined to be

kc ¼
b� að ÞFn

L
; ð3Þ

and stick–slip occurs for k \ kc (RUINA 1983). Note

that kc for the two types of the state evolution law are

the same. When a - b [ 0, the friction shows

velocity strengthening, leading to stable sliding. In

order to gain an understanding of the interaction

between the oscillating blocks, we set a - b \ 0 for

the two blocks in the present study. The relationship

between k and kc is not sufficient to explain the

sliding behaviour of a block in the two-degree-of-

freedom spring-block system used here. When one

block is locked, it is dragged by the other block and

the driver; this is equivalent to the block being

dragged by a spring of stiffness k0 ? k12. In this case,

unstable slip is expected to occur at the ith block for

k0 ? k12 \ kci, where kci is the critical stiffness of the

ith block, as discussed by YOSHIDA and KATO (2003).

When k0 [ kci, stable slip occurs at the ith block,

whether or not the other block is locked. As discussed

by HUANG and TURCOTTE (1992) and HE (2003), the

stiffness of the coupling spring strongly influences

the complexity of the simulated slip patterns. The

occurrence of chaotic slip patterns is controlled by

the coupling spring. Moreover, it is known that the

coupling stiffness significantly affects the statistical

properties of simulated earthquakes in models with

many degrees of freedom (BROWN et al. 1991; HUANG

et al. 1992).

As discussed above, k12/k0, (k0 ? k12)/kc1 and

(k0 ? k12)/kc2 may be regarded as control parameters

in the present two-block model. In our numerical

simulation, we fix the values of the loading spring

stiffness k0, the normal force Fn and the frictional

parameters a and b, whilst varying the coupling spring

stiffness k12 and characteristic slip distance L. We

assume that L1 [ L2, and consequently kc1 \ kc2,

which indicates that the slip motion of Block 2 is

always less stable. The fixed values in the simulations

presented herein are as follows: Fn = 5.0 9 1018 N,

k0 = 1.0 9 1016 N/m, a1 = a2 = 1.0 9 10-3, b1 =

b2 = 1.2 9 10-3, m1 = m2 = 6.0 9 1017 kg, and

Vpl = 4.0 cm/year; these values fall within the range

Driver

Block2Block1

Figure 1
Schematic diagram of a two-degree-of-freedom spring-block

model. Blocks 1 and 2 were connected with a spring of stiffness

k12 and dragged using springs of stiffness k0 by a driver moving at a

constant speed Vpl
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of those used by MITSUI and HIRAHARA (2004). They

determined the values by considering the actual

geometry of the Nankai trough. The masses are cal-

culated using the volumes of the hanging walls of

the segments, a constant density of 2.8 9 103 kg/m3,

the normal force arising from the applied force on the

plate boundary (assuming overburden and hydrostatic

pore pressure) and the stiffness from the shear stress

due to unit dislocation. The initial conditions in the

present simulations are a sliding velocity for the two

blocks of Vinit = 0.001Vpl and h = L/Vinit. In real

fault segments, the coupling stiffness k12 may quali-

tatively correspond to the distance between the

neighbouring segments, because it represents the

increase in shear stress at one block due to unit dis-

location at the other. MITSUI and HIRAHARA (2004)

examined the behaviour of blocks for k12/k0 = 0.05

and 1.0 and showed that the characteristics observed

along the Nankai trough were better reproduced using

k12/k0 = 1.0. In the present study, we examine the

effects of using k12/k0 = 0.05, 0.20 and 1.00. We

carry out simulations using different initial conditions

in order to investigate the effects on the system and

find that the statistical steady-state characteristics of

the simulation results are the same in all cases.

3. Results

In order to obtain statistical steady-state charac-

teristics in each case, all the simulations are run for a

time period of 40,000 years. Simulation results

obtained before a statistical steady state is reached are

not used in the analyses that follow. We classify the

simulated slip patterns into categories from A to H

according to their slip velocity and periodicity of

simulated slip histories, as shown in Table 1. Seismic

slip is defined to be slip with log(V/Vpl) [ 8, where

log(V/Vpl) = 8 corresponds to V * 0.13 m/s. Slips

with rates lower than this are regarded to be aseismic.

Slip events with the maximum slip velocity of

log(V/Vpl) * 8 occur infrequently, so changes to the

seismic slip threshold value would not significantly

have affected the classification of the slip patterns.

Where periodicity is found in the simulated slip

motion of a block (which may include multiple-cycle

oscillations), we regard it to be a periodic oscillation.

On the other hand, where no periodicity is found in

the oscillating block motion, the oscillation may

be regarded to be chaotic. Figure 2 shows phase

diagrams for slip patterns for k12/k0 = 0.05, 0.20

and 1.00, plotted with axes (k0 ? k12)/kc2 versus

(k0 ? k12)/kc1, and where each symbol indicates a

slip pattern for a single case. As expected theoreti-

cally, stable slip (pattern A) occurs for k0 [ kc2 [
kc1, regardless of k12. A decrease in the value of

(k0 ? k12)/kci causes the slip at the ith block to

become unstable. When either k0 or k0 ? k12 is close

to the critical stiffness for one or two blocks, the

system tends to exhibit chaotic behaviour. The

examined ranges of (k0 ? k12)/kc1 and (k0 ? k12)/kc2

in the simulations are different for different values of

k12/k0, so that k0/kc1 = 1.0 and k0/kc2 = 1.0 are

included in both ranges. Example time histories of

V and l - l* are shown in Figs. 3, 4, 5, 6, 7, 8, 9 and

10 for patterns A–H, where the solid and broken lines

respectively indicate the simulated histories for

Blocks 1 and 2, and the values of the parameters are

shown above each graph. The characteristics of each

slip pattern are described in more detail below.

