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Abstract—Wettability and retention capacity of leaf surfaces

are parameters that contribute to interception of rain, fog or dew by

forest canopies. Contrary to common expectation, hydrophobicity

or wettability of a leaf do not dictate the stickiness of drops to

leaves. Crucial for the adhesion of drops is the contact angle hys-

teresis, the difference between leading edge contact angle and

trailing edge contact angle for a running drop. Other parameters

that are dependent on the static contact angle are the maximum

volume of drops that can stick to the surface and the persistence of

an adhering drop with respect to evaporation. Adaption of contact

angle and contact angle hysteresis allow one to pursue different

strategies of drop control, for example efficient water shedding or

maximum retention of adhering water. Efficient water shedding is

achieved if contact angle hysteresis is low. Retention of (isolated)

large drops requires a high contact angle hysteresis and a static

contact angle of 65.5�, while maximum retention by optimum

spacing of drops necessitates a high contact angle hysteresis and a

static contact angle of 111.6�. Maximum persistence with respect to

evaporation is obtained if the static contact angle amounts to 77.5�,

together with a high contact angle hysteresis. It is to be expected

that knowledge of these parameters can contribute to the capacity

of a forest to intercept water.

Key words: Wettability, canopy, contact angle, contact angle

hysteresis, hydrology, interception.

1. Introduction

A significant amount of water that precipitates

within canopies as rain, fog or dew is intercepted by

the forest canopy. Interception comprises various

processes that occur after the water has come into

contact with plant surfaces: evaporation of water

retained inside the canopy (interception loss), down

drip off the canopy (drip) and down flow along the

stems (stemflow). Canopy interception is a process of

considerable importance for the hydrological cycle

since annual interception losses in forests can amount

to more than a quarter of total rainfall (HÖRMAN et al.

1996; DINGMAN 2002). Determination of hydrological

input by fog is partially very difficult due to the exact

determination of interception. The actual rate of

interception loss is dependent on various factors, such

as forest structure, fog or rain intensity and meteo-

rological parameters. Precise knowledge on

interception losses are of substantial importance for

predicting and modeling hydrological processes, such

as effects of woodland, climate or land cover on

water resources (GASH 1979; CALDER 1990; ABOAL

et al. 1999; MUZYLO et al. 2009).

The maximum amount of water that can be tem-

porarily held by a canopy is mainly distributed

between bark and leaves (HERWITZ 1985). For the

leaves, the amount of stored water is a function of

leaf area index (LAI), but with substantial interspe-

cific differences (ASTON 1979). Besides leaf area,

wettability of the leaves is expected to be important.

Wettability describes the behaviour of water after

coming in contact with a surface. Water repellent

surfaces are hydrophobic, and droplets upon these

surfaces develop spherical forms with contact angles

of [90� (CALIES and QUÉRÉ 2005). On hydrophilic

surfaces, droplets attain contact angles of \90�.

Complete wetting leads to the spreading of drops into

films. Water repellency differs substantially between

upper and lower sides of leaves, between species and

between forest types (HOLDER 2007).

Wettability and the resulting contact angle also

influences the gliding angle, that is, the angle of

inclination of an object that leads to the rolling off of

drops lying upon an object or being attached to the
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underside of the object. Wettability of a leaf depends

on the chemical nature of the leaf waxes, as well as

on structures of the leaf surface, including papillae

and trichomes (BARTHLOTT and NEINHUIS 1997;

SHIRTCLIFFE et al. 2009). It is intuitively expected that

the more water repellent a surface is, the lower is the

gliding angle. This would mean that a low inclination

would be sufficient to remove drops from the object,

and species with water repellent leaves would,

therefore, show a lower storage capacity for rain

interception than a species with more hydrophilic

leaves.

However, the gliding angle is not only dependent

on wettability. Rather, contact angle hysteresis gov-

erns the gliding behavior of droplets on a surface

(QUÉRÉ 2008), that is, the difference between the

developing contact angle when a droplet moves for-

wards (advancing contact angle) or backwards

(receding contact angle). For example, petals can be

very sticky with respect to droplet behavior despite

their low wettability (FENG et al. 2008). In this con-

tribution we consider the interrelationship between

wettability and contact angle hysteresis and gliding

behaviour of drops attached to surfaces. In particular,

we will address the following questions: which

contact angle leads to (1) a maximum storage

capacity of a surface with respect to sitting or hang-

ing drops, and (2) a maximum persistence of drops

with respect to evaporation (under a given humidity

and temperature.)

2. Basic Properties of Droplets Attached to a Plane

In this section we derive volumes and areas of

droplets attached to a horizontal or inclined plane and

the surface and gravitational forces acting on them.

