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1

Abstract—The paper discusses the performance and robustness

of the Bayesian (probabilistic) approach to seismic tomography

enhanced by the numerical Monte Carlo sampling technique. The

approach is compared with two other popular techniques, namely

the damped least-squares (LSQR) method and the general optimi-

zation approach. The theoretical considerations are illustrated by an

analysis of seismic data from the Rudna (Poland) copper mine.

Contrary to the LSQR and optimization techniques the Bayesian

approach allows for construction of not only the ‘‘best-fitting’’

model of the sought velocity distribution but also other estimators,

for example the average model which is often expected to be a

more robust estimator than the maximum likelihood solution. We

demonstrate that using the Markov Chain Monte Carlo sampling

technique within the Bayesian approach opens up the possibility of

analyzing tomography imaging uncertainties with minimal addi-

tional computational effort compared to the robust optimization

approach. On the basis of the considered example it is concluded

that the Monte Carlo based Bayesian approach offers new possi-

bilities of robust and reliable tomography imaging.

Key words: Mining-induced seismicity, seismic tomography,

Bayesian inversion, Markov Chain, Monte Carlo.

1. Introduction

Seismic velocity tomography is an inversion

technique aimed at imaging the spatial distribution of

velocity heterogeneities in global, regional, local or

even laboratory-scale problems. It relies on high

frequency approximation to the wave equation

according to which seismic energy may be assumed

to propagate along an infinitesimal ‘‘tube’’ between

the source and the receiver, called the ray path.

Hence, the wave travel time between two points

provides information on the average seismic velocity

along the ray path. If the travel-time data are available

for a number of ray paths probing different parts of

the studied area, it becomes possible to obtain a

spatial map of local heterogeneities of the velocity

distribution. The obtained velocity distribution

(tomogram) is usually a starting point for further

seismological, mineralogical, tectonic, or similar

analysis. To make this interpretation as quantitative

as possible, a quantitative estimation of the tomog-

raphy uncertainties and their spatial distribution is

required. Currently this can be done in two ways.

Assuming a linear or linearized forward problem and

Gaussian-type data, modeling and a priori errors, the

imaging errors can be approximated by a covariance

matrix calculated under the minimum least-squares

approach assumption (NOLET et al., 1999; YAO et al.,

1999). This is a very simple and efficient technique

but its applicability is strongly limited by the under-

lying assumption of the linear/linearized forward

problem. Also the assumption on the Gaussian char-

acter of the data or modeling errors is quite restrictive.

The second approach relies on the Bayesian (also

called probabilistic) approach which is capable of

dealing with highly nonlinear forward problems and

all types of errors. The limitation of the approach

comes only from the available computational

resources as it requires quite exhaustive numerical

calculations. This is becoming an increasingly

unimportant consideration, however. The advantages

of using the Bayesian inversion technique for solving

tomography problems are so great that it should be

used whenever possible.

This paper examines new possibilities offered by

applying Bayesian inversion using Monte Carlo

sampling to passive seismic tomography in under-

ground mine scenarios. First, the basic elements of

the classical, travel-time based velocity tomography
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are sketched. Next, two classical inversion algo-

rithms, namely the algebraic and optimization

techniques are briefly reviewed. Then, the Bayesian

approach-including some elements of the Monte

Carlo sampling technique—is discussed in detail.

Finally, all three methods are applied to two-dimen-

sional passive tomography imaging at the Rudna

(Poland) copper mine.

The basic tomographic forward problem relates

the observable travel-time data dobs with the slowness

distribution s(r) and reads (AKI and RICHARDS, 1985)

dthðsÞ ¼
Z

ray½s�

sðrÞdl; ð1Þ

where s(r) denotes slowness (inverse of velocity), dth

is the predicted travel time, and the integral is taken

along a seismic ray path. The ray path depends on the

slowness distribution, and so Eq. 1 is highly nonlin-

ear. However, this effect may often be neglected in

the case of local seismic tomography if the slowness

distribution does not have large gradients (CARDAR-

ELLI and CERRTO, 2002). Such a simplification makes

the tomography problem easier to solve at the cost of

a slight loss of tomogram sharpness (MAXWELL and

YOUNG, 1993). We follow this assumption throughout

the analysis presented here.