Table 1

Classification of slip patterns of simulation results

Block 1 Block 2 Behaviour

A Stable Stable Damping

B Aseismic Aseismic Periodic oscillation

C Aseismic Seismic Periodic oscillation

D Aseismic and seismic Aseismic and seismic Periodic (D1) or chaotic (D2) oscillation

E Aseismic and seismic Seismic Periodic (E1) or chaotic (E2) oscillation

F Seismic Seismic Chaotic oscillation

G Seismic Seismic Chaotic oscillation with a short delay

H Seismic Seismic Periodic oscillation
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3.1. Pattern A

When k0 is larger than kc1 and kc2 (k0 [ kc2 [ kc1),

the slip motion of the two blocks shows oscillations

that decay exponentially, and eventually reaches a

stable sliding condition, with V = Vpl. Figure 3a

shows example time histories of V for pattern A, in

which the histories of Blocks 1 and 2 mostly over-

lapped. The slip motion of Block 1 becomes the same

as that of Block 2 after a few oscillations. The

characteristic time for exponential decay in the ampli-

tude of the oscillation is longer for smaller values of

(k0 ? k12)/kci (i = 1 or 2), as shown in Fig. 3b.

3.2. Pattern B

In pattern B, aseismic slip events occur periodi-

cally at the two blocks. In contrast with pattern A, the

amplitudes of the oscillations in pattern B do not

decay with time. In many cases, the two block

motions are synchronised (Fig. 4a, b), in which case

the coupling spring no longer has any effect because

of the constant distance between the two blocks. This

results in an apparently smaller spring stiffness for

the two blocks, leading to higher slip velocities.

Although multiple-cycle oscillation occurs in some

cases (Fig. 4c, d), no chaotic oscillation is observed.
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Figure 2
Phase diagrams of slip patterns on axes of (k0 ? k12)/kc2 versus (k0 ? k12)/kc1 for a k12/k0 = 0.05, b k12/k0 = 0.20, and c k12/k0 = 1.00.

Symbols A–H stand for the slip patterns classified in Table 1 according to their slip velocity and periodicity of simulated slip. The vertical

solid and broken lines represent (k0 ? k12)/kc1 = 1.0 and k0/kc1 = 1.0, respectively, and the horizontal solid and broken lines represent

(k0 ? k12)/kc2 = 1.0 and k0/kc2 = 1.0, respectively. The cases shown in Figs. 3, 4, 5, 6, 7, 8, 9 and 10 are highlighted by red circles
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Multiple-cycle oscillations tend to occur for smaller

values of k12/k0.

3.3. Pattern C

Pattern C differs from pattern B, in that seismic

slip occurs at Block 2. Figure 5a, b shows examples

of histories of V and l - l* for pattern C, which

indicate that a period-4 cycle of aseismic slip events

and a period-2 cycle of seismic slip events occur at

Blocks 1 and 2, respectively. Here, a period-n cycle

signifies that n episodic slip events with different

amplitudes and recurrence intervals are included in a

single period. For smaller values of (k0 ? k12)/kci for

(a) (b)

Figure 3
Example simulated histories of V for pattern A for a k12/k0 = 1.00, (k0 ? k12)/kc1 = 2.100, and (k0 ? k12)/kc2 = 2.050, and b k12/k0 = 1.00,

(k0 ? k12)/kc1 = 2.100, and (k0 ? k12)/kc2 = 1.900. The solid and broken lines show results for Blocks 1 and 2, respectively. Because the slip

motion of Block 1 was almost the same as that of Block 2, the solid and broken lines overlap each other

(a) (b)

(c) (d)

Figure 4
Example simulated histories of a, c V and b, d l - l* for pattern B for (top) k12/k0 = 1.00, (k0 ? k12)/kc1 = 1.900, and (k0 ? k12)/

kc2 = 1.875, and (bottom) k12/k0 = 0.20, (k0 ? k12)/kc1 = 1.075, and (k0 ? k12)/kc2 = 1.020. The horizontal bars in c and d indicate one

period, which includes three and two oscillations at Blocks 1 and 2, respectively

750 Y. Abe, N. Kato Pure Appl. Geophys.



i = 1 and 2, the number of cycles is doubled, as

shown in Fig. 5c, d, where the period-4 and period-2

cycles for Blocks 1 and 2 become period-8 and

period-4 cycles, respectively. No further period-

doubling bifurcations are observed in pattern C.

Pattern C does not appear for k12/k0 = 1.00. This is

probably because seismic slip at Block 2 sometimes

triggers seismic slip at Block 1 for k12/k0 = 1.00,

leading to pattern E1, while seismic slip at Block 2

does not promote seismic slip at Block 1 for smaller

values of k12/k0.