2.1. Droplet Hanging Down from a Horizontal Plane

We consider a droplet hanging down from a

horizontal plane under its own weight (Fig. 1).

Assuming that the droplet is shaped as a segment of

a sphere of radius R and that the contact angle formed

between droplet and substrate is h the volume of the

spherical segment amounts to

V ¼ pR3

3
ð1� cos hÞ2ð2þ cos hÞ

¼ ps3

3

ð1� cos hÞ2ð2þ cos hÞ
sin3 h

ð1Þ

The second version is a result of the substitution

s ¼ R sin h; where s denotes the radius of the circle

which forms the contact line where water, air and the

solid of the plane meet. The surface area of the

droplet is the sum M ? S, where

S ¼ pR2 sin2 h ¼ ps2 ð2Þ

M ¼ 2pR2ð1� cos hÞ ¼ 2ps2

1þ cos h
ð3Þ

S denotes the attachment area between drop and plane

and M denotes that part of the droplet surface which

is in contact with air.

As long as the droplet is pending the force due to

its weight is compensated by the force which

originates from the surface tension of the water/air

interface at the contact line (see Fig. 1). The infin-

itesimal force arising from an infinitesimal element of

this circle can be decomposed into a horizontally and

a vertically oriented component. Integrating along the

contact line (i.e. the circle) the integral of the

horizontal force component vanishes because of the

axial symmetry of the situation while the vertical

component of the tension force adds up to

Fr ¼ 2prs sin h ð4Þ

where r denotes the surface tension between water

and air. For a droplet with maximum volume Fr

should be balanced by the gravitational force

Fg ¼ qgV ð5Þ

caused by the droplet’s weight. Exploiting expression

(1) and then solving Fg = Fr for the radius sm of the

contact circle corresponding to a maximum volume

droplet we arrive at

sm ¼
lð1þ cos hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p ð6Þ

The quantity

l :¼
ffiffiffiffiffiffi

6r
qg

s

� 6:60� 10�3 m ð7Þ
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depends merely on the natural constants surface

tension (between air and water) r & 72 9 10-3 N/

m, the gravitational acceleration g& 10 m/s2 and the

density of water q& 103 kg/m. Thus, it represents a

characteristic length of the problem. (In the literature

the expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r=ðqgÞ
p

is known as the capillary

constant.) From s ¼ R sin h and (6) we find

Rm ¼
lð1þ cos hÞ

sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p ð8Þ

and (upon insertion of (6) into expression (1)) we

obtain the maximum volume Vm of the droplet:

Vm ¼
pl3

3

ð1þ cos hÞ sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p ð9Þ

Notice that although sm(h), Rm(h) and Vm(h)

represent a droplet which is—due to its weight—on

the verge of falling down these functions depend still

on the contact angle h (see Fig. 2). Hence, we may

calculate the contact angle(s) where they attain their

maxima. Interestingly, the maxima of sm(h) and

Vm(h) do not coincide. We, rather, find:

hsm
¼ 0� : smðhsm

Þ ¼ 2
ffiffiffi

3
p

3
l � 7:62� 10�3 m

ð10Þ

hVm
¼ arccosð

ffiffiffi

2
p
� 1Þ � 65:5� :

smðhVm
Þ ¼

ffiffiffi

2
p ffiffiffi

2
p
� 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

2
p
þ 1

q� �

l

� 6:01� 10�3 m

ð11Þ

VmðhVm
Þ ¼ 2pð

ffiffiffi

2
p
� 1Þ

3
l3 � 250� 10�9 m3 ð12Þ

2.2. Droplet and Inclined Plane

In conjunction with horizontally oriented planes,

only hanging droplets are interesting, because the

vertically directed force of gravitation has no hori-

zontal component which could push around droplets

attached to the upper side of the plane. If the plane is

inclined with respect to the horizontal the situation

changes. Hence, we consider now both hanging and

sitting droplets.

2.2.1 Forces Acting on a Hanging Droplet,

Conditions for Detachment and Downslide

Consider a droplet of given volume V hanging down

from a plane which is inclined against the horizontal

by an angle a (Fig. 3). If a is increased, the shape of

the droplet deviates—at first slightly, then increas-

ingly—from being a segment of a sphere. The droplet

as a whole, however, does not move. Eventually—

when a critical angle of inclination has been

reached—the droplet either starts to slide down or it

detaches from the plane and falls down. Similarly, as

in Sect. 2.2.1 (Eq. 6), we would like to find a relation

between the ‘‘system defining’’ variables like s, h and

a which characterise the onset of slide or detachment.

