
Electric Potential and Fréchet Derivatives for a Uniform Anisotropic

Medium with a Tilted Axis of Symmetry

S. A. GREENHALGH,1,2 L. MARESCOT,2 B. ZHOU,1 M. GREENHALGH,1 and T. WIESE
1

Abstract—In this paper we develop analytic solutions for the electric potential, current density and Fréchet

derivatives at any interior point within a 3-D transversely isotropic medium having a tilted axis of symmetry.

The current electrode is assumed to be on the surface of the Earth and the plane of stratification given arbitrary

strike and dip. Profiles can be computed for any azimuth. The equipotentials exhibit an elliptical pattern and are

not orthogonal to the current density vectors, which are strongly angle dependent. Current density reaches its

maximum value in a direction parallel to the longitudinal conductivity direction. Illustrative examples of the

Fréchet derivatives are given for the 2.5-D problem, in which the profile is taken perpendicular to strike. All

three derivatives of the Green’s function with respect to longitudinal conductivity, transverse resistivity and dip

angle of the symmetry axis (dG/drl, dG/drt, dG/dh0) show a strongly asymmetric pattern compared to the

isotropic case. The patterns are aligned in the direction of the tilt angle. Such sensitivity patterns are useful in

real-time experimental design as well as in the fast inversion of resistivity data collected over an anisotropic

earth.
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1. Introduction

In a recent paper we presented a general formulation for calculating the electric

potential and Fréchet derivatives in an arbitrary 3-D anisotropic, heterogeneous medium

(GREENHALGH et al., 2008a). It was based on a new Gaussian quadrature grid formulation

for calculating the 3-D Green’s functions.

In this paper we develop an analytic solution to the problem for a surface current

source above an otherwise homogeneous but anisotropic medium. We take the special

case of a transversely isotropic medium with a tilted axis of symmetry (TTI medium),

such as might occur for dipping beds, inclined fractures, oriented cleavage, foliation

and other stratifications. We derive in an alternative fashion the basic equations for

the voltage, the current density and the sensitivity functions at an arbitrary interior

point in the medium. The analytic solutions can be a useful check on numerical
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modelling code. They can also be incorporated into a fast imaging method. For

example, LOKE and BARKER (1995) used a uniform isotropic model to deconvolve

resistivity data for effects of the electrode array. ZHOU and GREENHALGH (2002) gave a

more elaborate treatment referred to as the analytic sensitivity function to produce an

initial model far superior to a pseudo-section, and which considers array effects. It is

somewhat akin to a seismic migration. However to date, such a fast electrical imaging

approach has not been done for anisotropic models. The sensitivity functions (Fréchet

derivatives) are particularly important in optimised experimental design (STUMMER

et al., 2004) and in actual inversion of resistivity data (ZHOU and GREENHALGH, 1999).

Few papers in the resistivity modelling and inversion literature incorporate anisotropy

(DAS, 1995; YIN and WIEDELT, 1999; PAIN et al., 2003, HERWANGER et al., 2004; LI and

SPITZER, 2005; KIM et al., 2006; ZHOU et al., 2009). They offer purely numerical

solutions—mainly finite element and finite difference—for the potential in general

inhomogeneous media.

An analytic solution for the potential on the surface of a uniform TTI medium was

given by ASTEN (1974) and BHATTACHARYA and PATRA (1968). Several authors have

extended the treatment for an anisotropic half space. The integral equation approach was

used by PAL and DASGUPTA (1984) to derive the electric potential due to a surface point

source over an inhomogeneous, anisotropic half space of the simple vertical transversely

isotropic (VTI) type. A modification of this was made by PAL and MUKHERJEE (1986) who

dealt with a layered conducting earth with dipping anisotropy. WAIT (1982, 1990)

considered 3-D current flow into a single or two layer anisotropic half space, but took the

coordinate axes to coincide with the principal conductivity directions. ELORANTA (1988)

modelled mise à la masse anomalies in a transversely isotropic medium containing

prismatic conductors, while ESKOLA and HONGISTO (1997) considered an anisotropic body

located in an isotropic environment. FLYKT et al. (1996) calculated the electric potential

anomalies caused by a conducting body in an anisotropic conducting half space. LI and

UREN (1997) gave analytic solutions for the point source potential in an anisotropic 3-D

half space, comprising either two horizontal layers or two vertical boundary planes. In

another paper (LI and UREN, 1998) they applied image theory to derive the solution for the

potential from a buried current source in an arbitrary anisotropic half space, and showed

how the image source is laterally displaced from the true source horizontal position. LI

and STAGNITTI (2000) studied the problem of direct current electric potential in an

anisotropic halfspace with a vertical contact and containing a conductive 3-D body. The

analytic solution for the potential in a stack of layers, each having arbitrary anisotropy,

was derived by PERVAGO et al. (2006) by applying a set of Hankel transforms of integer

order. None of the above papers offer a formulation for the Fréchet derivatives. To the

best of our knowledge this is the first time that the sensitivities of the potential to

the anisotropic parameters for a homogeneous TTI medium have been formally

investigated.

674 S.A. Greenhalgh et al. Pure appl. geophys.,



2. The Conductivity Tensor

The conductivity tensor r; which relates the current density J to the electric field E

(or potential gradient -rU) through the Ohm’s Law relation:

Ji ¼ rijEj i; j ¼ x; y; z ð1Þ

is of rank 2 and for the most general anisotropic medium can be described by six

independent components. Writing it out as a 3 9 3 symmetric matrix in the Cartesian

coordinate or recording frame, we have:

r ¼
rxx rxy rxz

rxy ryy ryz

rxz ryz rzz

0
@

1
A ð2Þ

The matrix can be diagonalised to produce the three eigenvalues r1, r2, r3 which

yield the principal conductivities in the directions of the three principal axes or

eigenvectors x̂0; ŷ0; ẑ0:

r0 ¼
rx0x0 0 0

0 ry0y0 0

0 0 rz0z0

0
B@

1
CA ¼

r1 0 0

0 r2 0

0 0 r3

0
B@

1
CA: ð3Þ

The eigenvectors are all orthogonal. These directions refer to the natural frame of the

rock and reflect the symmetry axes or the actual rock structure/fabric. In these directions,

J is parallel to E, but for all other directions, the current density and electric field are in

different directions to each other. The three Euler angles, which permit a rotation from

the Cartesian frame into the principal directions, together with the three eigenvalues,

constitute an alternative set of the six independent components of the tensor to those

given by equation (2).