3.4. Pattern D

In pattern D, both seismic and aseismic slip events

occur at the two blocks. In contrast to patterns B and

C, both periodic and chaotic oscillations may be seen

in pattern D. Pattern D is subdivided into patterns D1

and D2, which characterise periodic and chaotic

oscillations, respectively. Figure 6a, b shows exam-

ples of histories of V and l - l* for pattern D1. Note

that the solid and broken lines overlap in Fig. 6a

when seismic slip events occur simultaneously at

Blocks 1 and 2. The slip behaviour of Block 1 during

period a (indicated by a horizontal bar in Fig. 6a) is

similar to that of Block 2 during period b, and vice

versa. This slip pattern is observed only for k12/

k0 = 1.00. Examples of histories of V and l - l* for

chaotic oscillations in pattern D2 are shown in

Fig. 6c, d. Both the time intervals between successive

slip events, and the event amplitudes at Blocks 1 and

2, are highly variable, and no periodicity is found. In

some cases, we find that the oscillations change from

chaotic (pattern D2) to periodic (pattern D1) in

simulations longer than 40,000 years, suggesting the

possibility that some of the pattern D2 data in Fig. 2

can change to pattern D1 data if longer simulation

times are used. The transition boundary between

patterns D1 and D2 in Fig. 2 is therefore not clearly

defined. Other simulation results for pattern D2 (see

Fig. 6e, f) show that pattern D2 occurs even under

unstable conditions (k0 ? k12 \ kc1 \ kc2). Although

k0 ? k12 is smaller than kc1 and kc2 in this case,

aseismic slip events can occur during an interval

(a)

(c) (d)

(b)

Figure 5
Example simulated histories of a, c V and b, d l - l* for pattern C for (top) k12/k0 = 0.20, (k0 ? k12)/kc1 = 1.125, and (k0 ? k12)/

kc2 = 0.960, and (bottom) k12/k0 = 0.20, (k0 ? k12)/kc1 = 1.100, and (k0 ? k12)/kc2 = 0.940. The horizontal bar in each panel represents one

period of a multiple cycle
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between seismic slip events. Pattern D2 was not

observed for k12/k0 = 0.05.

3.5. Pattern E

In pattern E, both aseismic and seismic slip events

are observed at Block 1, while only seismic slip

events occur at Block 2. As for pattern D, periodic

and chaotic oscillations may be observed in pattern E,

which we classify into E1 and E2, respectively.

Figure 7a, b shows examples of simulation results for

pattern E1, where a period-6 cycle and a period-4

cycle are observed at Blocks 1 and 2, respectively, as

indicated by the horizontal bars. At Block 1, the slip

becomes seismic when the two blocks slipped

simultaneously. YOSHIDA and KATO (2003) observed

a similar slip pattern in the two-block system for k12/

k0 = 2.0, k0 ? k12 [ kc1 and k0 ? k12 \ kc2, and

discussed the mechanism of episodic aseismic slip

events (slow earthquakes). Example histories of

(a) (b)

(c) (d)

(e) (f)

Figure 6
Example simulated histories of a, c, e V and b, d, e l - l* for pattern D1 for (top) k12/k0 = 1.00, (k0 ? k12)/kc1 = 1.050, and (k0 ? k12)/

kc2 = 1.040, and for pattern D2 for (middle) k12/k0 = 0.20, (k0 ? k12)/kc1 = 1.025, and (k0 ? k12)/kc2 = 1.005, and (bottom) k12/k0 = 1.00,

(k0 ? k12)/kc1 = 0.800, and (k0 ? k12)/kc2 = 0.725. The solid and broken horizontal bars in a and b indicate periods a and b, which repeated

alternately at the two blocks
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V and l - l* are shown in Fig. 7c, d for pattern

E2. As for pattern D, the oscillations sometimes

changes from chaotic (pattern E2) to periodic (pattern

E1) at longer simulation times. Again, the transi-

tion boundary between patterns E1 and E2 in Fig. 2

is not clearly defined, like the boundary between

D1 and D2.

3.6. Pattern F

Pattern F is characterised by chaotic earthquake

(seismic slip) behaviour, without aseismic slip events.

Figure 8a, b shows examples of histories of V and

l - l* for pattern F, where the recurrence interval

and peak slip velocity are variable. Block 2

(a) (b)

(c) (d)

Figure 7
Example simulated histories of a, c V and b, d l - l* for pattern E1 for (top) k12/k0 = 1.00, (k0 ? k12)/kc1 = 1.500, and (k0 ? k12)/

kc2 = 0.100, and for pattern E2 for (bottom) k12/k0 = 0.20, (k0 ? k12)/kc1 = 1.010, and (k0 ? k12)/kc2 = 0.200

(a) (b)

Figure 8
Example simulated histories of a V and b l - l* for pattern F for k12/k0 = 1.00, (k0 ? k12)/kc1 = 0.800, and (k0 ? k12)/kc2 = 0.300
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earthquakes always preceded Block 1 earthquakes,

and the time interval between Block 2 and Block 1

earthquakes is variable, as discussed in the section

‘‘Recurrence patterns of chaotic slip behaviour’’. We

carry out simulations for a time period of

140,000 years for some pattern F cases to confirm

the persistence of chaotic oscillation. Pattern F is

observed only for k12/k0 = 1.00.

