
Least Square Data Assimilation for Identification of the Point Source Emissions

MAITHILI SHARAN,1 SARVESH KUMAR SINGH,1 and J. P. ISSARTEL
2

Abstract—The identification of single and multiple-point

emission sources from limited number of atmospheric concentra-

tion measurements is addressed using least square data assimilation

technique. During the process, a new two-step algorithm is pro-

posed for optimization, free from initialization and filtering

singular regions in a natural way. Source intensities are expressed

in terms of their locations reducing the degree of freedom of

unknowns to be estimated. In addition, a strategy is suggested for

reducing the computational time associated with the multiple-point

source identification. The methodology is evaluated with the syn-

thetic, pseudo-real and noisy set of measurements for two and three

simultaneous point emissions. With the synthetic data, algorithm

estimates the source parameters exactly same as the prescribed in

all the cases. With the pseudo-real data, two and three point release

locations are retrieved with an average error of 17 m and intensities

are estimated on an average within a factor of 2. Finally, the

advantages and limitations of the proposed methodology are

discussed.

Key words: Inverse modeling, multiple-point source identi-

fication, least square, data assimilation.

1. Introduction

The rapid urbanization, industrialization and

Chemical Biological and Radiological (CBR) relea-

ses raise an issue of major concern around the world

regarding the contamination of environment, public

health and national security. Rapid detection and an

early response can reduce the extent of subsequent

contamination and associated mortality of the inci-

dent. This assessment requires information about

number of sources, their locations, emission rates,

time, and duration of releases. However, in most of

the realistic events, the difficulty increases when

distributed contaminant sensor networks detect con-

centrations over threshold value but have no

particular idea about the releases including their ori-

gin (LIU and ZHAI, 2007). This necessitates the

development of a methodology that can help in

identifying potential contaminant sources from lim-

ited concentration measurements.

Several researchers have focused on the problem

of recovering the parameters of the unknown sources

on the basis of available concentration measurements.

Notable efforts in this direction are from PUDYKIEWICZ

(1998), ROBERTSON and LANGNER (1998), PENENKO

et al. (2002), BOCQUET (2005a, b), YEE (2005, 2006),

YEE et al. (2006), KEATS et al. (2007a, b), ELBERN

et al. (2007), ISSARTEL et al. (2007), SHARAN et al.

(2009), etc. In all these studies, the problem of

identification of source parameters was primarily

restricted to single-point source. The identification of

the multiple-point simultaneous releases is a chal-

lenging task and assumes significant importance in

real world applications. In an extensive study, HAUPT

(2005) emphasized that identification of the multiple-

point sources becomes difficult when (1) two sources

are seen at the same angle from the receptor but at

different distances, (2) sources are located far away

from the receptors and (3) meteorological conditions

are not variable then distinguishing the contributions

from different sources become difficult. However,

the inverse problem of separating several influences

merged into a set of concentration measurements

has not been explored completely (ISSARTEL et al.

2011).

In recent years, few studies addressed the inverse

problem of multiple-point source identification from

finite number of noisy concentration measurements.

MATTHES et al. (2005) attempted the identification of

source locations using the least square by spatially
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distributed electronic noises in an indoor release

experiment for industrial storage of toxic chemicals

conducted at the Sigma-Aldrich Company (Ger-

many). Later, the identification of the multiple

sources in the atmosphere was briefly addressed by

YEE (2007), but the approach was based on the

assumption that the number of sources is known

a priori. Later, YEE (2008) extended the theory for

reconstruction of an unknown number of contaminant

sources using probabilistic inference in conjunction

with Metropolis-coupled reversible-jump Markov

chain Monte Carlo (MCMC) method. However, the

implementation of the theory was computationally

expensive and limited to noisy synthetic data only.

Recently, LUSHI and STOCKIE (2010) described an

inverse Gaussian plume approach for estimating

atmospheric pollutant emissions from four-point

sources in a large lead–zinc smelting operation in

Trail, British Columbia. The study was performed

only for the estimation of emission rates but did not

include the identification of locations of point sour-

ces. Recently, ISSARTEL et al. (2011) proposed a

renormalization algorithm for identification of mul-

tiple-point sources using the concepts from quantum

mechanics and differential geometry.

Least square technique is often used in parametric

estimation as well as in the data assimilation prob-

lems in various geophysical applications (LEWIS et al.

2006). KRYSTA et al. (2006) have used a least square

approach as a tool in the inverse modelling to esti-

mate the source parameters from the concentration

measurements. This method is not fully explored in

the source identification as (1) the method becomes

computationally expensive in the source-oriented

modeling involving forward computation of the

advection diffusion equation (RAO, 2007), (2) singu-

larity arises at the point of receptors in receptor-

oriented modeling (RAO, 2007) and (3) classical

optimization methods may not be adequate as they

require a priori knowledge of the initial guess of

unknown parameters, which is not feasible in reality.

In view of these, an attempt has been made here to

overcome some of these inherent problems in the

source identification.

In the present study, an approach based on least

square technique is described to retrieve the multiple-

point simultaneous releases from the atmospheric

concentration measurements. As a part of the study,

an algorithm is proposed for minimizing the sum of

square of residuals. The proposed algorithm is

advantageous as (1) it does not require any prior

knowledge regarding the location of the sources and

(2) takes care of singularities in a natural way. In

addition, an approach is coupled with the inversion

algorithm to reduce the computational time taken by

estimation procedure. The study is evaluated with the

pseudo-real data generated from the diffusion

experiment conducted at Indian Institute of Tech-

nology (IIT) Delhi, India.

