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Abstract—NMR is a unique logging tool that measures

porosity, permeability, fluid components and wettability. It also

shows different responses from rocks due to different pore-sizes in

reservoirs; this gives opportunities to carry out a further study for

pore structures and pore sharps in complicated reservoirs. The

theoretical mechanism in NMR used for pore structure study cur-

rently is based on the Brownstein and Tarr theory (Phys Rev

19:2446–2453, 1979), but it shows that the pore structures are not

sensitive to the connectivity of pores. In order to overcome this, we

are proposing a theoretical approach called the Sphere–Cylinder

Model to conduct NMR relaxation theories. In addition, a proce-

dure for different pores has been discussed for porous media that is

saturated by an oil–water phase. Consequently, considerations for

the NMR relaxations for the water and oil phase have been taken

into account in our model. The Sphere–Cylinder model has been

used based on an NMR log in one of the gas fields in southwest

China and shows satisfactory results.

Key words: NMR logging, T2 distribution, relaxation,

sphere–cylinder model, oil–water phase, pore structure.

1. Introduction

Hydrocarbon-bearing zones in continental depos-

its are characterized by complex pore structures in

shape, size and throat (LIU, 2002, LIU and JIN, 2002).

Various technologies have being adopted in order to

deal with such complex issues. However, numerous

methods currently used are based on statistical tech-

nologies. These methods have shown satisfying

results for reservoir evaluation; however, if the pore

structures are too complicated to be illustrated on the

constructing graphs, the statistical methods are too

limited to provide enough useful physical information

for the investigation of pore structures (WESTPHAL and

SURHOLT, 2005).

NMR (Nuclear Magnetic Resonance) is a modern

wire-line logging (or M/LWD) tool that has been

used to measure the pore-size distributions in reser-

voirs. The pore-size distributions are calculated via

NMR relaxation times, and therefore, might yield

information about the relative rock properties such as

porosity, bound/free fluids, wettability and perme-

ability.. (YAN et al., 2007, PAPE et al., 2009). The

descriptions of pore size and structural distribution in

terms of NMR become one of the most discussed

topics in reservoir evaluation in recent years.

BROWNSTEIN and TARR (1979) in their studies have

regarded cells as sphere, cylinder and slab, and a

diffusion relaxation was applied to investigate the

relaxation rules of protons based on these geometric

structures; this method is called the Brownstein &

Tarr theory (B-T method). Numerous researchers in

recent years (NGUYEN and MARDON, 1995, CALLAGHAN

et al., 2003, WENG et al., 2003), especially in the oil

and gas industry, utilized this theory to perform the

evaluations of pore structures and regard cells as

spherical pores with isolated and regular sphere.

Consequently, depicting pores as a sphere would be

simplified to result in pore sizes that are not sensitive

to connectivity because pore structure differs greatly

from one to another when considering a reservoir

under complicated conditions.

The oil fields in southwest China are generally

distributed structurally and lithologically with a

source-reservoir-cap rock background. These become

the main factors to control production of oil, water
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and wells. In this study, a forward model (Sphere–

Cylinder) for NMR is proposed to investigate pore

structure based on the mechanism of proton relaxa-

tion in specialized spaces (Liu et al., 2004, 2006).

This model also considered the connection for dif-

ferent pores in two-phase porous rocks which are

saturated by oil and water.

2. Methodology

The first NMR logging was run down-hole by

Schlumberger in the 1960s, which provided an

improved reservoir quantitative estimation for

porosity, fluid types and permeability on a foot-by-

foot basis. The acquired NMR data from oil fields

have displayed useful log-curve images with a very

important concept of T2 distributions, which can

occur in the following three ways: (1) bulk relaxation

(2) surface relaxation and (3) molecular diffusion

relaxation.

Assuming M0 is the protons’ magnetization, an

external magnetic field H is applied clockwise along

direction Z, causing the protons’ spin to align along

direction Z (Fig. 1). As shown in Fig. 1, when a radio

frequency magnetic field (H1) is placed along the

Y-axis, it will cause M0 to tilt towards the Y-axis.