Having a set of travel-time data d = (t1, t2, …tN)

recorded for different source-receiver pairs and the

discretized slowness distribution (for example,

assuming that the imaged area may be described as a

set of homogeneous cells), the linear tomographic

forward problem can be written as a set of linear

equations

dth
i ¼

XM
j

Gijsj i ¼ 1. . .N; ð2Þ

where s = (s1, s2, …sM) is the vector of the discretized

slowness field and G is a matrix whose elements Gij

are equal fractions of the ith ray path in the jth cell.

2. Inverse Algorithms

Inversion of the slowness parameters s can be

carried out in various ways, among which the direct

algebraic solution and the optimization approaches

are the most common (IYER and HIRAHARA, 1993).

Another relatively new approach, referred to as the

Bayesian (or probabilistic) approach, is based on

sampling of the a posteriori probability density and is

a method based on the pioneering work of TARANTOLA

and VALLETE (1982) (see also SAMBRIDGE and

MOSEGAARD (2002) for a review of the history of

applying the Monte Carlo technique in geophysics).

The Bayesian approach has been gaining more and

more popularity recently (CURTIS and LOMAX, 2001;

BOSCH et al., 2000; MOSEGAARD and TARANTOLA, 2002;

DȨBSKI, 2004). The reasons for this include the

method’s advantages (flexibility, ability to deal with

highly nonlinear forward problems, and easy esti-

mation of inversion errors at almost no additional

cost) and the simultaneously rapid development of

the computational resources which are required for

large-scale tomographic tasks.

2.1. Algebraic Solution

If the forward modeling formula given by Eq. 1 is

linear or can be linearized, the relation between the

data d and model parameters s (slowness) takes the

form of a set of linear equations

d ¼ G � s: ð3Þ

The problem of inverting for s from dobs can be

viewed as the task of solving the set of linear equa-

tions using as d the results of measurements dobs.

This task can be accomplished within a simple

algebraic approach (MENKE, 1989; TARANTOLA, 1987;

PARKER, 1994) by a matrix manipulation, as follows.

In the first step, the so-called normal equation is

formed by multiplying both sides of Eq. 3 by the

transposed GT operator (matrix)

GT dobs ¼ ðGT �GÞs: ð4Þ

The matrix GTG is a square matrix which usually

cannot be inverted yet because of possible singular-

ity. To fix this problem, the GT G matrix is

regularized which, in the simplest case, is achieved

by adding a small diagonal term:

GT �G �! GT �Gþ cI; ð5Þ

where I is a diagonal matrix. Finally, the analytical

formula for the model slsqr regarded as the solution
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can be cast into the form with the explicitly intro-

duced initial (a priori) model sapr (MENKE, 1989;

TARANTOLA, 1987)

slsqr ¼ sapr þ ðGT �Gþ cIÞ�1GTðdobs �GsaprÞ
þ Oðc2Þ: ð6Þ

This form is particularly convenient when slsqr is

estimated iteratively (TARANTOLA, 1987) and is de

facto the starting point of various linear inversion

techniques (PARKER, 1994; LIMES and TREITEL, 1983).

The above formula for slsqr in fact coincides with

the solution obtained by the optimization approach

(method 2), when the least-squares difference

between observed and modeled travel times is

minimized subject to an additional ‘‘smoothness’’

condition. That is why this method is often called the

LSQR (Damped Least- Squares) solution (PARKER,

1994; MENKE, 1989).

The algebraic approach described above can be

classified as a back-projection technique (DEANS,

1983) as it performs a direct projection of the data

spaceD onto the model spaceM (PARKER, 1994). The

apparent advantage of this technique is its ability to

cope with extremely large-scale problems as various

numerical algorithms can find slsqr quickly and

efficiently. However, the method requires the forward

problem to be linear or approximately linear, which

limits its application to weakly heterogeneous media.

Moreover, the method, being equivalent to the l2
norm-based optimization, is non-robust and requires

very high quality data to yield acceptable results

(TARANTOLA, 1987; MENKE, 1989; DȨBSKI, 2004).