2. Methodology

In this study, identification of several simulta-

neous point sources is explored using a finite set of

concentration measurements l1, l2,…, ln within the

framework of least square theory (LEWIS et al.

2006). It is primarily assumed that the emission is

continuously distributed through out the domain and

no particular region is taken as a prior release

location. The number of simultaneous releases is

assumed to be known a priori. The emissions are

taken linear with respect to the measurements.

Continuous emission is considered from the ground

level sources. The methodology begins with the

identification of single-point emission for clarity and

then it is extended to two and multiple-point

simultaneous emissions.

2.1. Least Square Formulation

The least square theory is based on minimizing

the error cost function of sum of squares of residuals

between the receptor’s measured and model predicted

concentrations. The initial requirement of the formu-

lation is a source-receptor relationship which

describes mapping between source and receptors.

Here, we followed a receptor oriented approach to

avoid the unnecessary sampling of the source

parameters and forward computation of the advection

diffusion equation. The sensitivity of the potential

source with respect to each sampled measurement is

described by introducing the adjoint functions (MAR-

CHUK, 1995) as:
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li ¼ q ai for i ¼ 1; 2; . . .; n; ð1Þ

where n is the number of receptors, ai is the adjoint

function corresponding to the ith receptor and q is an

unknown source strength. Adjoint functions are esti-

mated from adjoint of the dispersion model assuming

the unit release at the receptor’s location (SHARAN

et al, 2009). The adjoint function essentially

describes backward transport of the pollutant’s con-

centration from the receptors. Mathematically, if ri is

the source and L is a linear operator, a direct source-

receptor relationship is L rið Þ ¼ li: Using the prop-

erties of an inner product :; :h ið Þ; a fundamental

relationship can be described as (ISSARTEL and

BAVEREL, 2002), L rið Þ; lih i ¼ ri; L
� lið Þh i ¼ ri; aih i

in which L* is the adjoint of the linear operator.

Generally, the concentrations measured by recep-

tors will not agree with those predicted by the model

owing to noise imposed on the concentration data and

turbulence parameters, which by its varying nature is

expected to have a complicated structure. For this

purpose, the model predicted adjoint functions and

the receptor measured concentrations are related as:

li ¼ q ai þ ei for i ¼ 1; 2; . . .; n; ð2Þ

where ei is an additive noise associated with ith con-

centration measurement.

The least square method for estimation of source

parameters (location and intensity) of a single-point

source from n observed concentration measurements

li’s is based on minimizing the sum of square of

residuals represented by the function J as (LEWIS et al.

2006):

J x; qð Þ ¼
Xn

i¼1

e2
i ¼

Xn

i¼1

li � qai xð Þ½ �2; ð3Þ

subject to the constraints q [ 0 and x‘ 6 x 6 xu

where x = (x, y) is a position vector. The vectors

x‘ and xu are, respectively, lower and upper limits

of the computational domain containing the moni-

toring network. Measurement errors are assumed

uncorrelated with equal variance (LEWIS et al.

2006).

The conditions for minimization of J lead to a

system of non-linear algebraic equations in terms of

parameters to be estimated. The complexity grows

with increasing number of degrees of freedom or

parameters. A number of optimization algorithms

such as Newton–Raphson (BEYER, 1964), Steepest–

Descent (DEBYE, 1909), Levenberg–Marquardt

(LEVENBERG, 1944; MARQUARDT, 1963), conjugate

gradient (HESTENES and STIEFEL, 1952) exist in the

literature for the estimation of source parameters.

These algorithms differ from the use of iterative

techniques and on the appropriate choice of the initial

values of the unknown parameters with respect to

iterations. Since the locations of the sources are not

known a priori and it is not feasible to prescribe their

initial values, existing optimization methods fail for

such estimation problems. In view of this, an

alternative algorithm is proposed here.

The algorithm proposed here, is essentially a two

step minimization process, in which as a first step, for

a fixed location, the function J is minimized with

respect to q to obtain its estimate and then fixed

location along with estimated q
_

is used to compute

the value of function J
_

. This process is repeated for

all the grid points of the domain and the correspond-

ing values of J
_

are stored. In the second step, a

sequential search algorithm is applied to look for the

global minimum among the stored values of J
_

: The

parameters corresponding to the global minimum of J
_

will be the estimation of the source intensity and its

location.

Incidentally, this algorithm can be represented

mathematically for the single-point source as follows:

The function J (Eq. 3) is rewritten in the matrix

notation as:

J x; qð Þ ¼ 1

2
l� qa xð Þ½ �T l� qa xð Þ½ �; ð4Þ

where l ¼ l1; l2; . . .; lnð ÞTand a xð Þ ¼ a1 xð Þ; a2 xð Þ;ð
. . .; an xð ÞÞT are the vector of measurements and

adjoint functions, respectively. The superscript ‘T’

denotes the transpose.