For second rank symmetric tensors like the conductivity tensor, there is a simple

geometrical representation referred to as the representation quadric (NYE, 1957):

rijxixj ¼ 1 ð4Þ

or expanding out into the various components:

rxxx2 þ ryyy2 þ rzzz
2 þ 2rxyxy þ 2rxzxz þ 2ryzyz ¼ 1: ð5Þ

This is the equation of an ellipsoid, centred at the origin, in the Cartesian coordinate

frame. The axes of the ellipsoid are tilted in the directions of the principal directions

mentioned above (see Fig. 1a). By a co-ordinate rotation, the cross terms (or off-diagonal

elements) in the above equation are eliminated yielding, in the natural rock frame

x0, y0, z0:

r1x
02 þ r2y

02 þ r3z
02 ¼ 1: ð6Þ
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The semi–major axis lengths of the ellipsoid are equal to the inverse of the square

roots of the eigenvalues or principal conductivities (see Fig. 1b). If we choose to work

with the resistivity tensor, which is the inverse of the conductivity, q ¼ r�1; then the

semi-axes are equal in length to the square roots of the principal resistivities using the

relations:

q1 ¼ 1=r; q2 ¼ 1=r2; q3 ¼ 1=r3

For an electric field oriented in an arbitrary direction n̂ from the centre of the ellipsoid

to the surface of the ellipsoid, the radius r (or distance along this line) gives the square

root of the resistivity in that direction (see Fig. 2). The normal to the tangent at P gives

the direction of the current density vector (Fig. 2). Obviously, for an isotropic medium

x´

z´

y´

1

1

σ

a

b

c

a =
2

1

σb =
3

1

σc =

x

z

y
(a) Geographic frame

(b) Principal axis frame

Figure 1

The conductivity tensor ellipsoid in (a) the geographic co-ordinate frame x, y, z, and (b) in the principal axis

frame (or natural rock frame) x0, y0, z0. The lengths of the semi major axes are equal to the inverse square roots of

the principal conductivities (or eigenvalues of the 3 9 3 conductivity matrix). The directions of the principal

axes are the corresponding eigenvectors.
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the ellipsoid reduces to a sphere and the radius is normal to the surface, yielding J parallel

to E. The current density in the direction n̂ of the electric field is given by:

Jn ¼ J � n̂ ¼ rnE ¼ E=r2 ð7Þ

with E being the magnitude of vector E, r the length from the centre of the ellipsoid to the

point on its surface intersected by the E vector and rn is the conductivity in direction n̂;

given by:

rn ¼ rijninj: ð8Þ

Summation is implied by the repeated subscripts and the unit vector n̂ is found from:

n̂ ¼ E=E:

The long axis of the conductivity ellipsoid ẑ0; which represents the direction of the

dominant principal resistivity, often coincides with the normal to the major rock foliation.

It is referred to as the transverse direction. It is characterised by polar angles h0 and /0,

which give the inclination and azimuth respectively in spherical coordinates. It has

components:

ẑ0 ¼ ðcos /0 sin h0; sin h0 sin /0; cos /0Þ: ð9Þ

The other two principal directions lie in the plane perpendicular to this direction. The

third angle required to characterise the principal directions is the azimuth swing (call it e)
of x̂0 from that of ẑ0: The orthogonality property defines the third vector uniquely. A

special case is that in which e = 0 so that direction x̂0 is obtained simply by adding 90

degrees to h:

x̂0 ¼ ðcos /0 cos h0; sin /0 cos h0;� sin h0Þ: ð10Þ

P
enalp tnegnat

E

J

ˆr n

n 2
J

E

r
=

Figure 2

Diagram showing the relationship between the electric field vector E and the current density vector J. The E

field is in direction n whereas the J vector is orthogonal to the tangent plane where the line rn meets the surface

of the ellipsoid. The current density in direction n is simply E/r2 where r is length of line from the centre of the

ellipsoid to its surface in direction n.
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The third unit vector ŷ0 is obtained by taking the cross-product:

ŷ0 ¼ ẑ0 � x̂0 ¼ ð� sin /0; cos /0; 0Þ: ð11Þ

So defining as the rotation matrix:

R ¼
x̂0

ŷ0

ẑ0

0
@

1
A ¼

cos /0 cos h0; sin /0 cos h0; � sin h0

� sin /0; cos /0; 0

cos /0 sin h0; sin /0 sin h0; cos h0

0
@

1
A ð12aÞ

we can now compute the conductivity matrix in the Cartesian or recording frame as the

product of the three matrices:

r ¼ RTr0R; ð12bÞ

where the diagonal eigenvalue matrix r0 is given by equation (3). The same rotation

matrix R obtains for the resistivity tensor q. The six components of the conductivity

tensor can now be written out as follows in terms of the principal conductivities and the

two polar angles defining the direction of the dominant eigenvector (note that the

following expression is not implied to be a vector, but merely a list of components):

rxx

rxy

rxz

ryy

ryz

rzz

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

r1 cos2 h0 cos2 /0 þ r2 sin2 /0 þ r3 sin2 h0 cos2 /0

0:5ðr1 cos2 h0 sin 2/0 � r2 sin 2/0 þ r3 sin2 h0 sin 2/0Þ
0:5ð�r1 þ r3Þ cos /0 sin 2h0

r1 cos2 h0 sin2 /0 þ r2 cos2 /0 þ r3 sin2 h0 sin2 /0

0:5ð�r1 þ r3Þ sin /0 sin 2h0

r1 sin2 h0 þ r3 cos2 h0

0
BBBBBBBBB@

1
CCCCCCCCCA

: ð13Þ

The 2.5-D case, with one principal axis along the strike or y direction (i.e., y is

parallel to y0) is obtained by letting the azimuth angle /0 = 0 in the above equation,

which gives:

rxx

ryy

rxz

rzz

0
BBB@

1
CCCA ¼

r1 cos2 h0 þ r3 sin2 h0

r2

0:5ð�r1 þ r3Þ sin 2h0

r1 sin2 h0 þ r3 cos2 h0

0
BBBB@

1
CCCCA
: ð14Þ

Note that in both cases, the trace of the r matrix (¼rxx ? ryy ? rzz) is equal to the

sum of the eigenvalues r1 ? r2 ? r3.