3.7. Pattern G

In pattern G, seismic slip events occur successively

at the two blocks with a time delay of less than 1 year.

The recurrence interval, the peak slip velocity and the

order of the slip events are variable. When the time

interval between successive earthquakes at Blocks 1

and 2 is always less than 1 year, we regard this slip

behaviour to be of pattern G. Figure 9a, b shows

examples of histories of V and l - l* for pattern G.

Although these histories appear to be periodic, closer

inspection shows that V and l - l* are variable during

interseismic periods. Figure 9c, d shows time histories

of V and l - l* for the event indicated by the arrows in

Fig. 9a, b, using an expanded time scale. Seismic slip

first occurs at Block 2, which increases the shear stress

at Block 1, triggering seismic slip at Block 1 after a

short delay (of about 0.1 year after the Block 2 slip).

Block 2 then slips again, after a much shorter delay (of

about 0.01 year after the Block 1 slip). Whether it is

Block 1 or Block 2 that is the first to be subject to

seismic slip is an entirely random matter. The time

interval between successive slip events is variable and

ranged from 0.003 to 0.22 years. Similar quasi-

periodic stick–slip behaviour was observed by

HE (2003) in a numerical simulation with weak

heterogeneity in the friction parameters. Pattern G

occurs when the value of kc1 is close to that of kc2, and

only when k12/k0 = 1.00.

3.8. Pattern H

In pattern H, seismic slip events occur periodi-

cally at the two blocks. Figure 10a, b shows a single-

period oscillation. As the difference between

(a) (b)

(c) (d)

Figure 9
Example simulated histories of a V and b l - l* for pattern G for k12/k0 = 1.00, (k0 ? k12)/kc1 = 0.650, and (k0 ? k12)/kc2 = 0.640. Time

histories of c V and d l - l* are shown for the event indicated by arrows in a and b on an expanded time scale
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(k0 ? k12)/kc1 and (k0 ? k12)/kc2 increases, period-

doubling bifurcation occurs, as discussed in the

section ‘‘Chaotic slip behaviour and period-doubling

bifurcation’’. When k12/k0 = 1.00, the recurrence

interval of Block 1 earthquakes is the same as that

of Block 2 earthquakes. In cases with weaker

interactions (k12/k0 = 0.20 and 0.05), as the differ-

ence in L between the two blocks increases, periodic

oscillations with different periods are observed

between the two blocks. Figure 10c, d shows an

example of a multiple-cycle oscillation in pattern H,

where the horizontal bars indicate a period-4 cycle

and a period-3 cycle at Blocks 1 and 2, respectively.

The occurrence of multiple-cycle oscillations is

consistent with previous results from numerical

simulations with strong heterogeneity in the friction

parameters (HE 2003).

Finally, we summarise the effect of the coupling

stiffness k12/k0 on the slip pattern. As shown in

Fig. 2, the distribution of slip patterns in the case of

k12/k0 = 1.00 is more complicated than that for

k12/k0 = 0.20 and 0.05. In the unstable regime in

particular (k0 ? k12 \ kc1 \ kc2), several slip patterns

are observed for k12/k0 = 1.00, while pattern H is seen

in most regions of the unstable regime for k12/k0 = 0.20

and 0.05. As k12/k0 decreases, the slip behaviour of the

two blocks becomes simpler, and the chaotic slip pattern

finally disappears altogether. The recurrence intervals of

the simulated slip events in the two-block system are

close to those for a one-block system for small k12/k0

(which is equivalent to k12 = 0). We conducted addi-

tional simulations for k12/k0 = 5.0 and 10.0 and

confirmed that chaotic slip patterns occurred for a wider

range of parameters. As k12/k0 increased, the parameter

range of pattern H narrowed, and those of patterns F and

G widened. This effect of the coupling stiffness is

consistent with that described by HUANG and TURCOTTE

(1992), as we discuss below.

(a)

(c) (d)

(b)

Figure 10
Example simulated histories of a, c V and b, d l - l* for pattern H for (top) k12/k0 = 1.00, (k0 ? k12)/kc1 = 0.550, and (k0 ? k12)/

kc2 = 0.250, and (bottom) k12/k0 = 0.05, (k0 ? k12)/kc1 = 0.700, and (k0 ? k12)/kc2 = 0.200. Horizontal bars in c and d indicate one period,

which included four and three seismic slip events at Blocks 1 and 2, respectively
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4. Discussion

4.1. Chaotic Slip Behaviour and Period-Doubling

Bifurcation

We find that the slip behaviour of the two blocks

alters as a function of (k0 ? k12)/kc1 and (k0 ? k12)/

kc2. Here we discuss the details of how this transition

occurs. Figure 11 shows a bifurcation diagram for the

slip amplitudes of seismic and aseismic slip events at

Block 1 for 0.2 B (k0 ? k12)/kc2 B 0.8, where k12/k0

and (k0 ? k12)/kc1 are fixed at 1.00 and 0.800,

respectively. We record events at Block 1 with peak

slip velocities greater than Vpl, and also measure the

slip amplitude for each event. As (k0 ? k12)/kc2

decreases, the slip behaviour changes from chaotic

oscillation including both aseismic and seismic slip

events (pattern D2), to periodic seismic slip (pattern

H), to chaotic oscillation (pattern F and E2), as shown

in Fig. 11. A wide variety of slip amplitudes is

observed for D2, F and E2. At (k0 ? k12)/kc2 * 0.50,

a period-doubling bifurcation occurs; a single cycle

oscillation splits in two, producing a period-2 cycle.