When the pulse is turned off, the magnetization, M0,

processes back towards the Z-axis, and gradually

returns to the same direction as the Z-axis. The

returning process of M0 to the Z-axis direction is

called relaxation. The projection of M0 on the xy

plane is Mx and My (DUNG and BERGMAN, 2002).

On the basis of the proton relaxation mechanism,

the T2 distributions give the description of pore size,

and can divide fluids in pores into CBW (clay bound

water), BVI (bulk volume of irreducible fluid) and

BVM (bulk volume of moveable fluid). Figure 2

illustrates the T2 distributions with defined typical

cut-off values for a sandstone reservoir.

2.1. Theoretical Background from NMR Relaxation

Laws

Brownstein & Tarr regarded biologic cells as

sphere, cylinder and slab, separately; they conducted

further research in NMR relaxations based on the

biologic cells. The forward model and NMR relax-

ation processes developed by Brownstein and Tarr

are called BT theory. In proton relaxation simula-

tions, the cell-wall in biologic tissue and the pore-

wall in rock are equivalent in the proton relaxations.

Therefore, the same theory has been adopted into

NMR relaxations in porous media (BROWNSTEIN and

TARR, 1979; NGUYEN and MARDON, 1995; CALLAGHAN,

2003; WENG et al., 2003) as below:

Dr2mðr~; tÞ � 1

T2B
þ 1

T2D

� �
mðr~; tÞ ¼ omðr~; tÞ

ot
; ð1Þ

n~ � rmðr~; tÞ þ q2omðr~; tÞjr~2S¼ 0; ð2Þ

mðr~; 0Þ ¼ m0 ¼
M0

V
; ð3Þ

Figure 1
Transverse relaxation in magnetic field H

Figure 2
T2 spectrum with fluid distributions in NMR
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where S is the interface dividing pore-wall and water

or the interface dividing oil and water; n~ is the unit

vector along the outer normal direction of S; m0 is the

specific bulk magnetic intensity of oil or water at

initial time; m(r, t) is the magnetization per unit

volume in location r, at time t; M0 is the total mag-

netic intensity of oil & water at initial time; V is the

pore volume; D is the diffusion coefficient of fluid in

solution area; T2B is the fluid’s bulk transverse

relaxation time; T2D is the fluid diffusion relaxation

time and the term of 1/T2D is omitted in our research.

q2o is the transverse relaxation of the oil–water

interface and q2o & 0 when bulk relaxations existed

in oil. Equation 2 shows the NMR relaxations that

limited by the pore-wall (cell wall), and Eq. 3

describes the initial condition of NMR relaxations.

To find the solutions for oil relaxation, the volume

integral is performed in Eq. 1 for the entire oil volume.

X is defined as the space occupied by oil. We obtain

D

ZZZ
X

r2mðr~; tÞdV � 1

T2B
þ 1

T2D

� �ZZZ
X

mðr~; tÞdV

¼ o

ot

ZZZ
X

mðr~; tÞdV:

ð4Þ

According to the first Green law, the directional

derivative and the boundary condition in Eq. 2, we

have ZZZ
X

r2mðr~; tÞdV ¼
ZZ
S1

omðr~; tÞ
on1

dS

¼
ZZ
S1

n~1 � rmðr~; tÞdS ¼ 0

ZZZ
X

mðr~; tÞdV ¼ MOðtÞ;

ð5Þ

where Mo(t) is the magnetization induced by oil, and

substituting Eq. 5 in Eq. 4, we obtain

M
0

OðtÞ ¼ �
1

T2B

MOðtÞ; ð6Þ

MOðtÞ ¼ M0ð0Þ exp � t

T2B

� �
¼ S0m0 exp � t

T2B

� �
;

ð7Þ

where So ¼ Vo

V is the ratio of oil volume to the total

volume, namely, oil saturation; Mo(t) is the relative

magnetization of oil phase at time t without unit; mo

is the initial relative magnetization of oil phase

without unit; t is the relaxation time in ms. Equation 7

indicates that in the pore model saturated by oil &

water, oil relaxation follows the law of bulk

relaxation.

