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Abstract—Identification of rock boundaries and structural features from well log response is a fundamental

problem in geological field studies. However, in a complex geologic situation, such as in the presence of

crystalline rocks where metamorphisms lead to facies changes, it is not easy to discern accurate information

from well log data using conventional artificial neural network (ANN) methods. Moreover inferences drawn by

such methods are also found to be ambiguous because of the strong overlapping of well log signals, which are

generally tainted with deceptive noise. Here, we have developed an alternative ANN approach based on

Bayesian statistics using the concept of Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo (MCMC)

inversion scheme for modeling the German Continental Deep Drilling Program (KTB) well log data. MCMC

algorithm draws an independent and identically distributed (i.i.d) sample by Markov Chain simulation technique

from posterior probability distribution using the principle of statistical mechanics in Hamiltonian dynamics. In

this algorithm, each trajectory is updated by approximating the Hamiltonian differential equations through a

leapfrog discrimination scheme. We examined the stability and efficiency of the HMC-based approach on

‘‘noisy’’ data assorted with different levels of colored noise. We also perform uncertainty analysis by estimating

standard deviation (STD) error map of a posteriori covariance matrix at the network output of three types of

lithofacies over the entire length of the litho section of KTB. Our analyses demonstrate that the HMC-based

approach renders robust means for classification of complex lithofacies successions from the KTB borehole

noisy signals, and hence may provide a useful guide for understanding the crustal inhomogeneity and structural

discontinuity in many other tectonically critical and complex regions.

Key words: KTB boreholes, Hybrid Monte Carlo (HMC), lithofacies, well log, petrophysics,

and uncertainty analysis.

1. Introduction

Information concerning the composition of rocks and structural features inside the

earth is obtained by making continuous measurements of geophysical properties with

depth using well logging methods. Such well log data have been extensively used

for exploration of oil and gas, mineral mining, geothermal energy and, radio-active

waste deposits (PECHNIG et al., 1997). It is known that compositional and textural
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characteristics (e.g., grain shape, size, and organization or rock structure) are important

factors for rock-facies classification. However, in complex geologic situations,

metamorphism plays a significant role in producing varying composition and structural

variations of crystalline rocks. Several factors, such as pore fluid, effective pressure,

fluid saturation, pore shape, grain size, and shape, etc. affect geophysical well log

signals (PECHNIG et al., 1997; MAITI and TIWARI, 2008; MAITI et al., 2007; MAITI and

TIWARI, 2005). Classification of lithology/lithofacies boundary from geophysical well

log data is, therefore, a complex and nonlinear geophysical problem. To solve the

problem, often a misfit function is defined to relate between model (here, lithology/

lithofacies) and observed well log response (data). Usually, the misfit function is

optimized through an iterative gradient-based process generally using some form of

Newton’s method. However, for a nonlinear problem the misfit function has many local

minima. Optimizing/minimizing the misfit function by a gradient-based matrix

inversion method results in some inescapable local minima. Sometimes a regularization

term with an error function is used to prevent overtraining. In that case, physical

interpretation may be ambiguous because of the underestimation. This problem could

be avoided by using the Bayesian paradigm approach with a sampling-based global

inversion method. It is, therefore, imperative to apply such a robust nonlinear global

optimization scheme which could evade these difficulties.

The Bayesian inference (TARANTOLA, 1987; MOSEGAARD and TARANTOLA, 1995;

SAMBRIDGE and MOSEGAARD, 2002) based on Bayes theory to approximate posterior

probability distribution via data likelihood and prior information using the Monte Carlo

algorithm has been proved to be very useful because of the non-unique solutions of a

geophysical inverse problem. Monte Carlo inversion techniques were first used by earth

scientists more than 30 years ago. Since then the method has been applied to a wide

range of geophysical problems. The phrase ‘‘Monte Carlo Method’’ was first coined by

METROPOLIS and ULAM (1949). Before also these concepts were used in numerical

experiments to determine the value of p by an injured officer during the American Civil

War (SAMBRIDGE and MOSEGAARD, 2002). The classic paper by BACKUS and GILBERT

(1967) established the foundation of the geophysical inverse theory. Another

remarkable work by HASTINGS (1970) drew wide attention to the Markov Chain

simulation for its application for numerical integration by the Monte Carlo method. The

practical use of the sampling-based inversion scheme (e.g., HMC/MCMC for neural

network training was first described by MACKAY, 1992 and NEAL 1993). The HMC

algorithm employed here is based on the work of MACKAY (1992) and NEAL (1993).