With further decreases in (k0 ? k12)/kc2 similar

bifurcations occur repeatedly, until the period of the

oscillations diverges to infinity and the system

becomes chaotic. Figure 12 shows iteration maps

for the recurrence intervals of slip events at Blocks 1

(left) and 2 (right) for the three slip patterns D2, E2

and F; the inter-event time Tn between the nth and

(n ? 1)th events is plotted against the inter-event

time Tn-1 between the (n - 1)th and nth events, for

each simulation run of 100,000 years. The data are

distributed widely and randomly for pattern D2, and

converged to give simple curves for pattern F. Pattern

E2 shows characteristics that are intermediate

between D2 and F. The iteration maps for pattern F

are similar to those for deterministic chaos led by a

period-doubling sequence, as observed for various

nonlinear systems (STROGATZ 1994). In contrast, the

rather random characteristics of patterns D2 and E2

may be related to the different origins of the observed

chaotic behaviour. The aseismic slip events in

patterns D2 and E2 complicate the slip behaviour,

leading to a wide variety of slip amplitudes (Fig. 11)

and a wide variety of distributed characteristics in

the iteration maps (Fig. 12). A transition in slip

behaviour from stable sliding to limit cycle oscilla-

tions is symptomatic of Hopf bifurcation (GU et al.

1984), and the fact that both seismic and aseismic slip

events are present suggests that patterns D2 and E2

may be related to this phenomenon (WECHSELBERGER

2005). In contrast to pattern F, such chaotic slip

behaviour appears suddenly in the bifurcation dia-

gram, without the period-doubling sequences that

have been observed in, for instance, numerical studies

of oscillating chemical reactions (PETROV et al. 1992),

and the van der Pol equation (ITOH and MURAKAMI

1994; KOPER 1995).

In order to gain an understanding of the rather

complicated slip behaviour, we compare the phase

portraits of V and l - l* for patterns D2, E2 and F

(Fig. 13). In pattern D2, an abrupt increases in V and

l - l* are observed at one block due to occurrences

of episodic slip at the other block. When the

increased values of (V, l - l*) are well above

the steady-state line lss - l* = (a - b) ln (V/Vpl),

the slip accelerates to become seismic, as discussed

by GU et al. (1984). On the other hand, when the

increased values of (V, l - l*) are around or below

the steady-state line, seismic slip is not triggered.

Thus, the response of a block to a sudden increase in

stress produced by seismic slip at the other block is

variable, depending on the stress amplitude and the

values of V and l - l* at that time, causing complex

slip behaviour to occur. It is interesting to note that a

higher shear stress before the seismic slip leads to a

Figure 11
Bifurcation diagram of slip amplitudes for seismic and aseismic

slip events at Block1 as a function of (k0 ? k12)/kc2. k12/k0 and

(k0 ? k12)/kc1 are fixed at 1.00 and 0.800
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lower residual stress afterwards, due to dynamic

overshoot. This causes variations in the magnitudes

of the stress drops and accordingly in the recurrence

intervals of the slip events. These factors also make

the slip patterns more complicated. For pattern E2,

the relationship between V and l - l* for Block 2 is

(a) (b)

(c) (d)

(e) (f)

Figure 12
Iteration maps of recurrence intervals of seismic and aseismic slip events at a, c, e Block1 and b, d, f Block 2, where Tn denotes the time

interval between nth and (n ? 1)th events, for (top) pattern D2, (middle) pattern E2, and (bottom) pattern F. The parameters for the cases in the

top, middle and bottom panels were the same as those for Fig. 6 (middle), Fig. 7 (bottom) and Fig. 8, respectively
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simpler because the slip events are always seismic,

due to the small (k0 ? k12)/kc2 values. Because the

(V, l - l*) values are always far from (V, l - l*) =

(Vpl, 0), aseismic slip events hardly occur. For pattern

F, slip events at Blocks 1 and 2 are always seismic,

and Block 2 events always precede Block 1 events, as

shown in Fig. 9c, d. Seismic slip at Block 2 increases

the shear stress at Block 1, which causes variations

in both the peak stress before seismic slip and the

stress drop at Block 1, which in turn leads to complex

slip patterns at Block 1. In contrast, seismic slip at

Block 1 occurs when the shear stress at Block 2 is

much lower than the critical stress; accordingly, slip

at Block 2 is not triggered immediately and the

variation of peak stress at Block 2 is smaller. The

difference between the phase portrait complexity of

patterns D2 and F (Fig. 13) seems to correspond to

the difference in complexity in the iteration map

(Fig. 12), suggesting that the occurrence of both

seismic and aseismic slip events generates more

complex slip patterns.