2.2. The Weakness of Relaxation Laws

When porous media is saturated by oil and water,

two interfaces exist in the pores, including the oil–

water interface and water–pore-wall interface. Given

that no bulk water exists in the Sphere–Cylinder

model, no bulk relaxation appears in the water phase

either. Therefore, T2B in water can be defined as

infinite and the governing equations in the water

phase can be defined as below

Dwr2mðr~; tÞ ¼ omðr~; tÞ
ot

; ð8Þ

Dwn~ � rmðr~; tÞþq2wmðr~; tÞjr~2S2
¼ 0

n~ � rmðr~; tÞjr~2S1
¼ 0

(
; ð9Þ

mðr~; 0Þ ¼ m0 ¼
M0

V
; ð10Þ

where q2w is the transverse relaxation of the pore

surface; Dw is the diffusivity of water; S2 and S1 are

the interfaces between water and pore-wall, and

between water and oil, respectively.

The solutions of mð r!; tÞ: in spherical, cylindrical

and planar cell, namely, the relaxation procedures of

protons among the three cells, were obtained respec-

tively by Brownstein & Tarr theory. Assuming cells

are replaced by rock pores, the BT model can be used

to conduct evaluations of pore structures to establish

a forward model in terms of NMR data (NGUYEN and

MARDON, 1995; WENG et al., 2003). BROWNSTEIN and

TARR (1979) presented a general solution as below

mð r!; tÞ ¼
X1
n¼0

AnFnð r!Þe�t
Tn ; ð11Þ

where An is a coefficient determined by the initial

conditions; Fnð r!Þ is the Eigen-function of orthogo-

nal space, and the general solutions of Fnð r!Þ can be
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found by using Eq. 8. The coefficients in the general

solutions can be determined in the boundary condi-

tions in Eq. 9 and the special solutions of Fnð r!Þ can

then be obtained (CALLAGHAN et al., 2003; NGUYEN

and MARDON, 1995). Since pores are still treated as

isolated pores, this approach is only valid for isolated

spherical pores, cylindrical pores and planar pores

separately (LIU et al., 2004).

3. Model Improvements and Relaxation Mechanism

3.1. Sphere–Cylinder Model

As described, the pores structures can be divided into

spherical pore, cylindrical pore and planar pore, based

on their shapes, which have been saturated by oil and

water (Fig. 3a). The planar pore can be simulated by

cylindrical pores lined in side-by-side. As a result, we

can only define two kinds of pores in rocks (spherical

pore and cylindrical pore). The Sphere–Cylinder model

is the combination of two kinds of pores. The pore

structures can be simulated by the ratio of cylindrical

pore radius and sphere radius, and the connections of

spherical pore are related to the cylindrical pore

(Fig. 3b). When the Sphere–Cylinder model is saturated

by oil and water, Eqs. 7 and 11 control the relaxations of

oil and water. However, the relaxations of water can be

simulated after coefficients and Eigen-functions are

determined from Eq. 11.

3.2. Validation of Eigen-Function

Since the Sphere–Cylinder model includes a

spherical pore and a cylindrical pore, we ought to

validate the spherical Eigen-function and cylindrical

Eigen-function, respectively. Substituting Eq. 11 into

the relaxation equation (Eq. 8) with boundary condi-

tion, we can get the equation that validates the Eigen-

function in a spherical pore in a spherical coordinate

frame as below:

F00k ðrÞ þ
2

r
F0kðrÞ þ

1

TkDw

FkðrÞ ¼ 0; ð12Þ

The general solution of Eq. 12 can be presented as

FkðrÞ ¼
C1

r
cos

rffiffiffiffiffiffiffiffiffiffiffi
TkDw

p
� �

þ C2

r
sin

rffiffiffiffiffiffiffiffiffiffiffi
TkDw

p
� �

ð13Þ

Utilizing the boundary condition of water phase

(Eq. 9), we acquire the coefficient from Eq. 13.