2.1. The TTI Case

A special case for the 3-D situation where azimuth is still important is that in which

the two principal conductivities in the plane perpendicular to ẑ0 are equal. i.e.,

eigenvalues r1 = r2.
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This is referred to as a tilted transversely isotropic (TTI) medium. The medium

anisotropy is then characterised by just four parameters: the longitudinal and transverse

resistivities (ql = 1/r1 = 1/r2 and qt = 1/r3, the so-called principal resistivites) and the

two polar angles, dip h0 and azimuth /0 which define the arbitrary axis of symmetry

which lies normal to the plane of stratification (e.g., bedding plane, fracture plane,

cleavage plane). This plane is characterised in terms of strike angle b(=/0 ? 90) degrees

and dip angle from the horizontal a = h0 (see Fig. 3). Resistivity is constant at ql for any

direction within the bedding plane, although different in all other directions, reaching its

maximum value qt along the symmetry axis or so-called transverse direction (/0, h0). The

tensor ellipsoid for this special case of TI media has a circular cross section perpendicular

to the long axis.

As an alternative to ql, and qt, we can introduce two auxiliary quantities:

qm ¼
ffiffiffiffiffiffiffiffi
qlqt
p

k ¼
ffiffiffiffi
qt

ql

r
: ð15Þ

The quantity k is called the coefficient of anisotropy, typically ranging 1 to 3 (KELLER

and FRISCHKNECHT, 1970), while qm is the geometric mean of the two principal resistivities

ql, qt. It is sometimes referred to as the equivalent isotropic medium resistivity value.

x

z

y

enalp noitacifitarts

Strike β = ϕ0 +/- 90°

θ0

si
xa

 l
api

cnir
P

0Dip α θ=

ρ
l

ρ
l

Figure 3

Plane of stratification (bedding plane, fracture plane) having strike b and dip (from horizontal) of a. The

longitudinal resistivity is ql in the plane of the bedding and the transverse resistivity is qt in the direction of the

normal to the bedding plane, defined by the polar angles /o, h0.
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Using the simplified form of equation (13) for the tilted TI medium in which

r1 = r2 = rl and r3 = rt then the elements of the conductivity tensor reduce to the

following (again, it is merely a list, a vector is not implied by bracketing the

quantities):

rxx

rxy

rxz

ryy

ryz

rzz

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

rl cos2 h0 cos2 /0 þ rl sin2 /0 þ rt sin2 h0 cos2 /0

0:5ð�rl þ rtÞ sin2 h0 sin 2/0

0:5ð�rl þ rtÞ cos /0 sin 2h0

ð�rl þ rtÞ sin2 h0 sin2 /0 þ rl

0:5ð�rl þ rtÞ sin /0 sin 2h0

rl sin2 h0 þ rt cos2 h0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

: ð16Þ

As a check, we see that in the isotropic case if rl = rt = r then all diagonal elements

rii of the tensor reduce to the same scalar value r, whereas the off-diagonal elements all

go to zero.

For the general 2.5-D case with no azimuthal dependence, we obtain:

rxx

ryy

rxz

rzz

0
BBB@

1
CCCA ¼

rl cos2 h0 þ rt sin2 h0

rl

0:5ð�rl þ rtÞ sin 2h0

rl sin2 h0 þ rt cos2 h0

0
BBBB@

1
CCCCA
: ð17Þ

3. Potential and Current Density within a Tilted TI Medium

3.1. VTI Medium

KELLER and FRISCHKNECHT (1970) show for a medium having a vertical symmetry

axis (i.e., horizontally layered or VTI medium) the potential U at some arbitrary

point P(x, y, z) in the medium due to a current source I on the surface at the origin is

given by:

Uðx; y; zÞ ¼ Iqlk

2pðx2 þ y2 þ k2z2Þ1=2
: ð18aÞ

The equipotential surfaces are then given by:

x2 þ y2 þ k2z2 ¼ C ð18bÞ

where C is a constant. i.e., they are ellipsoids of revolution about the z-axis. The

components of the current density vector J are given by:
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Jx ¼
�1

ql

oU

ox

Jy ¼
�1

ql

oU

oy

Jz ¼
�1

qt

oU

oz

: ð19Þ

Now we can recast these results entirely in terms of the distance R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
to the point of measurement and the angle of inclination w from the symmetry axis (in

this special case it is vertical) using:

x2 þ y2 ¼ R2 sin2 w
z2 ¼ R2 cos2 w

: ð20Þ

Note that for a vertical axis of symmetry the situation is axi-symmetric, i.e., has

azimuthal symmetry. Therefore there is no dependence of the potential on the azimuth

angle to the point P.