For a fixed x, first order derivative of J with

respect to q is given by:

oJ

oq
¼ qaT xð Þa xð Þ � lTa xð Þ: ð5Þ

The condition ðoJ=oq ¼ 0Þ leads to an estimate q
_

as:

q
_ ¼ lTa xð Þ

aT xð Þa xð Þ : ð6Þ
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Notice that the second order derivative of J,

o2J=oq2 ¼ aT xð Þa xð Þ (square of adjoint function at

fixed x) is positive which implies that estimated q
_

(Eq. 6) minimizes the function J for a fixed x. The

minimum value of J corresponding to estimate q
_

(Eq. 6) for a fixed x is obtained from simplifying Eq.

(4) as:

J
_

x; q
_

� �
¼ 1

2
lTl� lTa xð Þð Þ2

aT xð Þa xð Þ

" #
; ð7Þ

Notice that, in Eq. (7) the first term on RHS (Right

Hand Side) is a square of measurement vector and is

independent of x and the second term on RHS is also

a square term with negative sign. Hence, the mini-

mization of J
_

with respect to x in Eq. (7) is equivalent

to the maximization of the function

S xð Þ ¼ lTa xð Þð Þ2

aT xð Þa xð Þ : ð8Þ

The point at which S(x) becomes maximum in the

domain will be the estimate of location of the source.

Once the location of the source is identified, its

intensity is computed from Eq. (6) at the estimated

location xe = (xe, ye).

For single-point emission, the estimate q
_

(Eq. 6)

turns out to be an explicit function of x. In addition,

J
_

; the minimum value of J estimated at q
_

for fixed x,

becomes an explicit function of x which is relatively

easier to optimize with respect to x. In view of these

facts, the proposed algorithm becomes simpler for

single-point emission. Now, we describe the source

estimation for two simultaneous releases.

2.2. Two-Point Sources

For two simultaneous point releases, the error

function J is written as:

J x1; x2; qð Þ ¼ 1

2
l� q1a x1ð Þ � q2a x2ð Þ½ �T

� l� q1a x1ð Þ � q2a x2ð Þ½ �; ð9Þ

in which the components of q = (q1, q2)T are the

intensities of two simultaneous point releases corre-

sponding to the locations x1 and x2 respectively.

Henceforth, the subscripts ‘1’ and ‘2’ will correspond

to first and second source.

For fixed x1 and x2, conditions (qJ/qq1 = 0 and

qJ/qq2 = 0) for obtaining the critical points lead to a

system of equations, written in matrix form, as:

Aq ¼ B; ð10Þ

where:

A ¼
aT

1 a1 aT
1 a2

aT
2 a1 aT

2 a2

" #
; q ¼

q1

q2

" #
and B ¼

aT
1 l

aT
2 l

" #

ð11Þ

Here a1 = a(x1) and a2 = a(x2) are the vectors of

adjoint functions evaluated at the points x1 and x2,

respectively. Notice that A is the Gram matrix of a1

and a2 which implies that it is a real symmetric and

positive. It is definite, i.e. det A = 0, if and only if

these vectors are linearly independent. Then, the

system of equations can be solved for the estimated

value of q denoted as q
_

q
_

1 ¼
aT

1 l
� �

aT
2 a2

� �
� aT

2 l
� �

aT
1 a2

� �

det A
and

q
_

2 ¼
aT

2 l
� �

aT
1 a1

� �
� aT

1 l
� �

aT
1 a2

� �

det A
:

ð12Þ

The ‘‘Hessian matrix’’ of J(x1, x2, q) with respect to

q1 and q2 (square matrix of second order partial

derivatives) is simply A. Since this matrix is positive

definite implying all its eigenvalues are real and

positive, it is non-singular and J attains a local min-

imum at the critical point q
_ ¼ q

_

1 q
_

2

� �T

(Eq. 12)

(AYRES, 1962; GOLUB and VANLOAN, 1996). Thus, the

pairs of x1 and x2 in the domain ensuring the linear

independence of a1 and a2 are considered.

The minimum value of J is obtained from Eq. (9)

for q
_

and x1 and x2 and the resulting value is denoted

as J
_

: In fact, this J
_

is a function of x1 and x2. Since

the minimization of J
_

with respect to x1 and x2 is not

obvious, it is minimized numerically using a sequen-

tial algorithm.

Over all algorithm for the source identification is

summarized as: (1) choose the pair of x1 and

x2(x1 = x2) in the domain such that Hessian matrix

is positive definite, (2) estimate q
_

and J
_

for the pair

of x1and x2, (3) store the set fJ
_

; q
_
; x1; x2g of values,

(4) repeat the steps (1–3) for all possible pairs of x1

and x2 in the domain, (5) employ a sequential

algorithm to find the minimum J
_

among its stored
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values, (6) values of q
_

, x1 and x2 corresponding to the

minimum J
_

in (5) will be the desired estimation of

source parameters.

Now, we generalize this approach for the retrieval

of m-simultaneous releases.