2.2. Optimization Approach

Although the above approach is attractive due to

its simplicity and ability to deal with large-scale

problems, it suffers from a lack of generality as it is

restricted to explicit linear problems. It also suffers

from a lack of mathematical rigorousness because of

ad hoc regularization and unclear physical meaning

of the regularization procedure. Both drawbacks are

eliminated within the so-called optimization tech-

nique (method 2).

The idea of the optimization method is to search

for a model for which predicted data are as close as

possible to the observed data with respect to a given

norm. However, the optimization problem posed in

this way is often non-unique, since the minimized

differences between observed data and predictions for

the current model can be multi-modal. Thus, there is

often a need for regularization which could reduce

the solutions non-uniqueness (MENKE, 1989). This is

usually achieved by requiring the optimum model to

be ‘‘smooth’’ or, more generally, to be somehow

similar to an initial a priori model. Taking this into

account, the discussed approach turns the inverse task

into an optimization (minimization) problem for the

so-called misfit function

SðsÞ ¼ jjdobs � dthðsÞjjD þ jjs� saprjjM; ð7Þ

where jj � jjD and jj � jjM denote the norms in the data

(D) and the model (M) spaces. They measure the

‘‘distances’’ between observed and predicted data

(jj � jjD) and between current and a priori models

(jj � jjM) The choice of the norms and parameters

through which they are defined determines the rela-

tive influence of both terms on the final solution,

similar to the choice of the damping parameter c in

Eq. 6. Some of the most popular norms used in the

context of geophysical data inversion are listed in

Table 1.

The main difference between the various norms

stems from how unexpected outliers in data or

predictions are treated. The quadratic norm (l2 norm)

is not a robust norm in the sense that it cannot

properly handle data sets that include even just a few

large outliers. On the other hand, the Cauchy norm

(lc) is the most robust and can be used to invert data

strongly contaminated by large errors. The perfor-

mance of the l1 norm is a case in between the l2 and lc
norms (KIJKO, 1994). It can efficiently and accurately

handle data sets with a moderate number of outliers

(KIJKO, 1994). It is important to note that the more

robust a given norm is, the less constrained is the final

solution. In extreme situations this effect can lead to

Table 1

Examples of norms used to measure the ‘‘distance’’ in a data/model

space. Cij and Ci are the constants defining the norms

l1 jjdjjl1 ¼
P

i

di

Ci

�� �� Absolute value norm

l2 jjdjjl2 ¼
1
2

P
ij

diCijdj Quadratic norm

lc jjdjjlc ¼
P

i

log 1þ di

Ci

� �2
� �

Cauchy norm
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instabilities of numerical (optimization) algorithms

used to find the ‘‘best’’ model (DȨBSKI, 2004). Hence,

the choice of the ‘‘best performing’’ norm depends on

data quality and modeling accuracy.

For a given data set the quality of the solution

found by the optimization technique depends on the

quality of the optimizer used, the norms selected and

often how well the a priori model approximates the

true solution. If the observational data set contains

outliers, the l2 norm will often fail to give any

reasonable results (SCALES, 1996; DȨBSKI, 1997a, b;

TARANTOLA, 1987). Also the choice of the initial

(a priori) model sapr requires some attention and is

quite crucial if any local optimization approach (for

example, a gradient-based technique) is employed to

search for the best model. If sapr is taken too far from

the ‘‘true’’ model there is a great risk that the

employed optimizer will converge to a model which

corresponds to a local minimum and not the global

minimum. This risk is significantly reduced when

global optimization techniques such as Simulated

Annealing, Genetic Algorithm, or Nearest Neighbor-

hood algorithm are used (SEN and STOFFA, 1995;

MICHALEWICZ, 1996; SAMBRIDGE, 1999).

Finally, let us note that this approach is not

limited to the linear forward problem like the LSQR

method. The optimization approach can cope with

any forward problem. Furthermore, the optimization

approach reduces to an analytical approach when the

forward problem is linear and the norms jj � jjD and

jj � jjM are both l2 (TARANTOLA, 1987; MENKE, 1989;

LIMES and TREITE, 1983).