Therefore

U ¼ Ikql

2pRð1þ ðk2 � 1Þ cos2 wÞ1=2
: ð21Þ

Differentiating this expression and substituting into (19) enables computation of the

components of the current density in terms of the new coordinates. The component of

current density in the parallel direction of the symmetry axis (Jpar = Jz) is given by:

Jpar ¼
kI cos w

2pR2ð1þ ðk2 � 1Þ cos2 wÞ3=2
ð22Þ

and that in the orthogonal direction Jperp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

x þ J2
y

q� �
is given by:

Jperp ¼
kI sin w

2pR2ð1þ ðk2 � 1Þ cos2 wÞ3=2
: ð23Þ

3.2. TTI Medium

Now we want to translate these results into situations where the axis of symmetry is

tilted in some arbitrary direction. For such a TTI medium let the axis of symmetry have

azimuth /0 (from the x axis) and inclination angle (from the vertical or z axis) of h0 (see

Fig. 4). The unit vector ẑ0 defining this direction has Cartesian components given by

equation (9).

The point P at which we want to compute the potential and the current density can be

defined in spherical coordinates (R, /, h). The unit vector defining this direction has

Cartesian components:
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n̂ ¼ ðsin h cos /; sin h sin /; cos hÞ: ð24Þ

The cosine of the incident angle w measured relative to the symmetry axis is found by

taking the dot product between the unit vectors ẑ0 and n̂:

cos w ¼ ẑ0 � n̂ ¼ sin h0 � sin h � cosð/� /0Þ þ cos h0 cos h: ð25Þ

If we now substitute for cos w from equation (25) into equation (21) we find the

potential at any interior point P(R, /, h) for a rotated symmetry axis, in the geographic

frame. Such a construction, in going from the VTI to the TTI case, is commonplace in

seismic anisotropy (see for example, ZHOU and GREENHALGH, 2004). The electric potential

takes the same form in both the VTI and TTI cases but the w angle, as given by equation

(25), is different in each case. For VTI media h0 = 0, and w = h.

A confirmation of the validity of equations (21) and (25) in the general TTI case can

be easily established. We start with the general uniform anisotropic medium expression

for the potential (see LI and UREN, 1998; LI and SPITZER, 2005):

U ¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT � q � r

p ¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxxx2 þ qyyy2 þ qzzz

2 þ 2qxyxyþ 2qxzxzþ 2qyzyz
q ; ð26Þ

where r 5 (x, y, z), C is a constant = I(det qij)
1/2/2p = I(qx0x0.qy0y0.qz0z0)

1/2/2p), I is the

strength of the current source, located at the origin, and q (=[rij]
-1) is the resistivity

tensor, the inverse matrix of the conductivity tensor. Note that the primed, subscripted

x

z z´

y

Jpar

Axis of symmetry

Jperp

n̂

P ( ), ,R θ φ

0φ0φ φ

0θ

θ

Figure 4

Point P(R, /, h) inside an anisotropic medium having tilted axis of symmetry (defined by angles /0, h) at which

potential U and current density J are to be computed.
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values are the principal resistivity values referred to earlier as q1, q2, q3. We must now

convert from Cartesian to spherical co-ordinates using:

x ¼ R cos / sin h
y ¼ R sin / sin h
z ¼ R cos h

; ð27Þ

and use the following expressions for the components of the resistivity tensor in a TTI

medium:

qxx

qxy

qxz

qyy

qyz

qzz

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

ql cos2 h0 cos2 /0 þ ql sin2 /0 þ qt sin2 h0 cos2 /0

0:5ðqt � qlÞ sin2 h0 sin 2/0

0:5ðqt � qlÞ cos /0 sin 2h0

ðqt � qlÞ sin2 h0 sin2 /0 þ ql

0:5ðqt � qlÞ sin /0 sin 2h0

ql sin2 h0 þ qt cos2 h0

0
BBBBBBBBB@

1
CCCCCCCCCA

; ð28Þ

These components are simply obtained by inverting the conductivity matrix (see

equation (16) for its elements). It is obvious that the same Euler rotations are involved for

the conductivity tensor and the resistivity tensor, because we obtain the elements of the

resistivity matrix by replacing the principal conductivities in the conductivity matrix with

the principal resistivity values. It is trivial to show that r:q yields the identity matrix.

After substituting for all of the terms in equations (27) and (28) into equation (26), and

after some algebraic and trigonometric manipulations, it reduces to the identical form of

equation (21) with cos (w) given by equation (25).

In similar fashion as we did for the potential, it is possible to find the current density

J for a tilted axis of symmetry in terms of the original coordinate system:

Jx ¼ Jpar cos /0 sin h0 þ Jperp cos /0 cos h0

Jy ¼ Jpar sin /0 sin h0 þ Jperp sin /0 cos h0

Jz ¼ Jpar cos h0 � Jperp sin h0

ð29Þ

where Jpar, Jperp are given by equations (22) and (23) and are shown in Figure 4.

3.3. Special Cases

For a vertical axis of symmetry h0 = 0 so cos w = cos h and w = h and the general

solution (equation 21) reverts to the earlier expression for the VTI medium, with no

azimuthal dependence:

UðR;/; hÞ ¼ Iqm

2pRð1þ ðk2 � 1Þ cos2 hÞ1=2
; ð30Þ

where again qm = kql.
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For vertically dipping beds, or a horizontal axis of symmetry h0 = 90 we have

cos w ¼ sin h cosð/� /0Þ ð31Þ

and the potential is given by:

UðR;/; hÞ ¼ Iqm

2pRð1þ ðk2 � 1Þ sin2 h cos2ð/� /0ÞÞ1=2
: ð32Þ

Consider now a point P on the surface of the Earth. Here z = 0, or h = 90 and from

equation (25):

cos w ¼ sin h0 cosð/� /0Þ: ð33Þ

Substituting into equation (21) we find that the surface potential is given by:

Uðx; y; 0Þ ¼ Uðr;/; 0Þ ¼ Iqm

2p rð1þ ðk2 � 1Þ cos2ð/� /0Þ sin2 h0Þ1=2
; ð34Þ

where r2 = x2 ? y2.

This is the same result as that given by BHATTACHARYA and PATRA (1968, p.18),

although they expressed it in terms of the bedding plane strike b (=/0-/ ? 90) and

dip from the horizontal a(=h0). They do not give expressions for potential in the

subsurface.