Assuming C2 = 1 without loss of generality as

presented in Eq. 11, we come to

C1 ¼
S

1=3
0 nk � tan S

1=3
0 nk

� �

1þ S
1=3
0 nk tan S

1=3
0 nk

� � defined as Ck; ð14Þ

nk ¼ Rsffiffiffiffiffiffiffiffi
TkDw

p ; and nk is the positive root of the tran-

scendental equation, and the transcendental equation

is expressed as follows:

tan nk ¼
Dwnk � CkðDw � q RsÞ
DwnkCk þ ðDw � q RsÞ

ð15Þ

Once nk, C1 and C2 are determined, Eq. 13 is

then substituted into Eq. 11. We can obtain the

relaxation equation of water phase in spherical pore,

which the coefficients of the Eigen-function are

determined from. So in Eq. 14 is the oil saturation and

it can be expressed as the equation below

So ¼
a3

1

R3
s

ð16Þ

where a1 is the radius of oil drop in spherical pore in lm.

Correspondingly, substituting Eq. 11 into Eq. 8, and

then re-writing the relaxation equation in a cylindrical

coordinate frame, we can obtain a new equation from the

Eigen-function for water in a cylindrical pore.

F00k ðrÞ þ
1

r
F0kðrÞ þ

1

TkDw

FkðrÞ ¼ 0 ð17Þ

The general solution for the Eigen-function can be

written as

FkðrÞ ¼ C1J0

rffiffiffiffiffiffiffiffiffiffiffi
TkDw

p
� �

þ C2N0

rffiffiffiffiffiffiffiffiffiffiffi
TkDw

p
� �

; ð18Þ

where J0 is the zero-order Bessel function, and N0 is

the zero-order Neumann function. The J and N in the

following text are the same function in Eq. 18.

Similar to the spherical pore, assuming C2 = 1, we

can obtain C1 in Eq. 19.

C1 ¼ �
N1

gkb1

Rc

� �
gkb1

Rc

� � ¼ CkðdefinedÞ; ð19Þ

where gk ¼ bffiffiffiffiffiffiffiffi
TkDw

p is the positive root of transcen-

dental equation, and the transcendental equation can

be expressed as follows

1260 L. Tangyan et al. Pure Appl. Geophys.



N1
gkb1

Rc

� �

J1
g

k
b1

Rc

� � ¼ Dwg
k

N1ðgkÞ � q RcN0ðgkÞ
Dwg

k
J1ðgk

Þ � q RcJ0ðgkÞ
ð20Þ

Substituting the Eigen-function of cylindrical pore

(Eq. 18) into Eq. 11, we can acquire the relaxation

equation of water phase in cylindrical pore. b1 in

Eq. 19 is the radius of oil phase in cylindrical pore,

the oil saturation (So) in cylindrical pore is defined as

So ¼
b2

1

R2
c

ð21Þ

Assuming oil is evenly distributed in the Sphere–

Cylinder model, the oil saturations in a spherical pore

and a cylindrical pore, therefore, should be the same.

So ¼
b2

1

R2
c

¼ a3
1

R3
s

ð22Þ

3.3. Development of Brownstein & Tarr Theory

Once the Eigen-functions for the water phase in a

spherical pore and a cylindrical pore are determined,

the relaxation of water phase in two kinds of pore

then can also be obtained. According to Eq. 11 with

Fi(r) to perform volume integral for water phase, we

have

ZZZ
X

mðr~; tÞFiðr~ÞdV

¼
X1
k¼0

Ak

ZZZ
X

Fkðr~ÞFiðr~ÞdV

2
4

3
5 exp � t

Tk

� �
ð23Þ

Since Eigen-functions are orthonormal set, thus

ZZZ
X

mðr~; tÞFkðr~ÞdV ¼ Ak

ZZZ
X

F2
k ðr~ÞdV

2
4

3
5 exp � t

Tk

� �

ð24Þ

Set t = 0, and combine with the boundary con-

ditions in Eq. 10, we then have

mðr~; 0Þ ¼ M0

V
¼ M0

VW

� VW

V
¼ 1� SOð ÞM0

VW

; ð25Þ

where Vw is the volume of the water phase, combine

it into Eq. 25 and Eq. 24, Ak can be derived as

Ak ¼ 1� SOð ÞM0

VW

RRR
X

Fkðr~ÞdV

RRR
X

F2
kðr~ÞdV

ð26Þ

As a result, the volume integral for Eq. 11 in the

water phase can perform directly as

Figure 3
a Primary pores in rocks with fluids and b the illustration of the Sphere–Cylinder model
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ZZZ
X