LAMPINEN and VEHTARI (2001) have presented a thorough review of the subject, which

introduced the HMC algorithm for drawing samples from posterior probability

distribution. Here, we apply the HMC based neural network optimization scheme to

infer lithofacies boundaries from superposing/overlapping well log signals from KTB in

anticipation that the results would provide a better understanding of the crustal

inhomogeneity and structural discontinuity in the context of geodynamical collision in

the KTB region.
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2. KTB Geology

The drill site of the KTB lies within the Zone of Erbendorf-Vohenstrauss (ZEV).

The rocks types mainly comprised of three main facies units: paragneisses, metabasites

and alternations of gneiss-amphibolites, with a minor occurrence of marbles,

calcsilicates, orthogeneisses, lamprophyres and diorites. Franconian Lineament, a thrust

fault marking the boundary between the crystalline outcrop of the Bohemian Massif

and the Permo-Mesozoic cover of southeast Germany, is situated to the west of the

KTB drill hole (PECHNIG et al., 1997). The lithologic and metamorphic characteristics,

especially the abundant metabasites and the medium pressure metamorphism, suggest

that the Zone of Erbendorf-Vohenstrauss (ZEV) is a part of the Bohemiam (FRANKE,

1989) (Figs. 1 and 2). The internal structure of the Zone of Erbendorf-Vohenstrauss

(ZEV) is dominated by a steeply dipping foliation and a NW-SE striking stretching

lineation which is parallel to the axes of at least two generations of folds generated

during amphibolities facies metamorphism. The stretching lineation is well developed

in equigranular, fine-grained, high temperature mylionite, amphibolites and paragneis-

ses. Along the boundary of the Zone of Erbendorf-Vohenstrauss (ZEV) with the

surrounding imbrication zone are amphibolites of oceanic affinity and isolated bodies of

serpentinites (BERCKHEMER et al., 1997; EMMERMANN and LAUTERJUNG, 1997; PECHNIG

et al., 1997; LEONARDI and KUMPEL, 1998, 1999). The detailed information about the

SAXOTHURINGIAN

Germany

ZEV

MOLDANUBIAN

=KTB Borehole

50 km

Figure 1

Location map of the German Continental Deep Drilling Program (KTB) boreholes, Saxothuringian,

Moldanubian, and ZEV (Zone of Erbendorf-Vohenstrauss) represent the main geological units of the region

(after LEONARDI and KÜMPEL, 1999).
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KTB data and its geophysical significance can be found in several earlier papers

(BERCKHEMER et al., 1997; PECHNIG et al., 1997; EMMERMANN and LAUTERJUNG, 1997;

LEONARDI and KUMPEL, 1998, 1999). We study here three types of well log data (viz.

density, neutron porosity and gamma ray intensity) by using the HMC based algorithm

for neural networks to constrain the lithofacies boundaries of the KTB (MAITI et al.,

2007). The total depth of the main hole and pilot hole are 9101 m and 4000 m,

respectively. The 3-D cross plot of density (g/cc), neutron porosity (%) and gamma ray

(API) taken from selected portions of the KTB main hole and pilot hole are displayed

in Figure 3, which apparently shows overlapping well log signal content indicating

complex and nonlinear characteristics.

Legend
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Figure 2

Reference diagram of litho facies section of the German Continental Deep Drilling Program (KTB). (left) pilot

hole (KTB-VB), (right) main hole (KTB-HB) (after EMMERMANN and LAUTERJUNG, 1997).
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3. Bayesian Neural Network Approach