Experimentally, it has been found that at the

critical inclination the contact angle h assumes along

the ‘‘upstream’’ segment of the contact circle the

receding value hr. At the ‘‘downstream’’ segment of

the contact circle, however, the advancing contact

angle ha is realised.

sθ

R

(a)

dFσ dFσ

Fg

θ
θθ

(b)

Figure 1
a Droplet hanging down from a horizontal plane. b Forces acting on the droplet. Fg denotes the force of gravity, Fr the force due to the surface

tension of the water/air interface at the contact line. Notice that the vectors dFr represent infinitesimal forces contributed by two infinitesimal

elements of the contact line. Because these are diametrically located, the horizontal component of Fr vanishes if integrated around the circular

contact line. The vertical component of Fr may surmount Fg, in which case the droplet remains attached to the horizontal plane. For Fr \ Fg

the droplet falls down
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Decomposition of Fg and Fr into components

parallel and normal to the inclined plane (Fig. 3)

leads to two conditions:

(a) Downslide of the droplet sets in when the

tangential component of gravity surmounts the

tangential component of the surface tension

Fg;t � qgV sin a� krwðcos hr � cos haÞ � Fr;t ð13Þ

w denotes denotes the maximum halfwidth of the

droplet. The detailed theory of a sliding droplet is

rather involved (see EXTRAND and KUMAGAI 1995;

PETRISSANS and CSCAPO 2003; PODGORSKI et al. 2001;

DIMITRAKOPOULOS and HIGDON 1998, 1999; GLASNER

2007). Most authors agree on the structure of Eq. 13

but disagree on the value of the numerical constant k

to which various values in the range k = p/4…2 have

been assigned. Moreover, k depends also on the shape

of the droplet.

(b) Detachment of the droplet from the plane occurs

if the normal gravity component is greater than

the normal component of the surface tension

Fg;n � qgV cos a� p
2

krwðsin hr þ sin haÞ � Fr;n

ð14Þ

As they stand, Eqs. 13 and 14 are of limited use

because they contain the droplet volume V which is

difficult to obtain experimentally. If, however, the

shape of the droplet deviates not too much from a

segment of a sphere, the contact line is a circle with

radius s and we can use Eq. 1 to express V in terms of

s and the contact angle h which is in this context

defined as the arithmetic mean of the receding and the

advancing contact angle:

s m
  [

m
m

]

2

0
906030

θ [°]
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4

180150120

6

8(a)

V
m

  [
m

m
3 ]

0
906030

θ [°]
0 180150120

150

50

100

200

250
(b)

Figure 2
a Contact circle radius sm(h) related to the maximum volume of a droplet as a function of contact angle h. The maximum of sm(h) is located at

hsm
= 0� (see (10)). b Volume Vm(h) related to the maximum volume of a droplet as a function of contact angle h. The maximum of Vm(h) is

located at hVm
& 65.5� (see (12))

θa

α

θr

(a)

Fg

dFσ

dFσ

dFσ,t

dFσ,t

dFσ,n

dFσ,n

Fg,n

Fg,t

θr

θa

α
α

θr
θa

θrθ

(b)

Figure 3
a Droplet hanging down from a plane which is inclined against the

horizontal by an angle a. hr and ha denote the receding and

advancing contact angle, respectively. b Forces acting on a droplet

hanging down from a plane which is inclined against the horizontal

by an angle a. hr and ha denote the receding and advancing contact

angle, respectively. Fg denotes the force of gravity, Fr the force

due to the surface tension of the water/air interface at the contact

line. Subscripts n and t denote normal and tangential components

with respect to the plane. Because the infinitesimal force vectors

dFr are oriented tangentially to the water/air interface, the

inequality hr = ha implies that the magnitude of their (infinites-

imal) components parallel and normal to the plane vary along the

contact line
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h ¼ ha þ hr

2
ð15Þ

Moreover, if the droplet is quasi-spherically

shaped, we may conclude w = s and k = 2 (see

PETRISSANS and CSCAPO 2003), which we shall assume

in the sequel. Then, insertion of (1) into (13) and (14)

allows us to solve these expressions for the contact

circle radii s at which the equals signs in (13) and

(14) are realised. Employing the definition

v :¼ ha � hr

2
ð16Þ

and the relations

cos x� cos y ¼ �2 sin
xþ y

2
sin

x� y

2

sin x� sin y ¼ 2 sin
xþ y

2
cos

x� y

2

ð17Þ

conditions (a) and (b) can be stated as follows:

(a) Downslide sets in if s [ sr, where

sr :¼ lð1þ cos hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

p
sin v
sin a

r

ð18Þ

(b) Detachment occurs if s [ sg, where

sg :¼ lð1þ cos hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p

ffiffiffiffiffiffiffiffiffiffi

cos v
cos a

r

ð19Þ

Meaningful ranges of h and v are: 0 B h B p and

0 B v B p/2. The latter is equivalent to 0 B ha -

hr B p.