2.3. Multiple-Point Sources

For m unknown simultaneous point sources, the

function J is written as:

J x1; x2; . . .; xm; qð Þ ¼ 1

2
l�

Xm

i¼1

qia xið Þ
" #T

� l�
Xm

i¼1

qia xið Þ
" #

: xi 6¼ xj;

ð13Þ

where qi is the intensity of the ith source and the

condition xi = xj indicates that the locations of the

unknown sources are distinct. For a fixed set of x1,

x2,…,xm, the condition (qJ/qqi = 0 for i = 1, 2,…,m)

for estimation of critical points will lead to a system

of m equations, written in matrix notation as:

Aq ¼ b; ð14Þ

in which:

A ¼

aT
1 a1 aT

1 a2 � � � aT
1 am

aT
2 a1 aT

2 a2 � � � aT
2 am

� � � � � �
� � � � � �
� � � � � �

aT
ma1 aT

ma2 � � � aT
mam

2

666666664

3

777777775

m�m

;

q ¼

q1

q2

�
�
�

qm

2
666666664

3
777777775

m�1

and b ¼

aT
1 l

aT
2 l

�
�
�

aT
ml

2
666666664

3
777777775

m�1

:

Now, the outlines given for the retrieval of two-point

emissions in Sect. 2.2 are followed for the identifi-

cation of m-point sources.

The Hessian matrix generated from second order

partial derivatives of J with respect to q1, q2,…, qm

for a given set x1, x2,…, xm is found to be the same as

the coefficient matrix A. This matrix is examined for

its positive definiteness by showing that all its

computed eigenvalues are real and positive. In case

any of the eigenvalue failed to be real and positive,

another combination of x1, x2,…, xm is chosen. For

the chosen set of x1, x2,…, xm the coefficient matrix

A is non-singular and then the system of m equations

in m unknowns (Eq. 14) is solved numerically using

Gauss elimination method to compute q
_

Now the set of x1, x2,…, xm along with the

computed q
_

is used to estimate the minimum value of

J denoted as J
_

(Fig. 1). These set of values

fJ
_

; x1; x2;. . .; xm; q
_g are stored. This process is

repeated for all the possible combination of x1,

x2,…, xm in the domain. A sequential algorithm is

utilized for searching the minimum of J
_

among all its

stored values. The values of x1, x2,…, xm and q
_

corresponding to the min ðJ
_

Þ are identified as the

source parameters. These outlines are given in a flow

diagram (Fig. 1).

3. Diffusion Data

For evaluation of the proposed technique for the

source retrieval, a diffusion data is required. The

measurements utilized for identification of single as

well as multiple-point emissions are described here

briefly.

3.1. Measurements for Single-Point Emission

For the identification of single-point emission,

data from IIT diffusion experiment conducted at Delhi

(28�520 N, 77�180 E) for surface release of tracer SF6

in low-wind conditions is considered. Details of the

experiment including atmospheric stability are given

in SINGH et al. (1991) and SHARAN et al. (1996). The

tracer was released at a height of 1 m above the

ground and the receptors were also placed approxi-

mately at the same height. For the computations,

source and receptors are assumed at ground level.

In all, 14 test runs were conducted. Only seven

(runs 1, 6, 7, 8, 11, 12 and 13) corresponding to the

unstable steady conditions are chosen for the analysis

(SHARAN et al., 2009). Run 2 was ignored due to a

relatively large variability in wind direction and the
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remaining runs because of neutral and stable condi-

tions. In runs 1, 6, 7 and 11, the release point was

located at the centre of the circular arcs, whereas in

the remaining runs (8, 12 and 13), the release point

was shifted 100 m towards northwest. In runs 1, 8, 12

and 13, the release rate was 5,000 lg/s while in the

remaining runs (6, 7 and 11), it was 3,000 lg/s. The

monitoring network involved 20 receptors on 50, 100

and 150 m, and in some cases on 200 m circular arcs

with 45� angular spacing between them (Fig. 2).

When the source is shifted from the centre onto the

arc at 100 m, the corresponding receptor is moved to

the centre. In some of the runs, a few measurements

are discarded (SHARAN et al., 1996), thus reducing the

effective number of receptors in the monitoring

network.

Wind and temperature measurements were

obtained at four levels (2, 4, 15 and 30 m) from a

30 m micrometeorological tower. The values of wind

speed, wind direction, atmospheric stability and

mixing height required in the dispersion model are

taken from SHARAN et al. (1996).

Compute matrices
A and b

Compute all the eigen 

values si'λ of A

Start

Input number of 
sources (m)

Define the total 
number of grid 

points (N)

Choose the set 

mxxx ,...,, 21 such 

that ji xx ≠

1

No
1

Are 

all si 'λ real 

and 
positive?

Yes

Solve 
Aq=b using Gauss 

elimination and denote 
the solution as q

Yes

Compute J for 

mxxxq ,...,,, 21

Store set 
{ }mJ xxxq ,...,,,, 21

No
1

Are 
all the 
sets

mxxx ,...,, 21

in domain are 
visited?

Use Search algorithm to 

find ( )Jmin

End

Print set

mxxx ,...,, 21 and

q corresponding to ( )Jmin

Figure 1
Flow-diagram for the steps of proposed retrieval algorithm
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3.2. Pseudo Measurements for Multiple-point

Emissions

Diffusion data is very scarce. Mostly available

diffusion data in the literature pertains to the single-

point emission. For the evaluation purpose, a pseudo

data set is generated from the IIT diffusion experi-

ment by combining the single release with different

source locations under similar meteorological

conditions.