2.3. Bayesian Inversion

Due to its generality, the optimization method

reviewed above is often used in geophysical tomog-

raphy problems (ZHAO, 2001; IYER and HIRAHARA,

1993; NOLET, 1987). The main drawback of this

approach is a lack of reliable estimation of the

solutions quality. This is because the optimization

technique provides the solution of the inverse prob-

lem in the form of a single (optimum) model and

cannot evaluate the ‘‘size’’ of the part of the model

space around the optimum model consisting of

models leading to similar residua as the optimum

model. Exploration of the model space for mapping

such a region is necessary for systematic error

evaluation (TARANTOLA, 2005; DȨBSKI, 2004; CURTIS

and LOMAX, 2001; SCALES, 1996; DUIJNDAM, 1988).

Actually, for the LSQR method there exists an

error estimator called the LSQR posterior covariance

matrix (MENKE, 1989; NOLET et al., 1999; YAO et al.,

1999). However, this error estimate is restricted by

the assumed linear forward problem, Gaussian-type

distribution of the data and forward modeling errors

or approximations, to name a few factors, which often

result in misleading values in real cases. The above

drawbacks of the optimization approach are conve-

niently overcome by the application of Bayesian

inverse theory to the tomography problem (BOSCH,

1999; DȨBSKI, 2004).

The solution of the tomographic inverse problem

using the Bayesian inverse theory consists in building

the a posteriori probability distribution r(s) over the

model space which describes the probability of a

given model (s) being the true one (TARANTOLA, 1987;

DȨBSKI, 2004).

It has been shown by TARANTOLA and VALLETE,

(1982), TARANTOLA (1987), JACKSON and MATSU’URA

(1985) that, in general, r(s) is the product of a

distribution f(s) describing a priori information by a

likelihood function L(s) which measures to what

extent theoretical predictions fit the observed data:

rðsÞ ¼ const.f ðsÞLðsÞ; ð8Þ

where the constant represents a normalization of the

probability density and the likelihood function L(s)

reads (see, for instance, TARANTOLA, (2005); DȨBSKI

(2004))

LðsÞ ¼ exp �kd� dthðsÞk
� �

: ð9Þ

Knowing the r(s) distribution allows not only to

find the most likely model sml for which r(sml) = max

but also other characteristics like, for example, the

average model and the variance which provides a

convenient measure of imaging accuracy. These two

basic characteristics of the a posteriori distribution

r(s) are very important.

The most important operational difference

between the probabilistic approach and those dis-

cussed previously consists in the different form of the

solutions. While the algebraic and optimization

techniques provide a single, in a sense optimum
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estimation of the sought parameters, the probabilistic

solution is a probability distribution over the model

space which quantifies the ‘‘chance’’ that a given

model is the true one. In this way it provides a natural

framework for comparing different models and

allows a very general estimation of inversion

uncertainties.

At this point I would like to offer two comments

on a popular use of the Bayesian inversion technique.

Very often, instead of sampling of the a posteriori

PDF only the global maximum of the r(s) is sought

(e.g., DȨBSKI and YOUNG, 2002) and claimed to be the

solution of the Bayesian inversion. It is obviously a

correct procedure, but it reduces the full Bayesian

inversion to the optimization method, disregarding

the potential ability of the Bayesian method to deal

with error analysis.

A similar situation occurs when the a posteriori

PDF is a Gaussian distribution due to a specific

assumption about the a priori PDF and the form of

the likelihood function (linear or linearized forward

problem and Gaussian error statistics). In such a case,

the a posteriori PDF r(s) is fully described by two

parameters, namely the likelihood model sml and the

covariance matrix Cp equivalent to the algebraic

solution given by Eq. 6. (MENKE, 1989; TARANTOLA,

1987; PARKER, 1994). Solving the inverse problem is

then often understood as finding their numerical

values by directly solving Eq. 6 (e.g. TAYLOR et al.,

2003) and building the covariance matrix (MENKE,

1989), which is obviously correct but is more of an

algebraic method than a general Bayesian technique.

3. Solving Tomography Problems—Bayesian Point

of View

The important question at this point is which of

the inverse methods should be chosen to solve a

particular tomography problem. I argue that when-

ever available computational resources allow, the

probabilistic approach should be used. The arguments

are as follows.