Whether a droplet of contact radius s detaches

itself from or slides down along the inclined plane

depends on the relation between s, sr and sg: for

s [ sg [ sr, sliding sets in, for s [ sr [ sg, however,

detachment occurs.

The relation between sr and sg reduces via (18)

and (19) to a relation between a and v:

sr\sg () tan a[
2

p
tan v

ðdownslide if s [ sgÞ
ð20Þ

sr [ sg () tan a\
2

p
tan v

ðfree fall if s [ srÞ
ð21Þ

2.2.2 Critical Volume of a Hanging Droplet, Contact

Angle and Gliding Angle

Combination of (18) and (19) with (1) results in an

expression for the critical droplet volume:

Vc :¼ pl3

3

ð1þ cos hÞ sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

sin v
sin a

	 
3
q

if tan a[ 2
p tan v ðdownslide if V [ VcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

cos v
cos a

	 
3
q

if tan a\ 2
p tan v ðfree fall if V [ VcÞ

8

>

<

>

:

ð22Þ

The condition that a pending droplet starts to

move (either by downslide or by detachment) can be

stated as V [ Vc. Critical droplet volumes Vc(a) for a

few combinations of h and v are depicted in Fig. 4.

This figure illustrates also that the curves Vc(a)

exhibit maxima at am ¼ arctan 2
p tan v
	 


:

Notice, that the expression in braces equals the

volume Vm (defined in (9)) which emerged in the

context of droplets hanging down from a horizontal

plane. In order to clarify the role of v with respect to

droplet motion we divide the equation V = Vc, which

separates immobile (V \ Vc) and falling or sliding

(V [ Vc) droplets, by Vm (see (9)). It then becomes

feasible to reformulate the conditions for droplet (im-

)mobility in terms of relations between the inclination

angle a and the half-difference of advancing and

receding contact angle v: depending on the value of

V/Vm, the pair of curves

a ¼
arcsin 2

p
Vm

V

	 

2
3sin v

� �

if tan a [ 2
p tan v

arccos Vm

V

	 

2
3cos v

� �

if tan a\ 2
p tan v

8

<

:

ð23Þ

divides the (v, a)-plane into either (a) three sections,

if V is in the interval 0\V �ð2=pÞ3=2Vm � 0:5Vm

(Fig. 5a), or (b) two sections, if ð2=pÞ3=2Vm\V\Vm

applies (Fig. 5b). (v, a)-pairs lying between the two

curves indicate that a droplet of volume V remains

immobile. Droplets (of this same volume) charac-

terised by a (v, a)-pair above/left of the upper curve

slide down, droplets below/right of the lower curve

detach from the plane and fall down.

The important conclusion is, that droplets of a given

volume that fall into category (a) can be made to adhere

Vol. 169, (2012) Leaf Surface Wettability 839



to an arbitrarily inclined plane if v can be adjusted

appropriately, whereas droplets belonging to category

(b) cannot be kept immobile for every inclination

0 \ a\p/2, even if v can be arbitrarily chosen.

It is thus justified to identify the upper expression

of (23) with the gliding angle c (the angle of

inclination of an object that leads to the rolling off

of drops lying upon the object) and its lower

counterpart with a ‘‘detachment angle’’ d (the angle

of inclination of an object that leads to the detach-

ment of drops from the object). Upon insertion of (9)

expression (23) transforms to

0
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0 906030

α [°]

Vc

(60°,20°)

(120°,20°)

(90°,20°)
(30°,20°)

(a)
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150

200

250

0 906030

α [°]

Vc

(60°,10°)

(60°,30°)

(60°,20°)

(b)

Figure 4
Critical volume Vc of a hanging droplet (solid lines) and of a sitting droplet (broken lines) as a function of the inclination angle a. Droplets

characterised by (V, a)-pairs lying below a curve (V denotes the volume of the droplet) remain immobile, whereas droplets characterised by a

(V, a)-pair above this curve either detach from the leaf and fall down (curve segments to the left of the cusps) or slide down while keeping

contact with the inclined leaf (curve segments to the right of the cusps). a The different curves are generated by insertion of the values

(h, v) = (60�, 20�), (90�, 20�), (30�, 20�) and (120�, 20�) (from top to bottom) into expression (22). b The different curves are generated by

insertion of the values (h, v) = (60�, 30�), (60�, 20�) and (60�, 10�) (from top to bottom) into expression (22)