Notice that, in IIT data, the monitoring network

remains same for all the runs only the release location

and wind direction vary. Thus, it allows us, with

minor modifications, to combine the runs with similar

meteorological conditions and different release loca-

tions, just as if the two releases had occurred

simultaneously. In view of this, four pseudo runs

have been prepared by combining the runs with same

wind conditions and different location of the source.

Winds are almost same in runs 11 (central

source), 8 and 13 (shifted source). Runs 11 (central

source), 8 and 13 (shifted source) have almost same

wind speed (1.1, 0.9, 1.1 m/s respectively) and

direction (125�, 121�, 141�). The pseudo-runs 11–8

and 11–13 are thus prepared by adding the measure-

ments at the receptors common to the combined runs.

A third pseudo-run is prepared based on the fact

that wind direction in run eight (shifted source) is

close to a symmetry axis of the monitoring network

in the direction of 112.5�. Under this mirror symme-

try, the source 100 m northwest of the centre of the

monitoring network becomes 100 m west of it. Most

receptors coincide with the mirror image of another

receptor (Fig. 2). The pseudo-run 8–8* is obtained by

adding the concentrations observed at the common

receptors; the mirror symmetric run is indicated by a

star (*).

Finally, a next pseudo-run 11–8–8* is prepared by

combining the runs 11, 8 and mirror symmetric run 8*

to simulate a triple-point release. For the pseudo run

11–8–8*, wind direction is taken in the direction of

112.5� to follow the mirror symmetry of runs 8 and 8*,

and wind speed is averaged between runs 8 and 11.

4. Numerical Computations

The numerical computations are performed for

retrieval of both single as well as multiple-point

emissions. In both the cases, the computations are

performed for (1) the complete set of concentrations

observed or pseudo generated and (2) the analogous

set of synthetic measurements generated using the

dispersion model given in SHARAN et al. (1996). A

primary step of the inversion algorithm is the gen-

eration of adjoint functions. The adjoint functions are

generated from the dispersion model (SHARAN et al.,

1996) in the backward mode assuming unit release at

the receptor’s locations and rotating the wind direc-

tion by 180� (SHARAN et al., 2009). The

implementation of the inversion algorithm requires a

discretization of the domain. For this purpose, a

square domain of size 995 m 9 995 m is chosen and

Figure 2
Layout of the site for IIT Delhi tracer diffusion experiment (a). The samplers 1–20, 120, 130 and 150 are essentially arranged on circles of

radius 50, 100 and 150 m, with regular angular spacing of 45�. In case of shifted source runs, source at the centre S and receptor 15 are

interchanged with each other corresponding to positions S0 and 150 (adopted from SHARAN et al. 2009). b Representation of pseudo-runs 11–13

and 11–8 obtained by combining the run 11 with central source at S and runs 13 and 8 with shifted source at S’. Within each ellipse the right

and left italic numbers indicate a sampler respectively in run 11 and 13. c Schematic similar to b for pseudo-run 8–8* in which run 8 is

combined with itself after a mirror symmetry sending the source to M (adopted from ISSARTEL et al. 2011)
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discretized into 199 9 199 grid points. Each mesh is

a square of 5 m 9 5 m. Notice that no more than one

receptor or source lies in the same grid. The domain

and grid discretization remain same for the single as

well as multiple-point emissions. The centre of the

arcs is at the grid point (100, 100). Depending on the

run, source is either at (100, 100) or (86, 114). Note

that adjoint function is singular at the position of the

receptor. In order to resolve this singularity, the mesh

containing the receptor and the neighboring meshes

are further subdivided into 99 9 99 grid points and

an average value of the adjoint function is computed

for the receptor’s mesh. The steps for the inversion

algorithm for single as well as multiple-point emis-

sions are discussed in Sect. 2. The computations are

performed on an Intel� CoreTM 2 Duo E8135 @

2.66 GHz desktop machine.

5. Results and Discussion

Source estimation has been carried out for single as

well as two- and three-point emissions using two types

of data: (1) synthetic and (2) real. Synthetic data for

each run is the concentration at the receptors generated

from the dispersion model, described as noise free and

minimizes the errors associated with the model.

Therefore, it is used to verify the mathematical con-

sistency of the inversion algorithm. However, real data

corresponds to concentration measurements sampled

during the experiments. Accordingly, the results are

presented in the following subsections.

5.1. Single-Point Emission

The single-point source reconstruction is per-

formed with the seven runs (1, 6, 7, 8, 11, 12 and 13)

of IIT-Delhi diffusion experiment. With the synthetic

data, the location of the source in the runs (1, 6, 7 and

11) having the source at the centre of the monitoring

network is retrieved exactly at the grid point (100, 100)

whereas in the runs (8, 12 and 13) with shifted release,

the retrieved location (86, 114) coincides with that

prescribed (Table 1). The intensity in the runs (1, 8, 12

and 13) is retrieved approximately 2,999.8 lg/s in lieu

of 3,000 lg/s. Similarly an approximate 4,999.7 lg/s

intensity is retrieved in place of prescribed 5,000 lg/s

in runs (6, 7 and 11). The exact retrieval of the source

parameters with the synthetic data provides a mathe-

matical consistency of the technique used here.

With real data, source is reconstructed in all the

runs with an average error of 20.5 m from the

original release locations (Table 1). The location is

estimated in run six at the grid point (100, 100) with a

negligible error and at point (92, 102) in run seven

with a maximum error of 41.2 m. The intensity of the

source is estimated within a factor two in all the runs

(Table 1).