For a vertical axis of symmetry h0 = 0 (bedding plane dip of zero) then the potential

is given by:

U ¼ Iqm

2p r
ð35Þ

with no azimuthal dependence. The apparent resistivity for a pole-pole array is given by:

qa ¼ 2p r:
U

I
¼ qm ¼ kql: ð36Þ

Note that this is the case of a profile oriented in a direction parallel to the layering or

in the longitudinal resistivity direction yet the apparent resistivity is greater than the

longitudinal resistivity by a factor equal to the coefficient of anisotropy.

Next consider the case of vertically dipping beds, i.e., horizontal axis of symmetry

h0 = 90 and again with observations at the Earth’s surface. Consider a profile

perpendicular to the strike of the bedding plane, / = /0. From equation (34) we find

that

Uðr;/; 90Þ ¼ Iqm

2p r:k
¼ Iql

2p r
ð37Þ

and the apparent resistivity for a pole-pole array is qa = ql.

Note that this is the case of a profile oriented in a direction perpendicular to the

layering or in the transverse resistivity direction, yet the apparent resistivity is equal to
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the longitudinal resistivity, not the transverse resistivity. This is referred to as the Paradox

of Anisotropy (MAILLET, 1947; BHATTACHARYA and PATRA, 1968).

For profiles parallel to the strike of the bedding plane the apparent resistivity is again

equal to qm. There is a clear azimuthal dependence in the apparent resistivity, with values

ranging between ql and qm.

4. Fréchet Derivatives

4.1. General case

The Fréchet derivatives relate the perturbation in the measured potential with a given

electrode configuration to a perturbation in the medium properties at some subsurface

position. Normally they are computed for all subsurface positions and for all electrode

combinations to show the sensitivity behaviour with each configuration and facilitate

updates in the conductivity estimates during a nonlinear inversion of electrical resistivity

data. Using the constant block approximation for conductivity specification, GREENHALGH

et al. (2008a), using a formal perturbation analysis and the self-adjoint nature of the

differential operator, derived the following formula for the derivatives of the potential

with respect to the model parameters mb in the most general 3-D anisotropic,

heterogeneous medium:

oU

oðmbÞp
¼ �Iwp

orij

omb

oGA

oxj

oGM

oxi

� ��

p

mb 2 ri j ð38Þ

or mb = (r1, r2, r3, /0, h0, e).

Note that summation is implied through repetition of subscripts i, j = x, y, z.

Here GA is the Green’s function for the current electrode A, and GM is the adjoint

Green’s function for the receiver electrode M (see Fig. 5). They have to be calculated

numerically such as by a finite element or finite difference scheme. We recently presented

a new Gaussian quadrature grid scheme for evaluation of the Green’s functions, which

enables easy incorporation of surface topography and medium anisotropy (ZHOU et al.,

2009). The quantity wp appearing above is the product of the Gaussian weights (for each

coordinate direction) at the Gaussian point p. The volume is divided into a 3-D Gaussian

quadrature grid and a Gaussian quadrature formula used to calculate the volume integral

arising in the weak form of solution of the partial differential equation.

The first term inside the brackets in the above expression involves the derivatives of

the conductivity tensor with respect to each of the independent parameters (normally the

eigenvalues or principal conductivities, and the angles defining their directions). They

can be evaluated once the specific class of anisotropy is specified (see later).

Dropping the p and b subscripts, recognising the symmetry of the conductivity tensor,

and omitting the current strength and Gaussian weight terms, we can write out equation

(38) in full for a given model parameter m in terms of all the components:
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� oU

om
¼ orxx

om
:
oGA

ox
:
oGM

ox
þ oryy

om
:
oGA

oy
:
oGM

oy
þ orzz

om
:
oGA

oz
:
oGM

oz

þ orxy

om

oGA

ox
:
oGM

oy
þ oGA

oy
:
oGM

ox

� �

þ orxz

om

oGA

ox
:
oGM

oz
þ oGA

oz
:
oGM

ox

� �

þ oryz

om

oGA

oy
:
oGM

oz
þ oGA

oz
:
oGM

oy

� �
:

ð39Þ

In the case of an isotropic medium we have:

rxx ¼ ryy ¼ rzz ¼ r; rxy ¼ rxz ¼ ryz ¼ 0 ð40Þ

all the cross terms above disappear, the derivatives orii

om all equal 1 and equation (39)

reduces to:

oU

or
¼ �rGA:rGM ð41Þ

which apart from the constant factor I (strength of current source) is the same result as

obtained by ZHOU and GREENHALGH (1999).

Equations (38) and (39) are in terms of potential, and are really applicable to a pole-pole

(two electrode) configuration. When working with potential difference or apparent resistivity

qa, say for three electrode or four electrode arrays, the expression can be easily modified.

However, in such cases the potential for each current source (or sink) and each of the potential

electrodes (adjoint sources) would have to be considered (see ZHOU and GREENHALGH, 1999

for the isotropic case expressions for qqa/qr). In fact, all electrode combinations can be

synthesised from the pole–pole configuration by simple algebraic addition.

A M

r r′

Current source
Potential electrode

(adjoint source)

Subsurface point 
Model parameters σij (ρij)

Green’s function
Green’s function

( )AG r ( )MG r′

Figure 5

Arbitrary Gaussian point p inside the anisotropic medium at which the Fréchet derivative is to be calculated. The

Fréchet derivative depends on the two Green’s functions for the true current source A and the adjoint current

source (or potential electrode position) M. The conductivity tensor at this Gaussian point is rij(p).
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4.2. Uniform TTI medium

The Green’s functions in the case of a uniform anisotropic medium can be calculated

analytically. In earlier sections, we derived expressions for the potential at some

arbitrary position in a uniform TI medium, due to a current source on the surface. In this

case, the Green’s functions are simply evaluated as the potential divided by the current

strength. In the case of the adjoint source (receiver position) we place a current source

of strength I at this position and calculate the potential at the subsurface point in

question. Obviously the co-ordinates specified for the true source to point P in the

medium will be different to those for the adjoint source, although the functional form is

identical.