The forward relationship between model (here lithofacies) and the data (well log) can

be given as

x ¼ f ðdÞ þ e; ð1Þ

where x is data and d is model. The term f is a nonlinear function relating to the model

space and data space and e is error. It is noteworthy, to mention here that since f

establishes a nonlinear functional relationship between the data space and model space,

hence the direct estimation of the model is not possible. A common way of inverting the

model d in equation (1) is via an iterative least-squares method. However, this approach

does not provide uncertainty measures. To solve equation (1) in the Bayesian sense, we

first considered here the total 702 representative realization samples (model/data pairs)

from a finite data set s ¼ xk; dkf gN
k¼1; conditioned upon the explicit limit of well log

response (Table 1) (MAITI et al., 2007). For this we have the following equation

d ¼ fNNðx; wÞ; ð2Þ

where d is a desired model, fNN is the output predicted by the network and w is the

network weight parameter. In a conventional ANN approach, an error functions

ES ¼ 1=2
PN

k ðdk � ok xk; wkð Þ2 is measured in order to know how close the network

output o(x; w) is to the desired model d from the finite data set {x, d}. Often,

regularization is included to modify the misfit function,

EðwÞ ¼ lES þ kER; ð3Þ

where, ER ¼ 1=2
PR

i¼1 w2
i and R is the total number of weights and biases in the network.

k, l are two controlling parameters known as hyper parameters. The forward functions

Figure 3

Cross plot of density (g/cc), porosity (%) and gamma ray intensity (API) of the German Continental Deep

Drilling Program (KTB) well log data showing strong nonlinearity and very difficult to establish parametric

boundary.
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used in the node are nonlinear tan sigmoids (Fig. 4) which eases to solve the nontrivial

problems. In the traditional approach, the training of a network starts with an initial set of

weights and biases and ends up with the single best set of weights and biases, given that

the objective function is optimized.

In the Bayesian approach, a suitable prior probability distribution P(w) of weights is

considered before observing the data, instead of a single set of weights. Using the Bayes’

rule, a posteriori probability distribution for the weights P(w|s) can be given as (KHAN

and COULIBALY, 2006),

Table 1

A priori information on model parameter to generate forward model for neural network training indicating that

gamma ray intensity value most crucial factor to categorize lithofacies unit in metamorphic area

Lithofacies unit Density

[g/cc]

Neutron

porosity [%]

Gamma Ray

Intensity [A.P.I]

Desired

Output/binary code

Paragneisses 2.65–2.85 5–15 70–130 100

Metabasites 2.75–3.1 5–20 0–50 010

Heterogeneous Series 2.60–2.9 1–15 40–90 & 120–190 001

Figure 4

Output of a hidden node as a function of its input through sigmoid transfer functions.
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PðwjsÞ ¼ PðsjwÞPðwÞ
PðsÞ ; ð4Þ

where P(s|w) and P(s) are the data set likelihood function and normalization factor

respectively. The denominator P(s) is intractable, so direct estimation of posterior P(w|s)

is not possible. Using the rules of conditional probability, the probability distribution of

outputs for a given input vector x can be written in the form (KHAN and COULIBALY, 2006),

Pðdjx; sÞ ¼
Z

Pðdjx;wÞPðwjsÞdw: ð5Þ

The major problem in Bayesian computation is evaluating integrals for a posteriori

probability density function of weights (equation (4)) and network output (equation (5)).

Fortunately numerical methods based on MCMC sampling play an important role for

evaluating posterior integrals. The equation (5) can be approximated as

Pðdjx; sÞ ¼ 1

N

XN

n¼1

P djx;wmð Þ; ð6Þ

where {wm} represents an MCMC sample of weight vectors obtained from the probability

distribution P(w|s), N is the number of points and w samples from P(w|s) (Khan and

Coulibaly 2006).

3.1. Markov Chain Monte Carlo (MCMC)/Hybrid Monte Carlo (HMC)

It is well known that a plain gradient descent algorithm can become trapped at shallow

local minima. One way of overcoming this problem is to define the error surface in terms of a

Hamiltonian statistical mechanics that accounts for the approximation errors and the

momentum term of each trajectory. This is the basis of the HMC/MCMC algorithm (DUANE

et al., 1987). In this algorithm, each trajectory is updated by approximating the Hamiltonian

differential equations by a leapfrog discrimination scheme. The MCMC algorithm draws an

independent and identically distributed (i.i.d) sample fwðiÞ; i ¼ 1; 2; . . .;Ng from the target

probability distribution P(w|s) (BISHOP, 1995). Markov process forms a sequence of ‘‘state’’

to draw samples from posterior probability distribution. It is noted that the chain converges

to P(w|s) given enough space (BISHOP, 1995). The states are represented by a particle in the

high dimensional network parameter space whose positions are defined by q 2 Rw. Thus the

equation (4) can be written in the form of p(q) � exp {- E(q)}, where p is a generic

symbol and E(q) is the potential energy functions/cost function for the optimization problem