5.2. Errors in the Retrieval

With the real data, the errors in the retrieval are

described in terms of the departure of the real

concentration measurements from their ideal syn-

thetic values. This departure is traditionally called

Table 1

Reconstruction results for single-point release

Run 1 6 7 8 11 12 13

Experimental release

Location (100, 100) (100, 100) (100, 100) (86, 114) (100, 100) (86, 114) (86, 114)

Intensity 5,000 3,000 3,000 5,000 3,000 5,000 5,000

Least square estimate

Location (99, 103) (100, 100) (92, 102) (91, 111) (97, 103) (82, 117) (88, 115)

Intensity 9,529 5,967 4,928 4,155 5,279 9,544 3,664

Error

EL 15.8 0 41.2 29.2 21.2 25 11.2

he
0 17.3 25.2 20 4.7 13.7 10.1 6.1

The experimental point releases (first and second rows) with least square estimates (third and fourth rows) are indicated in terms of location in

grid and intensity in lg/s. On the fifth and sixth rows, inversion error is presented in terms of departure of retrieved location from experimental

release location grid coordinate (represented as EL in meters) and the angular deviation (he
0 in degrees)
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measurement errors (COHN, 1997) though it is due to

not only instrumental inaccuracy but also to lack of

representativity of the dispersion model. For the ideal

measurements, the noise free measurement vector

always lies along or parallel to the adjoint vector

(Eq. 1). However, for a noisy measurement, the

equality relation (Eq. 1) will not be true. Thus,

the measurement vector will lie along an angle to the

adjoint vector. This angular deviation indicates the

error incurred in the retrieval of intensity.

As explained in Sect. 2, the location of the source

is estimated from the observed noisy measurements

lr at a location xe such that S xeð Þ ¼
lT

r a xeð Þð Þ2
aT xeð Þa xeð Þ is

maximum. This is equivalent to maximize
S xeð Þ
lrk k

2 ¼

lr

lrk k

� �T
a xeð Þ
a xeð Þk k

� �2

; where pk k2¼ pTp for any vector p.

Since vectors
lr

lrk k
and

a xeð Þ
a xeð Þk k both have norm 1, the

estimated location xe of the release is the one such

that the vector
a xeð Þ
a xeð Þk k minimizes the angular distance

he ¼ arccos
lr

lrk k

� �T
a xeð Þ
a xeð Þk k

� 	
from the observations

lr. Thus, this angular departure he provides an

indication of the intensity of the noise contained in

the data. If there is no noise in the data, i.e.

lr = l = q0a(x0), one would obtain xe = x0 with

he = 0. This is verified in the computations with the

synthetic data, where the estimates of intensities are

almost exactly same to those prescribed.

Similarly, error estimates are computed for real

data in all the runs (Table 1) and it is observed that

the adjoint vector does not coincide with the

measurement vector exactly and depart by an average

angular distance of 13.8� in all the runs. A relatively

higher value of angular departure he indicates a

relatively large deviation in the estimated intensity

from that prescribed.

5.3. Two and Three Simultaneous Point Sources

The proposed algorithm is used for the identifi-

cation of multiple-point sources with the pseudo-real

as well as corresponding model generated synthetic

data for (1) two unknown sources (runs 11–13, 11–8

and 8–8*) and (2) three unknown sources (run 11–8–

8*). With the synthetic data, the grid points [(100,

100), (86, 114)] are estimated as two point release

locations in case of runs (11–13 and 11–8) and grid

points [(86, 114), (80, 100)] in run 8–8* which are

exactly same as prescribed. Similarly, in run 11–8–

8*, the points [(100, 100), (86, 114), (80, 100)] are

estimated as three source locations exactly similar to

those prescribed. In all these four runs, the strength at

each location is estimated same as prescribed within a

maximum round-off error of 0.02%.

With the pseudo-real data, in average, the releases

are retrieved 17 m away from their true locations

(Table 2). In two-point sources (runs 11–13, 11–8

and 8–8*), the locations are retrieved at a minimum

error of 5 m in run 11–13 and maximum 40 m in run

8–8* from their original release locations. In runs

(11–13 and 11–8), the corresponding intensities are

retrieved within a factor of 2. However, in run 8–8*,

the error in the retrieval is relatively large and

increases up to a factor 3.8. Similarly, in three-point

sources (run 11–8–8*), all the three source locations

Table 2

Reconstruction results for two and three point simultaneous releases with pseudo-real data

Pseudo run 11–13 SS0 11–8 SS0 8–8* SM 11–8–8* SS0M

Experimental release

Location (100, 100) (86, 114) (100, 100) (86, 114) (86, 114) (80, 100) (100, 100) (86, 114) (80, 100)

Intensity 3,000 5,000 3,000 5,000 5,000 5,000 3,000 5,000 5,000

Least square estimate

Location (103,104) (88,116) (99,102) (86,115) (78,114) (80,101) (97,101) (82,115) (82,100)

Intensity 3,403 4,357 3,970 7,115 7,449 18,914 4,715 9,623 5,159

Error

EL 25 14 11 5 40 5 16 21 10

Notations and legends are same as in Table 1
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are retrieved within 21 m and intensities are retrieved

within a factor of 2. A slight discrepancy may be

explained in view of the facts that (1) in average, the

real runs contain 19 samplers but only 16 can be

combined in the pseudo-runs and (2) the pseudo-runs

are not natural runs and the averaging of the winds
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from two real runs is not fully consistent with the addition

of the corresponding concentration measurements.