First of all, it should be recognized that when

solving any tomography (inverse) problem we face

various types of uncertainties (TARANTOLA, 1987;

SCALES, 1996).

Any piece of information we use to solve an

inverse task always represents some degree of

uncertainty. For example, any travel-time measure-

ment we perform has a finite accuracy either due to

the applied method or due to the finite resolution of

the hardware (usually both). Thus, it is quite natural

to describe the output of a measurement by means of

the appropriate probability density function (PDF)

describing the statistics of the experimental errors.

Besides the observational uncertainties discussed

above there are also theoretical errors caused by an

approximate (or simplified) calculation of theoretical

predictions necessary for a comparison with obser-

vational data. Numerical calculations are also a source

of additional modeling errors. As a consequence we

face a situation where the theoretical predictions are

also disturbed by some errors which can be modeled

conveniently by a probability distribution.

The solution to the inverse problem also includes

some a priori assumptions and information. By a pri-

ori I mean all the information that is not connected

with the current measurement but results from pre-

viously acquired knowledge, experience, previous

measurements, and so forth. This a priori knowledge

is never perfect. It is usually quite vague. If for some

reason the a priori uncertainties were small, we would

not need to make any inversion; we would simply

know the solution. The a priori information can also

be described in terms of the probability distribution

interpreted according to the Bayesian point of view as

a measure of ‘‘confidence’’ about the sought param-

eters (JEFFREYS, 1983; GELMAN et al., 1997; SCALES

and SNIEDER, 1997).

The Bayesian (probabilistic) inverse theory allows

for consistent treatment of all the above-mentioned

uncertainties. This is one of the most important

advantages of this technique which allows incorpo-

ration of an exhaustive error analysis into solving the

inverse problem.

One very important fact concerning the probabi-

listic technique is that it allows calculation of more

statistical estimators of the true model strue than just

the simplest, best-fitting maximum likelihood model

sml , as discussed below.

Finally, a typical tomography problem is charac-

terized by a highly nonlinear forward modeling

relation (ray-path bending) which leads to a complex
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form of the misfit function often having a number

of secondary minima. In such a situation solving

the tomography problem by seeking the model

which best fits the data within the optimization

technique requires a very careful choice of the

numerical optimization algorithms: Local, gradient-

based optimization algorithms should generally be

avoided. In the case of the Bayesian approach the

complex, non-Gaussian form of the a posteriori PDF

function is also a problem, especially when local

maxima of the a posteriori PDF are significantly

separated in the model space, however there exist

many quite efficient Monte Carlo samplers that can

sample quite complicated ‘‘non-bell-shaped’’ func-

tions (ROBERT and CASELLA, 1999).

3.1. Bayesian Solutions

More than just a technical problem emerges at this

point. Specifically, the problem is how to inspect the

a posteriori PDF distribution to extract the required

information when in most practical cases the a

posteriori PDF is a complicated, multi-parameter

function. Basically, there are three different strategies

to explore the a posteriori probability density func-

tion: evaluating the point estimators, calculating the

marginalPDF distributions, or sampling the a posteri-

ori PDF.

3.1.1 Point Estimators

The first approach relies on searching for the point

estimators among which the most popular are the

lowest-order moments of the a posteriori PDF

(JEFFREYS, 1983):

1. The maximum likelihood model

sml : rðsmlÞ ¼ max; ð10Þ

2. The average model

savr ¼
Z

M

srðsÞds; ð11Þ

3. The covariance matrix

Cp
ij ¼

Z

M

ðsi � savr
i Þðsj � savr

j ÞrðsÞds: ð12Þ

If a more comprehensive description of r(s) is

required, higher-order moments can also be calcu-

lated (JEFFREYS, 1983).