(DUANE et al., 1987). By introduction of momentum variables p with corresponding kinetic

energy functions VðpÞ ¼ 1
2

PN
i¼1 p2

i to efficiently explore a large region of phase space by

simulating the Hamiltonian dynamics in fictitious time. The particle ‘‘mass’’ and

‘‘Boltzmann constant kB’’ can be re-scaled to unity. Full Hamiltonian energy function on

a fictitious phase space (DUANE et al., 1987),
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Hðq; pÞ ¼ EðqÞ þ VðpÞ: ð7Þ

The canonical distribution of Hamiltonian is

pðq; pÞ ¼ 1

QH
exp �Hðq; pÞf g: ð8Þ

It is clear that if we sample (q, p) from the distribution pðq; pÞ ¼ 1
QH

exp �Hðq; pÞf g; then

the marginal distribution of q is exactly the target distribution p(q) (DUANE et al., 1987;

NEAL, 1993). Here, p is the generic symbol, q is the position and p is the momentum

discussed before.

In practice, to simulate the Hamiltonian dynamics we need to discretize the equations

of motion of particle in general. Discrimination of equations introduced some errors

which destroy time reversibility and volume preservations principle which is required to

employ the Metropolis algorithm (METROPOLIS and ULAM, 1949; METROPOLIS et al., 1953).

Fortunately the leapfrog discrimination process has the desired properties to preserve

both. The leapfrog process updates positions and momentum coordinates (qi, pi) of

particle in three basic steps (DUANE et al., 1987; MACKAY, 1992; NEAL, 1993; BISHOP,

1995).

First, it takes a half step for momentum,

piðsþ h=2Þ ¼ piðsÞ þ
h
2

o log E

oqi
ðqðsÞÞ: ð9Þ

Then it takes a full step for the positions,

qiðsþ hÞ ¼ qiðsÞ þ h:piðsþ h=2Þ: ð10Þ

Finally it takes the other half step for the momentum,

piðsþ hÞ ¼ piðsþ h=2Þ þ h
2

o log E

oqi
ðqðsþ hÞÞ: ð11Þ

In above equations (9–11), h is time step size, s is time, q is position, p is momentum and

E is potential energy. Leap-leapity–leap, that is why it is called leapfrog. At the end of the

three steps we obtain an approximation to the values of position and momentum at time

s ? h from their corresponding values at time s (DUANE et al., 1987; BISHOP, 1995; NEAL,

1993). As we can readily check by simple inspection, the leapfrog discrimination has the

following necessary property (DUANE et al., 1987; MACKAY, 1992; NEAL, 1993; BISHOP,

1995).

1. It mostly preserves H, in fact to order O(h2).

2. It preserves volumes since the above mentioned are just shear transformations/

Liouville’s theorem, i.e., conservation of phase-space volumes.

3. It is time reversible.
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The practically pure Metropolis-Hastings algorithm (METROPOLIS et al., 1953;

HASTINGS, 1970) is proven to be very slow because the method makes no use of gradient

information. Our proposed algorithm which is based on the HMC algorithm for sampling

from target distribution, makes use of the gradient information. Our HMC algorithm is a

sampling-based algorithm that takes into consideration certain gradient information. The

algorithm follows the following sequence of steps once a step size h and the number of

iterations L have been decided upon. First our algorithm randomly chooses a direction s
(BISHOP, 1995). The s can be either -1 or ?1 with the probability 0.5, simulating the

dynamics forward or backward in time. Following the theory of statistical mechanics of

Hamiltonian dynamics, the transition probability matrix satisfies microscopic reversi-

bility, which means that the probability of these two transitions from qj to qi or from qi to

qj be the same at all times and each pair of points maintains a mutual equilibrium. Then

the algorithm carries out the iterations starting with the current state

[q, p] = [(q(0), p(0)] of energy H (DUANE et al., 1987; MACKAY, 1992; NEAL, 1993;