In case of single-point emission, an expression is

obtained to quantify the error incurred in the retrieval

of intensity in terms of angular departure of the

measurement vector from the adjoint vector. How-

ever, such an expression is not feasible to quantify the

errors in case of more than one-point sources. In

addition, it is difficult with the real data to quantify

the measurement errors in which representativity

term is likely to be dominant.

In the present study, the identification of two-

point and three-point sources includes estimation of

six and nine unknown parameters respectively. Since

intensities are estimated as a function of locations of

the sources, the degree of freedom of source identi-

fication of the two- and three-point simultaneous

releases reduces to four and six respectively. Even in

this case, the visualization of all these estimated

parameters for two- as well as three-point sources is

not possible collectively on a paper or in two-

dimension. To overcome this, a representation is

drawn in Fig. 3 showing the variation of the function

J in case of three-point sources (run 11–8–8*) with

respect to each estimated parameters keeping the

other source parameters constant. It clearly shows the

occurrence of global minimum of J at the estimated

parameters.

5.4. Reduction in Computational Time

The general methodology for minimization of

function J for a number of simultaneous point

emissions is based on visiting all the doublets or

triplets or m-set of grid points in the domain for two-,

three- and m-point sources, respectively. This

approach is time consuming as the number of pairs

N N � 1ð Þ=2 � 7:8 � 108 (N = total number of grid

points in the domain) for two-point sources or triplets

N N � 1ð Þ N � 2ð Þ=6 � 1013 for three-point sources or

m-set N N � 1ð Þ. . . N � mþ 1ð Þ= m!ð Þ � 104mþ1 for

m-point sources involved in the optimization are

very large. The computational time taken in the

estimation of source parameters for simultaneous

three-point releases is approximately 90 h. This is

expected to increase further with the increase in the

number of sources.

In order to minimize the computational time, an

alternative approach is adopted here. In this

approach, the source parameters are estimated in

two steps: (1) as a first step, a gross estimation of the

source parameters is carried out by visiting one point

out of five grid points in each direction using the

algorithm described in Sect. 2 and then (2) these

estimated set of source locations are refined by using

the same retrieval algorithm for all the grossly

estimated locations in their 11-grid point neighbor-

hood. This reduces roughly the visit of number of

pairs by a factor of 54, number of triplets by 56and

m-set by 52m for two-, three- and m-sources respec-

tively. This approach reduces the computational time

to 2 min for two-point and 12 min for three-point

simultaneous sources. However, both the generalized

and modified approaches lead to the similar results.

5.5. Noisy Measurements

Generally, the concentration measurements are

not available for the multiple-point emissions for

evaluating the inversion approach for the retrieval of

more than one-point emission sources. In such a

situation, researchers (YEE, 2008; LUSHI and STOCKIE,

2010) have generated the concentration measure-

ments for evaluation purposes by adding a proportion

of noise in the model generated concentrations. The

numerical simulations with such noisy measurements

are also important for understanding the effect of

possible errors in concentration measurements on

emission estimates (LUSHI and STOCKIE, 2010).

The model generated concentration measurements

are scaled by a normally distributed random number

Figure 3
a The variation of function J along x-axis in three-point sources

(run 11–8–8*) for (1) fixed y-coordinate (grid point 100) of source-

1 and other two fixed sources at grid point (100,100) (source-2) and

(86, 114) (source-3) (2) fixed y-coordinate (100) of source-2 and

other two fixed sources at grid point (80,100) (source-1) and (86,

114) (source-3) and (3) fixed y-coordinate (114) of source-3 and

other two fixed sources at grid point (80,100) (source-1) and (100,

100) (source-2). b The variation of function J along x-axis in three-

point sources (run 11–8–8*) for (1) fixed x-coordinate (grid point

80) of source-1 and other two fixed sources at grid point (100,100)

(source-2) and (86, 114) (source-3), (2) fixed x-coordinate (100)

of source-2 and other two fixed sources at grid point (80,100)

(source-1) and (86, 114) (source-3) and (3) fixed x-coordinate

(86) of source-3 and other two fixed sources at grid point (80,100)

(source-1) and (100, 100) (source-2)

b
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chosen from the interval (1-a, 1 ? a) for values of

a = 0.1, 0.2 and 0.3. These values of a correspond to

10, 20 and 30% noise. The error in the location as

well as in the intensity is found to increase as the

percentage of noise increases in the concentration

measurements (Table 3). In all four pseudo-runs, the

maximum error in the estimation of source location

increases up to 16 m from the original release

location and departure in the retrieval of intensities

increases up to 30% in comparison to the prescribed

with the increase in random noise (10–30%).

6. Advantages and Limitations

The present study is focused for the identification

of multiple-point surface releases in steady state

conditions using a least square approach. The algo-

rithm is described within a general framework for the

retrieval of m-point emission sources. This is applied

(1) with the real data for single-point source and (2)

with pseudo-real corresponding to two and three-

point emission sources. The source parameters are

retrieved almost exactly with the model generated

synthetic data. These parameters are also retrieved

with real and pseudo-real data. In the following, we

discuss the advantages/limitations with the approach

used here for the identification of sources.