906030

χ [°]
0

α 
[°

]
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30

0

α>γ 

α<δ 

γ<α<δ 

γ(
α,
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) 

δ(
α,
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V 1

) 

(a)

906030
χ [°]

0

α 
[°

]
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0

α>γ 

α<δ 
γ<α<δ δ(

α,
χ,

V 2
) 

γ(α
,χ,V 2) 
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Figure 5
Areas of moving (a[ c and a \ d) and immobile (c\ a\ d) droplets hanging from a plane which is inclined against the horizontal by an

angle a. v denotes the half-difference of advancing and receding contact angle. c(a, v, V) and d(a, v, V) denote gliding angle and ‘‘detachment

angle’’ defined in Eqs. 24 and 25. Immobile droplets are related to (v, a)-pairs lying within the tetragon. Droplets characterised by (v, a)-pairs

outside the tetragon either slide down (area denoted a[ c) or detach from the plane and fall down (area denoted a\ d). a For V1 ¼
0.14Vm\ð2=pÞ3=2Vm the curves c(a, v, V1) and d(a, v, V1) form a ‘‘tetragon of immobility’’ which covers the complete interval 0 \ a\p/2.

Hence, by adjusting v appropriately, a droplet of this volume can be made to adhere to an arbitrarily inclined plane. b For V2 ¼
0.7Vm [ ð2=pÞ3=2Vm the curves c(a, v, V2) and d(a, v, V2) intersect and form a ‘‘triangle of immobility’’ which covers only part of the interval

0 \ a\ p/2. Hence, droplets of this volume cannot be kept immobile for every inclination 0 \ a\p/2, even if v can be arbitrarily chosen.

The broken curve indicates whether a droplet slides down (a[ c) or detaches (a\ d) from the plane

840 W. Konrad et al. Pure Appl. Geophys.



c :¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

9p
l3

V

� �2
3

s

sin2 hsinv
ffiffi

½
p

3	ð1� coshÞ2ð2þ coshÞ

0

@

1

A

ð24Þ

d :¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

9

l3

V

� �2
3

s

sin2 hcosv
ffiffi

½
p

3	ð1� coshÞ2ð2þ coshÞ

0

@

1

A

ð25Þ

where it is implicit that the condition V B Vm should

be fulfilled, if (24) and (25) are applied to hanging

droplets. If so, the condition that a droplets starts to

slide down can be expressed by the statement

a[ c, and the condition that a droplets starts to

detach from the plane is equivalent to a\ d. Droplet

immobility is realised where c\ a\ d applies (cf.

Fig. 5). If d[ c is valid (as in the upper, right part of

Fig. 5b) immobile droplets cannot exist.

2.2.3 Sitting Droplet, Conditions for Downslide

A droplet sitting on the upper surface of an inclined

leaf cannot choose between ‘‘downslide’’ and ‘‘free

fall’’ (although free fall may eventually become an

option, if the droplet reaches the leaf margin). Thus,

the lower line of (22) and ‘‘detachment condition’’

(25) become void. The condition that a droplet starts

to move can be expressed either by the statement

V [ Vc, where

Vc ¼
pl3

3

ð1þ cos hÞ sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

p
sin v
sin a

� �3
s

ð26Þ

or by the condition c[ a (see (24)) which is in this

case valid without the restriction V B Vm.

Similarly, as in the case of the hanging droplet, an

increase of droplet volume brings about a drastic

decrease of the (v, a)-area wherein droplets remain

sessile (Eq. 24; Fig. 6).

The main result of this section concerns the

dependence of the critical volume Vc(h, v, a) on the

contact angle h, the half-difference of advancing and

receding contact angle v and the inclination a of the

plane to which the hanging or sitting droplet is

attached (cf. Figs. 4, 5):

• The critical volume shows a maximum with

respect to h at hVm
¼ arccosð

ffiffiffi

2
p
� 1Þ � 65:5�

(for constant values of v and a, Fig. 2b illus-

trates—apart from a constant factor—the

h-dependence of Vc(h, v, a)).

• For sitting droplets (and for hanging droplets,

provided tan a[ 2
p tan v) the critical volume

increases with increasing v.

• For sitting droplets (and for hanging droplets,

provided tan a[ 2
p tan v) the critical volume

decreases with increasing a.