HUANG and TURCOTTE (1992) found a period-

doubling route to chaos in a two-block model with

velocity-weakening friction, where only seismic slip

events occurred. They showed that a two-block

system with spatially heterogeneous friction gener-

ally exhibited chaotic behaviour, with the exception

of a few isolated windows of periodic behaviour. In

their study, chaotic slip behaviour occurred over

wider parameter ranges for higher coupling stiffness-

es. In the present model, chaotic slip behaviour is

observed for narrower parameter ranges with rate-

and state-dependent friction than with velocity-

weakening friction. This probably results from the

fact that for rate- and state-dependent friction, the

shear stress changes to dynamic friction (which is

weakly dependent on slip velocity) during seismic

slip, while a significant heterogeneity of residual

stress is generated just after seismic slip due to the

self healing brought about by velocity-weakening

friction, as discussed by COCHARD and MADARIAGA

(1994).

Using a two-block model with a rate- and state-

dependent friction law, HE (2003) found that com-

plicated or chaotic slip behaviour occurred for some

parameter values. Although HE (2003) examined the

slip behaviour for narrower ranges of parameters than

those used in the present study, he reported that the

slip behaviour tended to be chaotic for smaller

coupling stiffnesses. Periodic oscillation may be

expected to occur for k12 ? 0 and k12 ? ?, because

the two block system is equivalent to the one block

system in these extreme cases. The definition given

for coupling stiffness by HE (2003) was different

from ours, and his coupling stiffnesses covered a

higher range of values. We therefore expect that

simple periodic oscillation would appear again for

weaker coupling stiffnesses in He’s model. More-

over, HE (2003) used the ‘‘slip type’’ state evolution

law, while we used the ‘‘aging type’’. RANJITH and

RICE (1999) studied the stability of quasi-static

frictional slip of a single-degree-of-freedom spring

block model and showed that the block motion tends

to be more unstable for the ‘‘slip type’’ state evolution

law than the ‘‘aging type’’ under rapid loading,

though the two types of evolution law have the same

critical stiffness. The quantitative difference between

the present result and HE (2003) partly comes from

the difference in the state evolution law.

RUINA (1983) and GU et al. (1984) theoretically

investigated the slip motion of a single-degree-of-

freedom spring-block model with rate- and state-

dependent friction laws. In numerical simulations

with two-state variable friction, they found that

period-doubling bifurcations leading to chaotic slip

motion occurred when the spring stiffness was close

to the critical stiffness, although only periodic slip

motion was observed for one-state variable friction.

Nonlinear dynamic systems of order three or higher

are known to generate chaotic behaviour. These

findings indicate that it is reasonable that the two

block system with one state variable rate- and state-

dependent friction used in the present model exhib-

ited chaotic motion.

4.2. Recurrence Patterns of Chaotic Slip Behaviour

Since an understanding of the recurrence patterns

of earthquakes is important for long-term earthquake

forecasting, we examine the chaotic recurrence

patterns of the simulated slip events. Figure 14 shows

the simulated histories of cumulative displacement at

Block 1 for patterns D2, E2 and F. The two parallel

broken lines represent displacements with a constant
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rate of Vpl. If an earthquake occurs when the curve

reaches the lower broken line, the slip pattern obeys

the time-predictable model. Meanwhile, if the cumu-

lative displacement reaches the upper broken line

during an earthquake, it obeys the slip-predictable

model (SHIMAZAKI and NAKATA 1980). The cumulative

displacements in the present model seem to be better

explained by the time-predictable model. As shown

in Fig. 14, when seismic slip occurs simultaneously

at Blocks 1 and 2, the slip amplitude became larger

(a) (b)

(c) (d)

(e) (f)

Figure 13
Phase portraits of V and l - l* at a, c, e Block 1 and b, d, f Block 2 for patterns (top) D2, (middle) E2 and (bottom) F. The parameters for the

cases in top, middle and bottom panels were the same as those for Fig. 6 (middle), Fig. 7 (bottom) and Fig. 8, respectively. Broken and solid

lines show log(V/Vpl) = 8 (threshold for seismic slip) and l - l* = (a - b)ln(V/Vpl) (steady-state friction), respectively
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(as indicated by arrows), and the time interval before

the next earthquake tends to be longer. This variabil-

ity of the seismic slip amplitude may have been one

of the reasons why the cumulative displacements did

not obey the slip-predictable model. Note that

aseismic slip events (indicated by the horizontal bars

in Fig. 14a, b) do not obey the time-predictable

model; this is because these events occur at lower

shear stresses. In patterns G and H, both the time-

predictable and the slip-predictable models approxi-

mately explain the simulated slip histories, because

the variance of the recurrence intervals and the slip

amplitudes is small.

SHIMAZAKI and NAKATA (1980) examined historical

earthquakes and geomorphological data at three sites

in Japan, including the source area of the Nankai

earthquakes, and found that estimated slip patterns

were approximated rather well by the time-predict-

able model. This observation is consistent with our

results obtained from simulations using rate- and

state-dependent friction. SHIMAZAKI (2002) examined

simulation results from the two block system with

velocity-weakening friction used by HUANG and

TURCOTTE (1990), and found that the simulated slip

patterns were better approximated by the time-

predictable model than the slip-predictable model,

suggesting that the time-predictable model may be

more useful for long-term earthquake forecasting.