Using the expression:

G ¼ K

R 1þ ðk2 � 1Þ cos2 w
� �1=2

ð42Þ

with K ¼ kql

2p we can calculate the derivatives needed using the chain rule as follows:

oG

ox
¼ oG

o cos w
:
o cos w

ox
þ oG

oR
:
oR

ox

oG

oy
¼ oG

o cos w
:
o cos w

oy
þ oG

oR
:
oR

oy

oG

oz
¼ oG

o cos w
:
o cos w

oz
þ oG

oR
:
oR

oz

: ð43Þ

The various terms appearing in equation (43) can be evaluated thus:

oG

o cos w
¼ �Kðk2 � 1Þ: cos w

Rð1þ ðk2 � 1Þ cos2 wÞ3=2
; ð44Þ

oG

oR
¼ �K

R2ð1þ ðk2 � 1Þ cos2 wÞ1=2
; ð45Þ

oR

ox
¼ x

R
;

oR

oy
¼ y

R
;

oR

oz
¼ z

R
: ð46Þ

The other derivatives of cosw with respect to x, y and z must also be obtained

implicitly because of the x, y, and z dependence in the / and h terms which make up cosw
(see equation 25):

o cos w
ox

¼ o cos w
o/

:
o/
ox
þ o cos w

oh
:
oh
ox

o cos w
oy

¼ o cos w
o/

:
o/
oy
þ o cos w

oh
:
oh
oy

o cos w
oz

¼ o cos w
o/

:
o/
oz
þ o cos w

oh
:
oh
oz

ð47Þ
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where

o cos w
o/

¼ � sin h0 sin h sinð/� /0Þ ¼ � sin h0 sin hðsin / cos /0 � cos / sin /0Þ

o cos w
oh

¼ sin h0 cosð/� /0Þ cos h� cos h0 sin h

: ð48Þ

The other derivatives for qh/qx, qh/qy, qh/qz, q//qx, q//qy, q//qz appearing in

equation (47) are derived in the Appendix and shown to be:

oh
ox
¼ xz

R2:ðx2 þ y2Þ1=2

oh
oy
¼ yz

R2:ðx2 þ y2Þ1=2

oh
oz
¼ ðx

2 þ y2Þ1=2

R2

ð49Þ

and

o/
oz
¼ 0;

o/
ox
¼ � y

x2 þ y2
;

o/
oy
¼ 1

x:ð1þ y2=x2Þ :
ð50Þ

In the case of an isotropic medium k = 1 and equation (44) is equal to zero. This

yields all of the first set of terms on the right-hand side of equation (43) equal to zero, and

therefore no dependence of the Fréchet derivatives on the polar angles: /0, h0. Equation

(45) takes on the much simpler form: -K/R2, independent of cos w.

Returning to the anisotropic case, we have shown above that all of the required spatial

derivatives of the Green’s functions can be computed in terms of elementary functions

involving the position coordinates x, y, z for the subsurface point in question, be it

measured from either the real current source or the adjoint current source.

It remains to calculate the various derivatives of the conductivity tensor with respect

to the chosen parameters. In the TTI case this involves the following terms:

orxx

orl
;
orxx

ort
;
orxx

oh0

;
orxx

o/0

oryy

orl
;
oryy

ort
;
oryy

oh0

;
oryy

o/0

orzz

orl
;
orzz

ort
;
orzz

oh0

;
orzz

o/0
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orxy

orl
;
orxy

ort
;
orxy

oh0

;
orxy

o/0

orxz

orl
;
orxz

ort
;
orxz

oh0

;
orxz

o/0

oryz

orl
;
oryz

ort
;
ryz

oh0

;
oryz

o/0

:

These derivatives are trivially simple and can be easily calculated from equation

(16).

4.3. 2.5-D Case – Profile Perpendicular to Strike

We will now look at the special 2.5-D case in which the profile is assumed to be

perpendicular to strike. Therefore the effect of azimuth can be ignored. In this situation

we have rxy = ryz = 0 and all derivatives involving these components go to zero.

Referring to equation (17) the only tensor derivative components to consider are:

orxx

orl
¼ cos2 h0;

orxx

ort
¼ sin2 h0;

orxx

oh0

¼ ð�rl þ rtÞ sin 2h0;
orxx

o/0

¼ 0

oryy

orl
¼ 1;

oryy

ort
¼ oryy

oh0

¼ oryy

o/0

¼ 0

orxz

orl
¼ �orxz

ort
¼ 0:5 sin 2h0;

orxz

oh0

¼ ð�rl þ rtÞ cos 2h0;
orxz

o/0

¼ 0

orzz

orl
¼ sin2 h0;

orzz

ort
¼ cos2 h0;

orzz

oh0

¼ ðrl � rtÞ sin 2h0;
orzz

o/0

¼ 0

: ð51Þ

Substituting into equation (39) we obtain the following expressions for the

sensitivities:

oU

orl
¼ cos2 h0

oGA

ox
:
oGM

ox
þ oGA

oy
:
oGM

oy
þ sin2 h0:

oGA

oz
:
oGM

oz

þ 0:5 sin 2h0

oGA

ox
:
oGM

oz
þ oGA

oz
:
oGM

ox

� �

oU

ort
¼ sin2 h0

oGA

ox
:
oGM

ox
þ cos2 h0

oGA

oz
:
oGM

oz
� 0:5 sin 2h0

oGA

ox
:
oGM

oz
þ oGA

oz
:
oGM

ox

� �
:

oU

oh0

¼ð�rl þ rtÞ sin 2h0

oGA

ox
:
oGM

ox
þ ðrl � rtÞ sin 2h0

oGA

oz
:
oGM

oz

þ ðrl � rtÞ cos 2h0

oGA

ox
:
oGM

oz
þ oGA

oz
:
oGM

ox

� �
ð52Þ

In the isotropic case (rl = rt = r)we find that qU/qh0 = 0, and the Fréchet

derivative:
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oU

or
¼ 1

2

oU

orl
þ oU

ort

� �
;

leads to a cancellation of all the cross terms involving the Green’s functions and

elimination of all h0 dependence, yielding the same result as equation (41). Note that

oU=oq ¼ � 1
q2 oU=or; yielding a scaling factor and change of sign between the

conductivity and resistivity sensitivities.