Consequently, if a leaf surface wants to dispose of

hanging or sitting water droplets for a given leaf

inclination a, it has two options: (1) it may minimise

contact angle hysteresis (i.e. aiming for v ? 0), or (2)

it can try to produce a contact angle which either

much smaller or much larger than the value hVm
&

65.5� for which Vc attains its maximum. Minimising

906030
χ [°]
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Figure 6
Areas of moving and immobile droplets sitting on a plane which is

inclined against the horizontal by an angle a. v denotes the half-

difference of advancing and receding contact angle. The curves

c(a, v, Vk) (k = 1, …, 4) represent the gliding angle defined in

Eq. 24 for the droplet volume Vk. Immobile droplets are related to

(v, a)-pairs lying above/to the left of a curve related to a given

Vk, droplets characterised by (v, a)-pairs below/to the right of the

same curve slide along the plane. For V1 ¼ 0.14Vm\ð2=pÞ3=2Vm

the curve covers the complete interval 0 \ a\ p/2. Hence, by

adjusting v appropriately, a droplet of this volume can be made to

adhere to an arbitrarily inclined plane. The curves c(a, v, Vk)

related to V2 ¼ 0.7Vm [ ð2=pÞ3=2Vm, V3 = Vm and V4 = 8 Vm,

however, cover only part of the interval 0 \ a\p/2. Hence,

droplets of these volumes cannot be kept immobile for every

inclination 0 \ a\p/2, even if v can be arbitrarily chosen
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v is probably the more promising choice, since it

has—according to Fig. 4 or Eq. 22—the effect of

shifting the maxima of the Vc-curves (which exist for

hanging droplets only) to smaller values of a, thereby

enhancing the tendency to detach or slip down of a

droplet.

Contrariwise, if a leaf wants to store much water it

should try to arrange for (1) a large angle v and (2) a

contact angle close to hVm
& 65.5�.

3. Maximum Storage Capacity and Optimum

Spacing of Droplets

Consider a leaf that wants to store as much water

as possible in the form of droplets attached to its

lower or upper surface. Two questions arise: (1)

which geometric pattern should the droplets form,

and, (2) exists an optimum contact angle?

Obviously, the optimum pattern is realised by

partitioning the leaf surface into hexagons and

‘‘inscribing’’ into each of them one droplet. If the

contact angle is in the range 0 B h B p/2 the contact

circle represents the greatest lateral extension of the

droplet, hence the radius of the hexagon’s incircle

should equal s. For p/2 B h B p, however,

R [ s, thus the incircle radius should equal R. The

respective areas amount to

Ahex ¼ 2
ffiffiffi

3
p

s2 if 0� h� p=2

2
ffiffiffi

3
p

R2 if p=2� h� p

�

ð27Þ

In order to calculate the contact angle related to

maximum storage capacity, we form the quantity l :

¼ ½maximum water volume stored in one droplet	=
½leaf area required for one droplet	:

3.1. Horizontal Plane

Recalling that the volume of hanging droplets

exhibits a maximum value Vm which depends,

according to (9), on the contact angle h, we find

from (6), (8), (9) and (27)

lm :¼
lp
ffiffi

3
p

18

� �

sin h
ffiffiffiffiffiffiffiffiffiffiffi

2þcos h
p

1þcos h if 0� h� p=2

lp
ffiffi

3
p

18

� �

sin3 h
ffiffiffiffiffiffiffiffiffiffiffi

2þcos h
p

1þcos h if p=2� h� p

8

<

:

ð28Þ

It appears that lm features a maximum with

respect to h which is located at

hlm
¼ p� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10
ffiffiffiffiffi

10
p

þ 26
p

3

 !

� 111:6�; ð29Þ

i.e. in the hydrophobic range of contact angles.

Insertion into (28) produces

lm;max ¼
lp

ffiffiffiffiffiffiffiffiffiffi

11254
p

2250

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffi

10
p

� 1
� �3 ffiffiffi

5
p
þ

ffiffiffi

2
p� �

r

� 0:49l ð30Þ

Since droplets sitting on a horizontal plane cannot

be detached by gravitation, their volume is—in

principle—unlimited; that is, both s and R can be

increased (almost) indefinitely. Forming l = V/Ahex

from expressions (1) and (27) results in

l¼
s p

ffiffi

3
p

18

� �

ð1�coshÞ2ð2þcoshÞ
sin3 h

if 0�h�p=2

R p
ffiffi

3
p

18

� �

ð1� coshÞ2ð2þ coshÞ if p=2�h�p

8

<

:

ð31Þ

The absence of h-dependent upper limits for s and

R effects the h-dependence of l (compared to lm):

other than (28), expression (31) exhibits no maximum

with respect to h.

3.2. Inclined Plane

Assuming that the shape of droplets attached to an

inclined plane deviates not much from a segment of a

sphere, expression (31) is valid, provided that V \ Vc

(where V and Vc are defined in (1) and (22), respectively).