mðr~; tÞdV ¼
X1
k¼0

Ak

ZZZ
X

Fkðr~ÞdV

2
4

3
5 exp � t

Tk

� �

ð27Þ

MwðtÞ ¼ 1� Soð ÞM0

X1
k¼0

1

VW

RRR
X Fkðr~ÞdV

� �2
RRR

X F2
k ðr~ÞdV

� exp � t

Tk

� �
¼ 1� Soð ÞM0

X1
k¼0

Ik exp � t

Tk

� �
ð28Þ

where Mw(t) is the magnetization induced by water

and Ik can be calculated in Eq. 29 as below

Ik ¼
1

VW

RRR
X Fkðr~ÞdV

� �2
RRR

X F2
kðr~ÞdV

ð29Þ

4. Parameters and Functions for Modelling

4.1. Determining Relaxation Time for Oil Samples

Based on the experiments of mercury injections in

the lab, the radii of cylindrical pores in the core were

set as 0.1, 1.0 and 5.0 lm, separately (Fig. 4a). The

relaxation times of oil samples are widely scattered,

and they might range approximately from 500 to

1,500 ms (XIAO, 1998). The experimental results in

our research indicate that the relaxation time is about

1,000 ms according to different measure parameters

(Fig. 4b). With consideration of the general relaxa-

tion time of crude oil, it is set as 800 ms, as below

1

800
¼ 1

T2o

� 1

T2B

; ð30Þ

T2o is the bulk relaxation for oil sample, substi-

tuting Eq. 30 into Eq. 7, the relaxation signal of oil

phase can be calculated.

4.2. Input Parameters for Modelling

In order to obtain the spherical radius and

cylindrical radius, the surface area restriction (LIU,

2002) is also used in our study as below

Se ¼ Sc þ Ss

Rc ¼ CdRs

(
; ð31Þ

where Se, Sc and Ss are the surface areas of equivalent

spherical pore, cylindrical pore and spherical pore in

lm2, respectively; Rc and Rs are the radii of cylin-

drical pore and spherical pore in lm2; and Cd is the

ratio of the radius of cylindrical pore to the radius of

spherical pore. Providing that the radii of cylindrical

pores are 0.1, 1.0 and 5.0 lm2, respectively. The radii

of an equivalent spherical pore and spherical pore can

be obtained in the restriction-optimization method

along with Eq. 19 and Table 1. In Table 1, Re is the

radius of equivalent sphere, and has the same surface

area, volume or the same ratio of volume to surface

as the Sphere–Cylinder model. Rc, Rs and Lc

respectively are the radii of cylindrical pore, spherical

pore and the cylindrical length shown in Fig. 2b. Oil

saturation is set as 0 for the water saturated zone; 0.3

Figure 4
a The distributions of pore size from mercury injection experiments and b the distributions of oil sample relaxation time with relative

amplitude in NMR experiments
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for the oil and water saturated zone and 0.65 for the

oil saturated zone.

4.3. Simulation Functions

After the Eigen-functions are solved in terms of

spherical pore and cylindrical pore, respectively,

substituting the Eigen-functions into Eq. 28 we

obtain the simplified equations of the relaxation

procedure of the water phase.

The first and second items of functions in

Tables 2 and 3 are the relaxations of spherical pores

and cylindrical pores, respectively, in the Sphere–

Cylinder model. In summary, the total relaxation of

mono-phase fluid in the Sphere–Cylinder model is

the composition of the spherical pore and cylindri-

cal pore. According to the equations in Table 2, 3

and Eq. 7, the relaxation signal of the oil and water

phase can be calculated, and the total relaxation

signal is the summation of oil and water. As an

example, combining Eq. 7 with the first equation in

the Table 2, the total relaxation of the water-

bearing Sphere–Cylinder model can be expressed as

follows:

MtðtÞ ¼ MoðtÞ þMwðtÞ

MtðtÞ ¼ Somo expð� t

800
Þ þ 0:9928 expð�0:1981tÞ

þ 0:007197 expð�0:4399tÞ

8>><
>>:

;

ð32Þ

where So = 0; Mt, is the total relative relaxation

amplitude including water and oil. The total relaxa-

tion equations in other cases can be derived also in

the same way.