5. Illustrative Examples

The equations derived earlier were incorporated into a simple computer program to

calculate the potential, current density and Fréchet derivatives (for a pole-pole array) at

any interior point within a uniform TTI medium of arbitrary dip, strike, average

conductivity and coefficient of anisotropy. Figure 6a shows the equipotential and current

density patterns in the subsurface for a surface current electrode over a uniform, isotropic

medium with a conductivity of 0.1 S/m. The diagram is for a single vertical slice through

the current electrode which is located at position (0, 0). Note the circular equipotential

patterns and the constant magnitude of the current density vectors (indicated by arrows) at

a fixed radial distance from the current electrode. There is no angular variation of the

current density. Both the potential and the current density fall off inversely with distance.

Note also that the current density vectors are everywhere orthogonal to the equipotential

contours. By contrast, Figure 6b shows the corresponding patterns for a current electrode

on the surface above a uniform, anisotropic TI medium with a longitudinal conductivity of

0.1 S/m, a transverse conductivity of 0.02 S/m (coefficient of anisotropy of 2.2) and a

dipping axis of symmetry of tilt angle 45 degrees. The azimuth of the axis of symmetry is

/0 = 0�. The cross section is at an azimuth of / = 0� and passes through the current

source. We now observe a pronounced asymmetry in the equipotential patterns (elliptical)

with the long axis of the ellipse in the longitudinal direction (i.e., parallel to the bedding

plane). The current density now not only falls off with increasing distance from the current

source but there is also a pronounced angular variation, with maximum current density in

the longitudinal (most conductive) direction (i.e., parallel to the plane of stratification) and

minimum current density in the transverse conductivity direction (parallel to the bedding

plane normal). Also we observe that the current density vectors are no longer

perpendicular to the equipotential contours, except along the axes of the ellipse.

We now wish to examine the Fréchet derivatives. First we show in Figure 7 the

sensitivity pattern dG/dr for an isotropic medium in which the conductivity is 0.1 S/m.

The current source is at position (5, 0) and the potential electrode at position (10,0). The

cross section shown passes through the electrodes and is at an azimuth of 0�. The pattern is

symmetrical, with maxima close to the electrodes. The sensitivities are positive between

the electrodes and negative on either side (the opposite pattern would be obtained if we

plotted dG/dq). This isotropic sensitivity plot is identical to that obtained by other authors
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(e.g., SPITZER, 1998). We now wish to contrast the isotropic pattern with that for an

anisotropic medium having a coefficient of anisotropy of k = 2 (rl = 0.1S/m,

rt = 0.025S/m). Again the cross-sections shown will be for an azimuth / = 0� (i.e.,

perpendicular to strike of the plane of stratification) and passing through the electrodes.

The current electrode is at position (5, 0) and the potential electrode is at (10, 0), as for the

isotropic case (Fig. 7). Three different derivatives must be considered in the anisotropic
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Figure 6

The equipotential contours and current density vectors (shown by arrows) for (a) an isotropic medium of

conductivity 0.1 S/m, and (b) an anisotropic medium with a longitudinal conductivity of 0.1 S/m, a transverse

conductivity of 0.025 S/m, and a dip angle for the axis of symmetry of 45 degrees. The profile is perpendicular

to the strike. Note how the current density vectors vary with the angle in the anisotropic case, being maximum

parallel to the plane of stratification (longitudinal direction), and are not perpendicular to the equipotential

contours.
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case: dG/drl, dG/drt, dG/dh0. Results are given in Figures 8, 9 and 10, respectively. Each

figure shows the sensitivity patterns for three different values of the dip of the symmetry

axis, h0 = 15, 45, 75 degrees. Unlike the isotropic case, the anisotropic sensitivity patterns

are all distinctly asymmetrical. The longitudinal conductivity sensitivity qG/drl contours

of greatest magnitude (Fig. 8) are aligned and elongated in the direction of lines that run

from the electrodes parallel to the plane of isotropy (i.e., orthogonal to the axis of

symmetry). Conversely, the smallest sensitivity regions are found along lines that run from

the electrodes parallel to the axis of symmetry. In comparison to the isotropic pattern

(Fig. 7), all plots exhibit shifts in the positions of both the negative and positive contours

such that they follow the direction of maximum conductivity. The sensitivities decrease

markedly with increasing dip. There is negligible longitudinal conductivity sensitivity at

the surface between and outside the electrodes for the h0 = 75� case (corresponding to

steeply dipping beds).The transverse conductivity sensitivities oG=drt, shown in Figure 9,

again display an asymmetrical pattern, with the greatest magnitude sensitivity along lines

drawn through the electrodes that are orthogonal to the plane of isotropy (i.e., parallel to

the axis of symmetry). Sensitivity is smallest in magnitude along lines drawn through the

electrodes which are parallel to the plane of isotropy, i.e., in the minimum conductivity

direction. This is in striking contrast to the longitudinal sensitivity pattern (Fig. 8). The

steepness of the pattern increases with increasing dip angle h0, and by comparison with the

corresponding dG/drl pattern, there is appreciable sensitivity both at the surface and in

the subsurface for all dips. In fact, there is greater sensitivity at depth with increasing dip.