BISHOP, 1995). The momentum term p is randomly evaluated at each step. The algorithm

performs L steps with a step size of h resulting in the candidate state, [w*, p*] with energy

H* (DUANE et al., 1987). The candidate state is accepted with usual metropolis probability

of acceptance, min {1, exp [ - (H* - H)]} where H(.) is the Hamiltonian energy

(DUANE et al., 1987; MACKAY, 1992; NEAL, 1993; BISHOP, 1995). If the candidate state is

rejected then the new state will be the old state. These three steps, in essence, describe

how the sampling is done from posterior probability distribution of the network

parameter so that the summation of equation (6) can be accomplished to obtain the

posterior probability distribution and thus allow the optimization of the network (NEAL,

1993). The momentum term p can be randomly generated or it can be changed

dynamically at each step within which there are different ways of doing this (DUANE

et al., 1987; MACKAY, 1992; NEAL, 1993; BISHOP, 1995).

The sets of weights are thus selected or rejected according to the three steps

mentioned above and the numbers of samples that are retained are the number of weights

retained. For each set of weights there is a corresponding neural network output.

4. Model Setup

Normalization of the raw data (input/output), before presenting it to the network is

crucial to avoid saturation of the network. Hence, we scale all the input/output pair values

between 0 and 1 [-1 and ?1] by using a simple linear transformation algorithm

(POULTON, 2001). Normalized input = 2 9 (input-minimum input)/(maximum input-

minimum input) - 1. The initialization of the model parameters is performed by a

distribution of model parameters. The initial values of model parameters (synaptic weight

and biases) of MLP (Multi-Layer Perceptron) are formed by Gaussian prior probability

distribution of zero mean and inverse variance k (also known as regularization coefficient

or prior hyper-parameter). Gaussian prior probability distribution has been preferred here
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to favor small values for the network weights because a network with large weights will

usually give rise to a mapping with large curvature (NABNEY, 2004). Moreover, Gaussian

prior also provides computational simplicity. For prior hyper-parameter k = 0.02, a

single initial value has been considered for hidden layer and output layer weights. To

define an objective function in a Bayesian framework, our program requires an error
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Correlation plot of each model parameter with all others between (a) input and hidden layer, (b) hidden and

output layer.
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model for the data likelihood. It is assumed that target data are formed from a smooth

function with additive zero mean Gaussian noise. Accordingly, hyper-parameter l = 50

is estimated for both hidden and output layer weights. After defining prior and likelihood

functions, posterior has been estimated by using the Bayes’ rule.

We have examined a different run with a different model initiation parameter and a

different network parameter and presented the most consistent and optimized one.

During the run, thousands of inverted network parameters are obtained. Providing

enough space and time and very small step size (theoretically equal to 0) setting, our

HMC-based algorithm draws samples from posteriors probability distributions but

requires enough time. We believe that these values may not be the unique ones, rather

problem dependent. However, the chosen parameters (e.g., weight decay, coefficient of

a data error, etc.) enabled the fast and efficient training for the present case. The model

parameters considered for the present work are: (i) number of input node = 3. (ii)

Number of hidden node = 15, (iii) number of output node = 3, (iv) number of steps in a

trajectory = 100, (v) number of Monte Carlo samples return = 100, (vi) steps size =

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

Input

T
ar

ge
t

Data
Function
Prediction
Samples

Number of data points=50
Std of noise distribution=0.1

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

Input

T
ar

ge
t

Data
Function
Prediction
Samples

Number of data points=50
Std of noise distribution=0.3

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

Input

T
ar

ge
t

Data
Function
Prediction
Samples

Number of data points=50
Std of noise distribution=0.5

(a)

(c)

(b)

Figure 6

The graph shows the underlying function, 100 samples generated by Hybrid Monte Carlo simulation from the

function given by the posterior probability distribution of the weights, and the average prediction weighted by

the posterior probabilities using the 50 number of data points when standard deviations, (std) of noise

distributions are (a) 0.1 (b) 0.3 (c) 0.5.
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Error deviation and error bar map of validation and test data pertaining to paragneisses, metabasites and

heterogeneous series 7(a)–(d), when the input generalization set is corrupted with 30% red noise 7(e)–(h). When

the input generalization set is corrupted with 50% red noise. Error bar defines 90% confidence limit.
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0.002, (vii) coefficient of weight decay prior = 0.02, (viii) coefficient of data error = 50.