5. Numerical Simulations and Result Analysis

5.1. Simulation Analysis

The theoretical studies indicate that the relaxation

procedures for spherical pores and cylindrical pores

composed the special solutions of transcendental

equations in the Sphere–Cylinder model. Therefore,

in a single spherical-cylinder model, the range of

special solutions is restricted by the solution of

special equations. Since the solutions of Eq. 1 can be

added up for different compositions, the relaxation

procedure of Sphere–Cylinder can be regarded as the

compound relaxation procedure that is produced by

spherical pores and cylindrical pores. As presented in

Eqs. 13 and 18, the special solutions of the spherical

pore and cylindrical pore are combined with trigo-

nometric functions and Bessel functions. After both

trigonometric functions and Bessel functions are

simplified, the two types of functions can be

expressed in the multi-exponential functions in

Tables 2 and 3. In addition, only one exponential

function during the procedure constitutes the main

part of relaxation can be named as a main relaxation

procedure. Our mathematical calculations demon-

strate that the main relaxations of spherical pore and

cylindrical pore are all just one-exponential function,

and the rest of the parts can be overlooked. Hence,

the relaxation of the Sphere–Cylinder model is a dual

exponential attenuation procedure.

Table 1

Numerical simulation parameters for the Sphere–Cylinder model

Cd 0.3

Fine pore Middle pore Macro pore

Re (lm) 0.336 3.36 16.79

Dw (lm2/ms) 2.0 2.0 2.0

q2 (lm/ms) 0.022 0.022 0.022

Rs (lm) 0.333 3.33 16.67

Rc (lm) 0.1 1.0 5.0

Lc (lm) 0.0178 0.178 0.892

Table 2

Simulation functions for fine pores

SO = 0:Mw (t) = 0.992e-0.1981t ? 0.007197e-0.4399t

SO = 0.3:Mw (t) = 0.6950e-0.2830t ? 0.005025e-0.6285t

SO = 0.65:Mw (t) = 0.3475e-0.5662t ? 0.002513e-1.2571t

(RS = 0.333 lm, RC = 0.1 lm, LC = 0.0178 lm)

Table 3

Simulation functions for macro pores

SO = 0:Mw(t) = 0.9923e-0.003817t ? 0.007169e-0.008680t

SO = 0.3:Mw(t) = 0.6949e-0.005547t ? 0.005018e-0.01247t

SO = 0.65:Mw(t) = 0.3475e-0.01122t ? 0.002509e-0.02505t

(RS = 16.67 lm, RC = 5.0 lm, LC = 0.892 lm)
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5.2. Modelling Results

Considering the impacts of pore structures under

water-wetting conditions, we come to the conclusion

that the signal of oil relaxation is the interference.

Furthermore, in a given pore condition, the level of

abnormality of the signal fluctuates with the level of

the oil saturations in proportional ratio. As a result,

the illustration of relaxation will alter the reflection of

pore structures if interpreting the relaxation signal of

oil-bearing without removing the oil first.

The amplitudes of relaxation in Fig. 5a have been

normalized; therefore, the unavailability of oil relax-

ation signal, total relaxation signal and brine

relaxation signal will be combined into one relaxation

signal. This indicates that the relaxation signal mainly

responds to the pore boundary condition without

interference of oil. The relaxation signal of brine-

bearing core reported to be mostly fitted for pore

structure evaluation (YUE et al., 2002; LIU et al.,

2004), whose essences have been presented in our

theoretical research.

Regardless what shape and size the pore have, the

total relaxation signal in oil-bearing rock, along with

the measured relaxation signal, is the superposition

signal of the water relaxation signal and the oil

relaxation signal (Fig. 5b). Comparing the total

relaxation signal of small pores in Fig. 5a with the

one in Fig. 5b, we soon discover that the total

relaxation signal of oil-bearing pores becomes abnor-

mal due to the signal superposition of oil relaxation.

Evidently, only the relaxation of water surface

defines different pore sizes on the relaxation process

in special Sphere–Cylinder model with the same oil

saturation, as presented in Fig. 6a, b. In terms of

small pores, as the relaxation of water surface is

restricted by pore surface, the relaxation process

appears to accelerate plus the relaxation signal shifted

to shorter relaxation time.