6.1. Advantages

The proposed inversion algorithm is based on simple

concepts of least square theory. This algorithm is

advantageous in comparison to other methods as:

1. Minimization of the sum of the squares of

residuals (Eq. 3) leads to a system of non-linear

algebraic equations which needs an iterative

algorithm to determine an approximate solution.

The existing algorithms have limited applicability

as they require the initial value of the parameters

to begin the iterative process. However, such

information is, in fact, not needed in the proposed

algorithm as in reality there is no idea from where

plume has originated.

2. The set of locations for which system of equations

becomes ill-posed or ill-conditioned are discarded

in a natural way and computations are performed

only for those set of locations where a local

minimum of the function J exists.

3. Source intensities are expressed in terms of their

locations reducing the degree of freedom of

unknowns to be estimated.

4. The proposed algorithm allows visiting a rela-

tively less number of set of grid points in order to

search for the location of the sources, resulting in

a significant reduction in the computational time.

6.2. Assumptions/Limitations

The proposed inversion algorithm is subject to the

following assumptions: (1) emissions and the con-

centration measurements are related linearly, (2) the

observation error covariance matrix is taken as an

identity matrix, while in reality observations may

have small order of covariance, (3) the domain is

discretized into grids in such a way that no more than

one source or receptor lies in the same grid and (4)

the dispersion model used here describes perfect

relationship between the emission and the corre-

sponding measurements implying the model

representativity errors, if any, are negligibly small.

However, in reality, models can not be exactly

representative of observations in all the atmospheric

conditions. The uncertainty in meteorological vari-

ables influences the representation of the

concentration measurements by a dispersion model

which eventually affects the source retrieval.

Recently, we are able to retrieve the source reason-

ably well (SHARAN et al., 2009) with IIT diffusion

data in convective conditions in spite of a sparse

monitoring network whereas the sources are severely

under-estimated with the Idaho low wind diffusion

experiment in stable conditions even with a dense

monitoring network because of the model represen-

tativity errors arising due to large variability in the

wind direction (SHARAN et al., 2011). This aspect is

being investigated further.

The algorithm is limited in its applicability as (1)

the number of sources is known a priori, (2) adjoint

functions are not assigned any weights according to

the visibility of the region from the monitoring

network, however, in a recent study, an improvement
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in this direction is proposed by ISSARTEL et al. (2007)

by renormalizing the domain with the weights

according to available visibility from the direction

of monitoring network, (3) computational complexity

of the method increases in proportion to the number

of unknown sources and number of grids in the

computational domain and (4) the quantification of

errors individually related to each source in the

multiple-point source identification is not feasible at

this moment, however, a combined estimate of error

is reflected by the value of the function J.

6.3. Data Limitation

The proposed algorithm for the identification of

sources is evaluated with the (1) model generated

synthetic data, (2) noisy data obtained from synthetic

measurements after adding a random noise and (3)

real data in single-point emission and pseudo real

data for two and three point emission sources. The

data from IIT diffusion experiment used here corre-

sponds to primarily the single-point emission in

convective conditions. Further, the monitoring net-

work is very sparse in this data set. In general, the

diffusion data is very limited even for single-point

emission sources. Existing studies on the retrieval of

multiple-point emissions utilize the noisy synthetic

data. Recently, an attempt has been made in the

literature (LUSHI and STOCKIE, 2010) to design an

experiment with four-point emission sources. Thus,

the technique proposed here needs to be evaluated

further with the availability of the concentration

measurements not only with the single-point emis-

sions in different atmospheric stability conditions but

as well as from the simultaneous releases from more

than one-point emission sources.

7. Conclusions

In this paper, we have presented an inversion

approach based on least square technique for single-

and multiple-point source estimation from limited

number of atmospheric concentration measurements.

The source estimation method is based on two-step

minimization of sum of square of residuals between

the receptor measured and the model predicted

concentrations. The novelty of our approach stems

from its simplicity and advantages in comparison to

the other classical optimization methods.

The proposed algorithm has been successfully

applied to identify the single as well as two and three

simultaneous point emissions from synthetic, noisy

and with real or pseudo-real concentration measure-

ments from IIT diffusion experiment. With the

synthetic measurements, release locations and inten-

sities are retrieved exactly in all the runs for single as

well as two and three simultaneous point releases. For

the noisy measurements, it is observed that the

retrieval error grows significantly as the noise in the

concentration measurement increases. The retrieval

of source is presented with noisy measurements

obtained by adding 10, 20 and 30% random noise to

the model generated concentrations.

In case of single-point release with real data, the

source is identified with an average error of 20.5 m

from the original source location. The corresponding

intensity is retrieved within a factor of two in all the

runs. An error estimate for the departure of intensities

is also given in terms of angular departure of mea-

surement vector from the corresponding model

generated vector.

With the pseudo-real measurements, two and

three point release locations are retrieved with an

average error of 17 m and intensities are estimated on

an average within a factor of two. The incurred errors

in the retrieval are correlated with the errors involved

in the observations and dispersion model. In addition,

an alternative simplified approach is proposed in

order to reduce the computational time required in the

estimation of source parameters.
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