We determine correlation coefficients between each network weights and all other input

to the hidden layer and hidden layer to output layer, which describes the quality of the

training results (Figs. 5a and 5b).
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5. Synthetic Example

In the following example we performed a linear regression analysis to predict a sine

waveform using an HMC simulation algorithm. Figures 6a-c show the underlying noise-

free sine function with the 100 samples produced by the BNN. The experiment shows that

BNN with HMC estimates true functions where the data samples are more condensed and

less noisy. The uncertainty is more for predicting underlying sine functions where there

are no data samples or data tainted with a high level of noise.
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contd.
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6. Sensitivity Analysis

It is well known that geophysical observations are corrupted with noise. To our

knowledge, uncorrelated Gaussian white noise may be filtered using some modern

filtering techniques. However, correlated noise/red noise is deceptive in nature often

found to be mixed with observations. It is quite difficult to remove such noise from the

data, even using powerful filtering techniques. The best way to deal with such problems is

first to test the proposed algorithm on synthetic data in the presence of correlated red

noise. Accordingly we have randomly divided the entire synthetic data into three subsets:

training (50% of the total), validations set (25% of the total) and test set (25% of the total)

and added different levels of correlated noise to the synthetic training sample following

MAITI et al. (2007) and FULLER (1976). After network training, we have performed the

sensitivity analysis of the network by HMC-based algorithm which shows very stable (up

to 40% noise) and comparable results (Fig. 7).

Further we perform an uncertainty analysis by showing ± unit variance on the error

deviation curve on validations and test set data which was corrupted with different levels

of correlated red noise (Table 2). We note that most of the center of the vertical error bar

passes through the zero line which shows a 90% confidence level (Fig. 7).

7. Regression Analysis

Linear regression analysis provides accuracy of the overall performance of the

network. Our regression analysis code returns three parameters. The first two parameters

u and v, respectively correspond to the slope and the intercept on the y axis. Figures 8a,b

and c show the network outputs, which are plotted against the targets (T) and are shown

as open circles. A dashed line indicates the best linear fit (slope 1 and y intercept 0). The

solid line in the above figure shows the perfect fit (output equal to target). The third

Table 2

Showing percentage of accuracy while validation and test data set are corrupted with different levels of red

noise

Red

Noise

Level

Percentage of Accuracy in Generalization Data Set

Validation Data set Test Data Set Average

Stability

± 5 %

error limits

Paragnei-

sses

Metabas-

ites

Heterogeneous

Series

Paragneisses Metabasites Heterogeneous

Series

0% 86.29% 87.43% 77.14% 86.36% 84.09% 72.73% 82.34%

10% 86.29% 87.43% 73.71% 86.36% 84.09% 71.59% 81.57%

20% 83.43% 86.29% 70.29% 83.52% 83.52% 68.18% 79.20%

30% 81.71% 86.29% 68.00% 81.25% 83.52% 66.48% 77.87%

40% 80.00% 85.71% 65.71% 77.27% 82.39% 61.93% 75.5%

50% 74.29% 85.71% 62.29% 74.43% 81.25% 57.95% 72.65%
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parameter R is a correlation coefficient between the network outputs and the targets. The

parameter ‘‘R’’ is a measure of how well trained HMC based network predicted values

are related to the target values. The value of R closer to 1 implies that there is perfect

correlation between targets and outputs. The results of the linear regression analysis for

the total set of the data sets corresponding to paragneisses, metabasites and heterogeneous

series are given in Table 3 and are displayed in Figures 8a-c. The results indicate that
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Figure 8

(a) Linear regression analysis of the total set of data corresponding to paragneisses. Correlation coefficient (R)

between target (T) and network output (A) is 0.96, slope is 0.92, and y intercept of the best linear regression

relating targets to network is 0.0166. The network outputs are plotted versus the targets as open circles. A dashed

line indicates the best linear fit. The perfect fit (output equal to targets) is indicated by the solid line. (b) Same as

(a) for metabasites yielding a correlation coefficient 0.95, slope 0.92, and y intercept 0.0242. (c) Same as (a) for

heterogeneous series yielding a correlation coefficient 0.93, slope 0.868, and y intercept 0.0624.
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correlation coefficient R and intercept y are respectively close to 1, 1 and 0. This finding

thus justifies the application of the HMC-based algorithm for the analysis of a

voluminous amount of noisy bore hole records.