In the limit V = Vc, expression (27) assumes

upon use of (22) (31) (respectively, (26)), (18) (19)

and (27) the form

lc :¼ Vc

Ahex

¼ lmðhÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

sin v
sin a

	 
3
q

if tan a[ 2
p tan v ðdownslide if V [ VcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

cos v
cos a

	 
3
q

if tan a\ 2
p tan v ðfree fall if V [ VcÞ

8

>

<

>

:

ð32Þ

Notice that the h-dependence of lc is contained

in lm(h) (as given in (28)). Therefore, it shares

with lm(h) the maximum described in (29). As it

stands, expression (32) is valid for hanging droplets
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of critical (maximum) volume Vc. Sitting droplets of

volume Vc are represented by the upper line of (32),

only.

4. Lifetime of a Droplet

In Sect. 3 we explored the maximum storage

capacity of a leaf. In this section we evaluate (1) the

lifetime of a droplet subjected to evaporation, and (2)

whether its lifetime depends on its radius and on the

leaf contact angle.

4.1. Horizontal Plane

A droplet which is attached to a leaf loses water

by evaporation through the droplet’s water/air inter-

face M (see (3)). This particle loss leads to a decrease

of the droplet volume V, according to

� dV

dt
¼ jMM ð33Þ

For what follows, we assume that the evaporation

flux jM is a constant with respect to t and h. Applying

textbook thermodynamics (e.g. REIF 1974;

ATKINS1998), jM can—under these assumptions—be

expressed as

jM ¼ DwvVwv

csat � cwv

b

� �

ð34Þ

Dwv denotes the diffusional constant of water vapour

in air, Vwv the molar volume of water vapour, b is the

thickness of the boundary layer surrounding the leaf.

cwv denotes the atmospheric molar concentration of

water vapour, and csat the saturation value related to it.

Employing the differentiation rule dV(s)/

dt = (dV/ds) (ds/dt) and expressions (1)–(3), Eq. 33

becomes, after a few rearrangements, a simple

differential equation for s(t)

� ds

dt
¼ 2jMð1þ cos hÞ
ð2þ cos hÞ sin h

ð35Þ

with the solution

sðtÞ ¼ s0 �
2jMð1þ cos hÞ
ð2þ cos hÞ sin h

t ð36Þ

where s0 denotes the radius of the contact line at time

t = 0 when evaporation and/or absorption set in

(cf. Fig. 1). The lifetime s of the droplet is obtained

by letting s = 0 in (36) and solving for t,

s ¼ ð2þ cos hÞ sin h
2jMð1þ cos hÞ s0 ð37Þ

If the initial radius of the contact line attains the

value sm (corresponding to the maximum volume

Vm(h) of a hanging droplet), the droplet’s lifetime

becomes

sm ¼
l sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p

2jM

ð38Þ

It is interesting to calculate the contact angle hs

for which the lifetime sm becomes a maximum. It

turns out that it depends neither on l nor on jM. Its

value amounts to

hs :¼ arccos

ffiffiffi

7
p
� 2

3

� �

� 77:5� ð39Þ

which is in the hydrophilic range of contact angles.

Upon insertion of hs into sm we find

sm;max ¼
l

jM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10þ 7
ffiffiffi

7
pp

3
ffiffiffi

6
p � 0:73

l

jM

ð40Þ

An explicit expression for V(t) results from

insertion of (36) into (1):

VðtÞ ¼ p
3
ð2þ cos hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos h
p

� s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos h
p � 2jM

ð2þ cos hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos h
p t

( )3

ð41Þ

4.2. Inclined Plane

If the plane is inclined, the basic Eq. 33 remains

valid both for hanging and sitting droplets. Treating

the droplets as quasi-spherical segments, the same

reasoning as above applies with the same results

regarding the t-dependance of s and V and the droplet

lifetime (Eqs. 36, 37 and 41, respectively).

In the case of hanging droplets we have to take

into account that the initial value s0 of the contact

circle should—due to the inclination of the leaf—

fulfill the conditions s0 \ sr and s0 \ sg [see (18) and

(19)].
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If a hanging droplet is initially of maximum

volume (i.e. s0 = sr or s0 = sg, depending on the

values of the inclination angle a and on the half-

difference of advancing and receding contact angle

v), s simplifies to

sc ¼
l sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ cos h
p

2jM

� �

�

ffiffiffiffiffiffiffiffiffi

2
p

sin v
sin a

q

if tan a[ 2
p tan v

ffiffiffiffiffiffiffi

cos v
cos a

q

if tan a\ 2
p tan v

8

<

:

ð42Þ

where the expression in braces is just sm, the

lifetime of a droplet hanging from a horizontal plane.