The sensitivities are mainly positive between the electrodes but actually become negative

at a depth of half the electrode separation in the case of shallow dip (h0 = 15�). The

sensitivity pattern dG/dh0, shown in Figure 10, exhibits a rather unusual pattern. For small

dips (15�) the plot is dominated by the region below the electrodes, with the null lines

elongated parallel to the plane of isotropy. For intermediate (45�) and steep dips (75�) the

plots look remarkably similar to the dG/drl patterns, with large magnitude sensitivities
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areas located along lines drawn through the electrodes and in the direction perpendicular

to the axis of symmetry. However, sensitivity drops dramatically between the electrodes as

the dip increases.

The validity of the plots has been confirmed by comparison with results obtained

numerically. Of course, the analytic plots are much ‘‘cleaner’’ and do not suffer from

numerical artefacts. The Fréchet derivatives in heterogeneous, anisotropic media are the

subject of ongoing research. The analytic solution reported here serves not only as a
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longitudinal conductivity 0.1 S/m, and transverse conductivity 0.025 S/m (coefficient of anisotropy k = 2). The

profile is perpendicular to the strike. Results are given for three different dips of the symmetry axis (transverse
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pattern compared to Figure 7 and the elongation of contours in the direction of the plane of stratification

(longitudinal conductivity direction).
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Fréchet derivatives for the transverse conductivity, dG/drt. The same anisotropic TTI model and electrode

configuration (pole-pole) are derived as in Figure 8. The three cross sections are for different dips of the

symmetry axis: 15� (a), 45� (b) and 75� (c). Again strong asymmetry in the patterns exists, with maxima around

the electrodes and a decrease in sensitivity with depth.
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benchmark for assessing the accuracy of the numerical solutions but also allows one to

illuminate the behaviour of DC fields and sensitivity patterns present in 3-D numerical

computations but often obscured by excessive complexity. In companion papers

(GREENHALGH et al., 2008b; WIESE et al., 2008), we have undertaken a comprehensive

analysis of the complete set of Fréchet derivatives, expressed in terms of principal values

(or alternative rm, k formulation) and polar angles of the symmetry axis, for a wide range

of dips, azimuths and anisotropy (k) values. These other studies illustrate the dangers of

using isotropic sensitivities when the ground is anisotropic, the consequences of electrical

equivalence, and also some rather peculiar zero sensitivity conditions. In terms of

experimental design, it seems mandatory to incorporate downhole electrodes to

discriminate and characterise anisotropy. Although field determinations of anisotropy

are beyond the scope of this article, it is insufficient to rely on surface measurement

procedures such as azimuthal resistivity surveys (BUSBY, 2000) and square array

techniques (MATIA, 2002) alone.
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Fréchet derivatives for the dip angle of the symmetry axis, dG/dh0. The same anisotropic TTI model and electrode

configuration are derived as for Figures 8 and 9. The three cross sections are for different dips of the symmetry

axis: 15� (a), 45� (b) and 75� (c). Note how the patterns become increasingly asymmetric with increasing dip.
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6. Conclusions

We have reviewed the basic properties of the electric conductivity tensor and the

tensor ellipsoid. Equations are developed for computing the six individual components

of the tensor in terms of the principal conductivities and the angles defining the major

symmetry axis. For an anisotropic medium the current density vector is not

perpendicular to the equipotentials but is perpendicular to the tangent plane at to

the surface of the ellipsoid for a given direction of the electric field. We have derived

the basic equations for the electric potential, current density and Fréchet derivatives at

any interior point within a uniform anisotropic model. The model we consider is a

tilted transversely isotropic solid characterised by four parameters: longitudinal

conductivity rl, transverse conductivity rt, strike of the symmetry axis /0 and dip of

the symmetry axis h0. Representative plots are given showing the sensitivity variations

(Fréchet derivatives) for different combinations of the parameters. In contrast to the

isotropic case, there is pronounced asymmetry in the Fréchet derivative patterns,

which show an alignment with the plane of stratification. Knowledge of the

derivatives will be useful in designing 3-D surface electrode arrays (tensor field

measurements) to best recover anisotropy, and in the inversion of actual resistivity

data. This is the subject of ongoing research, however results to date show some

rather surprising patterns and the need to incorporate downhole electrodes to detect

and characterise electrical anisotropy

Appendix. Derivation of the h and / Spatial Derivatives

Equation (47) involves spatial derivatives terms of the polar angles h and / which

specify, along with radial distance R, the subsurface point (x, y, z) at which the Fréchet

derivative is to be computed. Here we derive equations for these derivatives.

For the h derivatives we use the relation:

cos h ¼ z=R ¼ z=ðx2 þ y2 þ z2Þ1=2 ðA1Þ

to obtain

� sin h
oh
ox
¼ o

ox

z

ðx2 þ y2 þ z2Þ1=2

 !
¼ �xz

ðx2 þ y2 þ z2Þ3=2

� sin h
oh
oy
¼ �yz

ðx2 þ y2 þ z2Þ3=2

� sin h
oh
oz
¼ o

oz

z

ðx2 þ y2 þ z2Þ1=2

 !
¼ x2 þ y2

ðx2 þ y2 þ z2Þ3=2

: ðA2Þ
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But

sin h ¼ ð1� cos2 hÞ1=2 ¼ ð1� z2=R2Þ1=2 ¼ ðx2 þ y2Þ1=2=R: ðA3Þ

This then yields for the h derivatives:

oh
ox
¼ xz

R2:ðx2 þ y2Þ1=2

oh
oy
¼ yz

R2:ðx2 þ y2Þ1=2

oh
oz
¼ ðx

2 þ y2Þ1=2

R2

:

For the / derivatives we use the relation

tan / ¼ y=x ðA4Þ

to obtain

o/
oz
¼ 0

sec2 /:
o/
ox
¼ �y

x2
; sec2 /:

o/
oy
¼ 1

x

ðA5Þ

with

sec2 / ¼ 1þ tan2 / ¼ 1þ ðy2=x2Þ ðA6Þ

giving

o/
ox
¼ � y

x2 þ y2

o/
oy
¼ 1

x:ð1þ y2=x2Þ

: ðA7Þ
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