8. Uncertainty Analysis

The data covariance matrix defines the uncertainties in the data. The error bars ±

represent unit standard deviations derived from a posteriori covariance matrix. Figures 7,

9 and 10 show the result of the uncertainty analysis. The above figures show a plot of

the square roots of the main diagonal elements of a posteriori covariance matrix.

The Bayesian approach using the HMC-based algorithm provides the mean solutions

of the posterior probability distribution. Along with the mean solutions, we also obtain

the variability limit of the network predictions which show a 90% confidence interval

(Figs. 7, 9 and 10). We estimated the standard deviation of output error maps for all three

types of lithofacies over the entire KTB pilot hole (28–4000 m) and main hole (4000–

7000 m) litho-section which show the confidence interval of prediction of the data of our

HMC-based Bayesian neural network. The minimum, maximum and average values of

STD of output error maps corresponding to the depths in the context of uncertainty

analysis is discussed in the results and discussions sections.

9. Real Data Analysis

We performed the Principle Component Analysis (PCA) on the real KTB pilot bore

hole (KTB-VB) from a depth of 28 m to 4000 m and the main bore hole (KTB-HB) from

Table 3

Illustrating the results of linear regression analysis of three major litho types

Litho types Correlation coefficient (R) between

target (T) and network output (A)

Slope (u) Y-intercept of the best linear regression

relating targets to network output (v)

Paragneisses Class 0.96 0.92 0.01

Metabasites Class 0.95 0.92 0.02

Heterogeneous

Series Class

0.93 0.86 0.06

Figure 9

(a) Comparison of the maximum a posteriori geological section (MAPGS) obtained by the Bayesian Neural

Network (BNN) with Hybrid Monte Carlo (HMC) approach with maximum likelihood geological section

(MLGS) obtained by super self adaptive back propagation (SSABP) neural network, and published litho-facies

subsection of German Continental Deep Drilling Program (KTB) pilot hole (KTB-VB) (right after EMMERMANN

and LAUTERJUNG, 1997) and standard deviation (STD) error map estimated at network output by Bayesian Neural

Network (BNN) approach at depth interval of 0–500 m. In this interval 0–28 m data is not available. (b) – (h)

Same for depth range of 500–1000 m, …, 3500–4000 m in KTB pilot hole (KTB-VB).

c
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a depth of 4000 m to 7000 m to reduce the dimension. Preprocessed data are then used to

train network and the output of the HMC based network is shown in a 3-colums color

matrix with red representing 1 and yellow representing 0. STD of error maps corresponds

to three lithofacies estimated by Bayesian code to quantify the prediction uncertainties at

the network output. The result is compared with the published results of MAITI et al.

(2007) in Figures 9 and 10. We note that the maxima of a posteriori geological section

(MAPGS) correspond to the class of maxima of a posteriori probability. In the ideal case,

if the lithofacies of a particular class exist, the output value of the node in the last layer is

1 or very close to 1 and if not, it is 0 or very close to 0.

9.1. Comparisons of the Hybrid Monte Carlo based Maximum a posteriori Model

(MAP) Result with the Published Results

We have redrawn the published results of lithofacies successions (EMMERMANN and

LAUTERJUNG 1997) (Fig. 2) and compared them with the maximum a posteriori geologic

section (MAPGS) derived from the HMC modeling results and the SSABP results (MAITI

et al., 2007) for both KTB boreholes (Figs. 9 and 10). Evidently the HMC-based

algorithm provides better insight into the analysis of borehole data. It is also clear that in

most cases it matched well with the published geology. The results also indicate some

additional finer beds that were not detected in earlier studies (Figs. 9 and 10).