5. Discussion

The easiness with which water drops roll off a

surface is mainly dependent on the contact angle

hysteresis of a surface, and not on the static contact

angle. The smaller the contact angle hysteresis the

easier a drop will roll off the surface. Thus, hydro-

phobicity does not necessarily lead to a low stickiness

of drops to the surface. To determine the stickiness of

drops to surfaces it is not sufficient to measure the

static contact angle h. It is necessary to also measure

v. Potential benefits of efficient shedding of drops for

a leaf are frequently discussed with respect to self

cleaning. Pathogens, such as fungal spores, are easily

washed off then, or are prevented from germination

on the constantly dry surface (BARTHLOTT and NEIN-

HUIS 1997). If a plant species pursues the strategy to

efficiently get rid of water drops upon its surface, it

should minimize v. This quantity is usually influ-

enced by the often heterogeneous nature of surfaces,

with respect to surface micro/nanostructure and/or

local contact angle variations (QUÉRÉ 2008). In

leaves, these surface effects will be mostly created by

cuticle wax structures and/or trichomes.

Another benefit has to do with photosynthesis

since the development of a water film above stomata,

the gas exchange pores of a leaf, is deleterious for

photosynthesis. To keep stomata free from a water

film, it is beneficial—besides to get rid of the drops

by a low v—to reduce the contact area between a

droplet and the surface. Consequently, high water

repellency, together with low stickiness for drops, is

expected for species in foggy habitats and especially

for stomatous leaf sides (frequently the abaxial side).

HOLDER (2007) found that for different forest species

h tended to be unexpectedly low for many cloud

forest species. He discussed this result as being

caused by the high erosion of cuticle waxes due to

intense precipitation. However, since v was not

determined in Holder’s study, leaves may pursue also

other strategies by their surface properties than easy

shedding of spherical drops. For example, it may be

speculated that fog harvesting species are interested

in collecting large drops before they roll off the leaf

and fall to the ground. Fog drip can be an important

source of water input (FENG et al. 2008). The shed-

ding of large drops is expected to be more efficient in

wetting the soil around the plant than the shedding of

many small or very small droplets because large

drops have a higher potential for throughfall. Fur-

thermore, due to their low surface-to-volume ratio,

they will resist evaporation much more strongly than

small droplets. Maximum drop size can be achieved

with a h & 65.5�. A good ability for water retention

may have also other beneficial aspects. There are

various plants that are able to absorb water via the

leaves. This was unambiguously demonstrated for

Californian redwoods (BURGESS and DAWSON 2004),

but also indicated for other species (BRESHEARS et al.

2008). If water absorption by leaves represents an

important water source for a species, then it should be

expected that both a good wetting behavior (low h
and a high v) leading to a high persistence of the

water on the leaf is beneficial. This would then pro-

long the water amount and the time interval available

for absorption. The highest leaf storage capacity of a

leaf would be obtained with a contact angle of h &
111.6� and a high v. For maximum persistence of a

drop under given meteorological conditions, the

contact angle should amount to h & 77.5�.

Furthermore, nutrient input via aerosols are

important for many ecosystems, and it was shown

that hygroscopic mineral salts can be found upon leaf

surfaces (BURKHARDT 2010). Absorption not only of

water but also of minerals dissolved in leaf surface

water may, therefore, be of substantial importance for

species living on nutrient-poor soils (BURKHARDT

2010) and a good water retention should be also

beneficial in these cases.
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Leaf surface properties do not only affect the

hydrological cycle via canopy interception but can also

be important for the plant. The ecophysiological

interrelationships between leaf surface and drops can

be manyfold, and may additionally be changed by

external factors, such as dust particles, abrasion or

insect-mediated structural changes. Furthermore, the

mechanical impacts of wind currents or animal activ-

ities upon leaves will frequently be sufficient to lead to

detachment of drops that otherwise would be attached

quite firmly to the leaf surface. The consequences and

impacts of the behaviour of deposited drops upon leaf

surfaces are complex for a considered species and

depend on its habitat, ecological niche and other eco-

physiological traits. Often, an interrelationship to any

vital function cannot be provided. The ability of

hydrophobic petals, for example, to retain a water

droplet firmly, even if upside down (Petal Effect) (FENG

et al. 2008), can presently not be explained as being of

any adaptive value. Considering the various complex

interrelationships of leaves with their environment, the

interaction of leaf surfaces with water is a fascinating

and important topic that deserves further attention.
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