Solving the inverse problem by searching for the

sml model in fact reduces the probabilistic approach

to the optimization technique (TARANTOLA, 1987;

DȨBSKI, 2004). Since this approach does not require

full knowledge of r(s), obtaining the sml solution is

usually easier than full sampling of r(s) . Two other

point estimators, namely the average model savr and

the covariance matrix Cp, provide significantly more

information than sml but their evaluation requires full

knowledge of r(s) in order to calculate the appropri-

ate integrals. This is trivial when r(s) is a Gaussian

distribution (this implies that G(s) = G�s). In such a

case savr = sml is given by Eq. 6 and the covariance

a posteriori matrix reads (TARANTOLA, 1987; MENKE,

1989; PARKER, 1994):

Cp ¼ ðGT C�1
d Gþ C�1

m ÞÞ
�1 ð13Þ

where Cd describes the variance of the sum of the

observational and modeling errors and Cm stands for

the variance of the a priori uncertainties.

The important point is to recognize the significant

difference between the first two point-like estimators,

namely sml and savr.

The interpretation of sml is obvious—this is the

model which maximizes the a posteriori PDF func-

tion which, roughly speaking, means that sml is the

model which best explains the data and a priori

expectations. The importance of the average model

savr stems from the fact that it provides not only

information on the best-fitting model but also

includes information about other plausible models

from the neighborhood of sml. If sub-optimum models

defined as those for which r(s) * r(sml) are similar

to sml, then savr * sml. Otherwise both estimators can

be quite different. Thus, a simple comparison of savr

and sml provides a qualitative evaluation of the

reliability of the inversion procedure: The more savr

differs from sml, the more complex and non-Gaussian

is the form of the a posteriori PDF. This immediately

implies that in such a case more care must be taken

when interpreting the inversion results, especially

inversion uncertainties. In fact, using confidence

levels instead of the covariance matrix is highly

136 W. Dȩbski Pure Appl. Geophys.



recommended in such situations (JEFFREYS, 1983). In

addition, the average model savr is usually a much

considerably reliable estimator of the true values strue

than a single, even best fitting model like sml. The

reason for this is that the integration (averaging)

procedure acts in the manner weighted stacking

(CLAERBOUT, 1985) which filters out the random part

of the inversion errors which contributes to sml. In

other words, averaging smoothes out a posteriori

noise by removing individual variations among all

sub-optimum models and leaves only the features

common for all reasonable models if such a common

part exists at all. This reasoning assumes that the

a posteriori distribution is somehow reasonably

concentrated around the optimum model. If this is

not the case and the a posteriori PDF is, for example,

multi-modal, the average model has no meaning and

eventually a more exhaustive analysis is required

(JEFFREYS, 1983; BRANDT, 1999).

The diagonal elements of the a posteriori covari-

ance matrix Cp are convenient estimators of the

inversion uncertainties for each component of s while

the non-diagonal elements measure the degree of

correlation between pairs of parameters (MENKE,

1989; JEFFREYS, 1983). In fact, Cp given by Eq. 12 is

a generalization of the LSQR covariance matrix to the

case of an arbitrary statistics r(s) including possibly

nonlinear forward problems. As in the case of the

average model, the posterior covariance matrix is

meaningful only if the r(s) distribution is unimodal. In

cases of multi-modality, the existence of non-resolved

directions in the model space, or other ‘‘pathologies’’,

a more exhaustive error analysis is necessary by a full

inspection of the a posteriori distribution (TARANTOLA,

1987; WIEJACZ and DȨBSKI, 2001).

3.1.2 Marginal PDF Distributions

While the point estimators discussed previously

provide a very convenient means of synthetic repre-

sentation of the inversion results, the a posteriori

marginal distributions give a deeper insight into the

form of r(s) and their inspection is extremely important

for the correct interpretation of the inversion results.

The one-dimensional (1-D) marginal a posteriori

PDF distribution is defined by integrating out all but

one parameter from r(s)

riðsiÞ ¼
Z

rðsÞ
Y
j 6¼i

dsj: ð14Þ

Multi-dimensional marginals are defined similarly. It

is important to realize that marginal PDF distribu-

tions contain the same information on si as r(s)

except for the correlation with other parameters

(JEFFREYS, 1983). However, inspections of the full

a posteriori PDF r(s) and marginal PDF sigmai(si)

are not equivalent (DȨBSKI, 1997a). To see the dif-

ference let us consider two maximum likelihood

solutions derived from the r(s) and ri(si) a posteriori

distributions. In the first case, when seeking the sml

model we consider the set of Nm parameters which

simultaneously maximizes r(s). In the second case

we solve the 1-D optimization problem seeking the

optimum value of only one parameter si, regardless of

the values of the other components of s. In other

words, in the former case we obtain information

about all the parameters simultaneously while the

inspection of the marginal distributions provides

information only about selected parameters, ignoring

any relations with the remaining ones.