Figure 15 shows the probability density functions

for the recurrence intervals of the simulated seismic

and aseismic slip events obtained from slip patterns

D2, E2 and F. Long-term earthquake forecasts are

made using the probability density functions of the

recurrence intervals of past earthquakes (Earthquake

Research Committee 2001; Working Group on Cal-

ifornia Earthquake Probabilities 2008). In these

probabilistic forecasts, the Brownian Passage Time

(BPT) distribution is widely used in view of its

superiority in terms of its agreement with observed

data and its performance for times much longer than

the average recurrence time (MATTHEWS et al. 2002).

In Fig. 15, the best-fit BPT distribution is shown by a

broken line for each case. �T is the average of the

recurrence intervals, and a is a parameter of the BPT

distribution that is equal to the standard deviation

divided by the average of the recurrence intervals.

Generally speaking, the BPT distribution fails to

explain the distributions of the simulated recurrence

intervals. It is especially difficult to explain the

significant peaks in the distributions for Block 1 in

(a)

(b)

(c)

Figure 14
Example time histories of cumulative displacements at Block 1 for

patterns a D2, b E2, and c F, where cumulative displacements at

40,000 years are set to zero. The parameters for a, b and c were the

same as those for Fig. 6 (middle), Fig. 7 (bottom) and Fig. 8,

respectively. Two parallel broken lines represent displacements

with a constant rate of Vpl. Horizontal bars indicate periods during

which aseismic slip events occurred. Arrows indicate slip events

where the two block slipped simultaneously
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pattern E2 (Fig. 15c) and for Blocks 1 and 2 in pattern

F (Fig. 15e, f) using the BPT distribution. There is a

large variation in a, which indicates a large variation

in aperiodicity. Aseismic slip events are included in

the probability density functions for Blocks 1 and 2 in

pattern D2, and for Block 1 in pattern E2 (Fig. 15c, d).

By eliminating aseismic slip events, we examine

the recurrence intervals of simulated earthquakes

for patterns D2 and E2. In pattern D2, significant

peaks exist at *110 years both for Blocks 1 and 2

(Fig. 16a, b). Several peaks for recurrence intervals at

*130, 210, 360 and 520 years are found in the

distribution for Block 1 in pattern E2. The values of �T

and a for the recurrence intervals of simulated

earthquakes are 331.67 and 1.46 for Block 1 in

pattern D2 (corresponding to Fig. 15a), 143.72 and

1.80 for Block 2 in pattern D2 (corresponding to

Fig. 15b) and 211.98 and 0.65 for Block 1 in pattern

E2 (corresponding to Fig. 15c). It is interesting to

note that these recurrence intervals are much longer

than those obtained when aseismic slip events are

included, because some aseismic slip events may be

included during an interseismic period, as shown in

Figs. 6 and 7. Aseismic slip events are partly

responsible for the release of accumulated strain,

thereby elongating the recurrence intervals between

earthquakes. The poor fit of the BPT distribution to

the present simulation results may have resulted from

the low number of degrees of freedom in the present

model. In continuum models with many interacting

(a) (b)

(c) (d)

(e) (f)

Figure 15
Frequency distributions of recurrence intervals of seismic and aseismic slip events at a, c, e Block 1 and b, d, f Block 2 for patterns (top) D2,

(middle) E2 and (bottom) F. Broken lines indicate the best-fit BPT distributions, fitted with the parameters �T and a. The parameters for the

cases in the top, middle and bottom panels were the same as those for Fig. 6 (middle), Fig. 7 (bottom) and Fig. 8, respectively
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fault segments, the BPT distribution or the Weibull

distribution can explain simulated earthquake recur-

rence quite well (e.g., RUNDLE et al. 2006; KATO et al.

2007; ZöLLER and HAINZL 2007).

Simulated earthquakes do not always occur

simultaneously at the two blocks. In pattern F,

simulated earthquakes at Block 2 always precede

those at Block 1. Figure 17a shows a schematic

diagram of the simulated histories of l - l* at

Blocks 1 and 2, where t1n and t2n are the occurrence

times of the nth earthquakes at Blocks 1 and 2,

respectively. The frequency distributions of time

intervals t1n – t2n and t2n – t1n-1 are shown in

Fig. 17b. The delay time from successive Block 2

to Block 1 events ranges from 0.6 to 40 years, and the

frequency here shows a significant peak in intervals

(a)

(b)

(c)

Figure 16
Frequency distributions of recurrence intervals of seismic events at

a Block 1 and b Block 2 for pattern D2, and c Block 1 for pattern

E2. Broken lines indicate the best-fit BPT distributions, fitted with

the parameters �T and a

(a)

(b)

(c)

Figure 17
a Schematic diagram of histories of l - l* at Block 1 (solid line)

and Block 2 (broken line). t1n and t2n indicate the occurrence times

of the nth slip events at Blocks 1 and 2, respectively. b Frequency

distributions of time intervals between successive slip events for

pattern F at Block 2 to Block 1 (solid line) and Block 1 to Block 2

(broken line). The parameters were the same as those for Fig. 8.

c Frequency distributions of time intervals between earthquakes in

pattern G, where each time interval was measured from Block 1

earthquake to Block 2 earthquake. The parameters were the same

as those for Fig. 9
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of less than 1 year. A similar feature was previously

observed in earthquakes along the Nankai trough.