Figure 5
a Relaxations in both pores for water-bearing. b The fine pore filled by water and oil

Figure 6
a The comparison of relaxations in small pores and b the big pores for water and water & oil-bearing (So = 0.65)

1264 L. Tangyan et al. Pure Appl. Geophys.



For oil-bearing pores, due to the superposition of

the oil relaxation signal, the measured relaxation

signals shifted to longer relaxation times which

produced false information for bigger pores. Never-

theless, we can review the differences between two

signals based on the proportions of the area sur-

rounded by water-bearing relaxation and oil & water-

bearing relaxation, and the area of water-bearing

relaxation. The calculation indicates that the area of

black points is 105 times more than the area of water-

bearing relaxation. Note that the X-coordinate is on a

logarithmic scale in Fig. 6a, hence, the oil-bearing

relaxation in small pores will cause marked abnor-

mality on the total relaxation signal. Therefore, in

order to conduct pore structure evaluation on small

pores, it is necessary to remove the effects of oil-

bearing relaxation.

We can also obtain the proportion of area circled

by the water-bearing relaxation and oil & water-Figure 7
NMR relaxations in Sphere–Cylinder and BT Spherical Model

Figure 8
Small pore structures with poor movable oil and high irreducible fluid
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bearing relaxation for big pore in Fig. 6b (black zone

circled by X-coordinate and Y-coordinate). To sum-

marize, the oil-bearing relaxation has much less

impact to the big pores than small pores on the total

relaxation at the same oil saturation, as the relaxation

time of water surface in big pore becomes long

enough to approach the oil ingredient. Therefore, in

terms of NMR logging data, the log data is imprecise

for small pores but high precision for large pores. In

large pores, the influence of oil on relaxation signal is

not significant.

5.3. Case Study from NMR Logging

Combining spherical pores with cylindrical pores as

one model, the NMR relaxations in the Sphere–Cylinder

model are the superimpositions of spherical pore

relaxations and cylindrical pore relaxations. In terms

of BT theory, only one kind of pore exists in their model.

A case study for the comparison of NMR relaxation time

in Fig. 7 shows both BT and our model.

Suppose the water saturation is 0.3 and the

magnetization of a BT spherical pore and the

Sphere–Cylinder model can be calculated. If

the volume of the Sphere–Cylinder model is equal

to the BT spherical model, the relaxation in the

Sphere–Cylinder model declines and the velocity

increases, then the relaxations in the BT spherical

model due to the pore space in the first one is smaller

than the latter one. When the relaxation time is longer

than 260 ms, both the magnetizations (Am) from the

Sphere–Cylinder model and the BT spherical model

will get down to almost zero.

The simulation results show that if dividing the

total echo signal into water echo and oil echo to

perform inversion, then the spherical pore and

cylindrical pore can be described based on the T2

distributions from the water echo due to only the

relaxation of the water phase relative to pore

structures.

In the case study from a gas field in southwest

China, the core NMR analysis shows that the top

reservoirs have many small pore-throat structures

(cylinder shape mainly) for target intervals, and this

observation has been further confirmed by logging

NMR processing from the Lab. Figure 8 provides an

interpreted CPI plot that shows the mixture of gas and

oil located at the intervals between 4,550 and

4,664 m; however, the irreducible water (gray colour

in the last panel) shows poor movable oil which were

caused by small pores (cylindrical) that were distrib-

uted at this depth interval.

6. Conclusions

The study of pore structure in NMR is a key

matter for complex reservoirs and it is related to pore

boundary conditions with the assumption that pore

structures are spherical for simplification. The

approach of the Sphere–Cylinder model in oil–water

bearing porous media can be regarded as the super-

position relaxation for both spherical pores and

cylindrical pores.

The study of relaxation mechanism shows that, in

water-wet rocks, the relaxation of oil phase is rele-

vant to oil saturation and it is independent from pore

structure. Since water adheres to the surface of the

pore, the relaxation of water surface is relative to the

pore structure of rock. The pore structure study shows

that oil ingredients may impose abnormal effects in

relaxation signals, especially in these small pores.

Therefore, it is necessary to consider these effects in

order to carry out the complicated reservoir evalua-

tions based on NMR data.
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