10. Discussions

We have used ANN applying the concept of Bayesian statistics for classifying

lithofacies boundaries from the KTB data. In order to do this, we have employed the

MCMC chain to sample the network parameter/model parameter from target distribution

(output). The advantage is that HMC is a sampling-based inversion technique unlike a

gradient-based matrix inversion in which an algorithm results with inescapable local

minima. We have used nonlinear hyperbolic tangent forward functions so that the

underlying geophysical inverse problem can be treated in a fully nonlinear manner.

Posterior probability distribution of the network parameter is obtained by using prior and

likelihood functions. The output of the network gives mean value (averages over all

possible network parameters), therefore, providing variability in the possible solutions

rather than a single best solution using the conventional neural network. The Bayesian

approach incorporates posterior data uncertainty caused by inherent noise (deceptive

correlated noise) and inexact theory (modeling uncertainty). Comparison of MAPGS by

the HMC-based algorithm with the published litho-species section of EMMERMANN and

LAUTERJUNG (1997) (Figs. 9 and 10) exhibits more or less matching patterns that are well

correlated too. In addition to this, the HMC-based Bayesian model also reveals some finer

structural details, which seems to be geologically significant. We manually checked a few

samples produced by the HMC-based trained network (see Table 4). Surprisingly, the
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Bayesian network approach produced more or less identical results that are consistent

with the prior information (geological and geophysical). However, a mismatch with the

published results could be explained by the inexact theory (modeling uncertainty).

Observed data corrupted with deceptive ‘red’ noise and with non-zero mean might

contain additional error. This might arise either due to limitations in the KTB data

resolution or due to the poor sampling in the model space where more uncertainty can be

expected (Figs. 9 and 10). Some deviations between the two results are, therefore,

expected. We note, however, that while interpreting prediction of the network’s output

node in a probability sense with the maximum a posteriori value, the actual patterns show

considerably high correlation coefficients*0.97 (Table 3). Further regression analysis of

both bore hole results between the two algorithms also reveals very consistent and sound

agreements (R*0.94) (Figs. 11a-f). Thus, it may be emphasized that the HMC-based

Bayesian algorithm, developed here, combined with sensitivity analysis, uncertainty and

regression analyses do provide credence to the authenticity of these results. Hence,

maximum a posteriori values are not due to any other reason, rather they are, in fact,

inter-bedded geological structures which remained unrecognized in previous visual

interpretation.

11. Conclusions

We have developed an ANN technique utilizing the concept of an HMC algorithm for

the analysis of the well log data. The method is applied to KTB well log data for

classifying lithofacies. These results are also compared with published histogram models.

Our analysis shows that the HMC based ANN is robust for detecting lithospecies

boundaries. Modeling of the KTB data reveals some finer bed boundaries in addition to

main lithofacies boundaries. In addition, uncertainty and non-uniqueness of the

geophysical problem are discussed in conjunction with the Markov Chain Process where

hundreds of acceptable solutions are generated to choose the mean model from the one

hundred acceptable solutions. This solution approach is more precise conceptually and

more defensive in a quantitative manner.

Figure 10

(a) Comparison of maximum a posteriori geological section (MAPGS) obtained by the Bayesian Neural

Network (BNN) with Hybrid Monte Carlo (HMC) approach with maximum likelihood geological section

(MLGS) obtained by super self adaptive back propagation (SSABP) neural network approach (left) with

published litho-facies subsection of the German Continental Deep Drilling Program (KTB) main hole (KTB-

HB) (right after EMMERMANN and LAUTERJUNG, 1997) and standard deviation (STD) error map estimated at

network output by the Bayesian Neural Network (BNN) approach at depth interval of 4000–4500 m. (b) – (f)

Same for depth range of 4500–5000 m, …, 6500–7000 m in German Continental Deep Drilling Program (KTB)

main hole (KTB-HB).

c
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Figure 11

(a-f) Regression analysis of German Continental Deep Drilling Program (KTB) pilot hole (KTB-VB) and

German Continental Deep Drilling Program (KTB) main hole (KTBHB) corresponds to paragneisses,

metabasites and hetero-series showing very good agreement between two algorithm overall
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