Large earthquakes in the eastern segment (Tonankai

earthquakes) have always preceded large earthquakes

in the western segments (Nankai earthquakes) in

historical sequences of earthquakes in which the two

segments were not broken simultaneously; the delay

times ranged from 30 h to 2 years (ISHIBASHI 2004).

Figure 17c shows the frequency distribution of the

time intervals between successive earthquakes at

Blocks 1 and 2 in pattern G, where the time interval

between a Block 1 earthquake and a Block 2

earthquake is taken to be positive. The distribution

is nearly symmetric about zero delay, and earth-

quakes at the two blocks generally occur within

*0.2 years. This is probably due to the higher

coupling stiffness and nearly symmetric friction

parameters in pattern G (Fig. 2c).

Maps of time intervals t2n – t1n-1 versus t1n-1 –

t2n-1 and t1n – t2n versus t2n – t1n-1 are shown in

Fig. 18a, b, respectively. These maps are expressed

by simple curves, as well as iteration maps of recur-

rence intervals (Fig. 12e, f). Since t2n – t1n-1 and

t1n – t2n are multivalued functions of t1n-1 – t2n-1

and t2n – t1n-1, respectively, these values are not

uniquely determined. However, the simple curves

suggest that the occurrence time of the next event in

these chaotic earthquake sequences can be predicted

to some extent.

5. Conclusions

We simulate the dynamic slip motion of fault

segments that interact with each other using a two-

degree-of-freedom spring-block model with a rate-

and state-dependent friction law. By examining slip

behaviour for wide ranges of model parameters, we

classify it into several slip patterns according to the

slip velocities of episodic events and the periodicity

of those events. We find that chaotic slip patterns

occurred in some cases, with a period-doubling route

to chaotic behaviour. The range of parameters within

which chaotic slip patterns are generated seems to be

narrower in the present model than that it is in

velocity-weakening friction models. The chaotic slip

behaviour that occurs with only seismic slip events

appears to be different from that which occurs with

both seismic and aseismic slip events, as indicated by

bifurcation diagrams and iteration maps. The latter

type of event has not been reported previously for

seismicity models, because most of the existing

models do not take aseismic sliding into account. The

observed sequences of actual earthquakes commonly

show periodicity with large variations. These

observed characteristics are similar to the chaotic slip

behaviour obtained in the present simulation. We

observe chaotic behaviour in a nonlinear system with

only two interacting blocks. Although the spring-

block system may be too simple to simulate the slip

(a) (b)

Figure 18
Mapping of time intervals between successive slip events for pattern F. a t2n – t1n-1 versus t1n-1 – t2n-1. b t1n – t2n versus t2n – t1n-1. The

parameters were the same as for Fig. 8
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behaviour in an interacting fault system, chaotic slip

behaviour is expected to appear in higher order sys-

tems in the Earth, where many fault segments

interact. It is notable that the physical meaning of

stiffness is not necessarily clear in the corresponding

fault system in an elastic continuum. Careful con-

sideration of this uncertainty is required if the present

simulation results are to be applied to real fault

systems.

While velocity-weakening friction models cannot

simulate aseismic sliding, the present rate- and state-

dependent friction model reproduces the occurrence

of aseismic slip events, which have been detected at

many subduction zones, including the Nankai trough

(OZAWA et al. 2002; MIYAZAKI et al. 2006). Similarly

as reported by YOSHIDA and KATO (2003), episodic

aseismic slip events are observed in the present

model. YOSHIDA and KATO (2003) showed that epi-

sodic aseismic slip events occur when the spring

stiffness is close to the critical stiffness for unstable

slip, though they did not find chaotic slip behaviour in

their case. In the present study, chaotic slip patterns

sometimes appeared when the spring stiffness is close

to the critical stiffness. In some cases, seismic and

aseismic slip events occurred randomly at a block. It

has been suggested that the 1605 Keicho earthquake

along the Nankai trough was a tsunami earthquake,

though the other great historical earthquakes along

the Nankai trough are thought to be ordinary earth-

quakes, with significant damage resulting from

seismic waves (ISHIBASHI 2004). This changeable slip

behaviour may be explained by the present model.

Chaotic slip behaviour does not automatically

preclude the predictability of earthquakes. In the

present study, the probability density function of

recurrence intervals can be obtained even for chaotic

slip patterns; we suggest that probabilistic earthquake

forecasting is therefore possible. Moreover, the iter-

ation maps of the inter-event times suggest that a

simple structure underlies the chaotic slip patterns.

Using these properties, the occurrence time of the

next earthquake can be predicted to some extent from

past earthquake sequences. In the present model,

accelerating aseismic sliding precedes each earth-

quake, similarly to simpler single-degree-of-freedom

spring block models (ROY and MARONE 1996;

KATO and TULLIS 2003). Although the detection of

preseismic sliding has not been fully realised, it has

the potential to be used for the prediction of earth-

quakes with chaotic slip patterns.
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