In the most frequently encountered circumstances,

point estimators calculated from the marginal distri-

butions and from r(s) differ slightly (DȨBSKI et al.,

1997; WIEJACZ and DȨBSKI, 2001). A difference

significantly larger than the corresponding elements

of the a posteriori covariance matrix indicates a very

strong correlation among parameters which, besides

the case of intrinsically correlated parameters, may

indicate that some parameters or their combinations

are not resolved by the data (WIEJACZ and DȨBSKI,

2001).

Inspection of marginal PDF’s is always recom-

mended to verify if r(s) is a multi-modal distribution

or not. This is especially important if savr is used as

the numerical estimator of strue. Moreover, the

inspection of the marginal PDF provides conclusive

verification of whether estimating the inversion errors

by a posteriori covariance is justified or not.

3.1.3 Sampling a posteriori PDF

Whenever we look for a solution of the inverse

problem other than the maximum likelihood model,

we face the problem of sampling of r(s), usually in
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the context of calculating multidimensional integrals

as in Eqs. 11 and 12 or 14. More generally, we may

need to calculate the integrals represented in a

general form as

hFi ¼
Z

M

FðsÞrðsÞds; ð15Þ

where F(s) stands for a generic function.

If the number of parameters is very small (smaller

than, say, 10), the integral in Eq. 15 can be calculated

by sampling r(s) over a predefined regular grid, such

as, for example, in the case of the seismic source

location problem (WIEJACZ and DȨBSKI, 2001; LOMAX

et al., 2000; SAMBRIDGE and KENNETT, 2001). Other-

wise, the stochastic (Monte Carlo) sampling

technique has to be used (MOSEGAARD and TARANT-

OLA, 1995; BOSCH et al., 2000; DȨBSKI, 2004).

The mathematical aspects of Monte Carlo (MC)

sampling of the a posteriori PDF and some algo-

rithms are discussed later and here I would like to

point out only a few advantages of this approach in

solving inverse problems.

Generally speaking, the MC technique allows

generation an ensemble of models which can be

regarded as a set of samples drawn from the r(s)

distribution so the average integrals hFi can be

approximated by (ROBERT and CASELLA, 1999)

hFi � 1

N

X
sa

FðsaÞ ð16Þ

where the sum is taken over an ensemble of all (N)

generated models sa.

One of the biggest advantages of the possibility of

calculating the statistical averages with respect to the

a posteriori PDF, as in Eq. 16, is that inversion errors

can be easily estimated at no additional cost. If they

can be approximated by variance of the a posteriori

PDF then the choice

F ¼ ðs� smlÞ2 or, better F ¼ ðs� savrÞ2 ð17Þ

leads to an extremely simple, easy to calculate esti-

mator of the a posteriori errors

�2
m ¼

1

N

X
sa

ðsa � smlÞ2 ð18Þ

or

�2
a ¼

1

N

X
sa

ðsa � savrÞ2: ð19Þ

Moreover, if the variance is not a satisfactory esti-

mator of the inversion errors due to the complexity of

the a posteriori PDF, higher-order moments of r(s) or

the marginal distributions such as, for example,

riðsÞ ¼
Ni

N
ð20Þ

where Ni is the number of generated models whose ith

component has value s can easily be calculated. This

means that even an exhaustive error analysis becomes

almost trivial, no matter how many parameters are

estimated. Meanwhile, classical error analysis based

on calculating the covariance matrix is neither gen-

eral, due to approximation of r(s) by the multivariate

Gaussian distribution, nor easy to obtain, especially in

the case of tomographic high dimensional problems

(YAO et al., 1999, 2001; NOLET et al., 2001; ZHANG and

MCMECHAN, 1996; DEAL and NOLET, 1996).

Having generated a set of model samples drawn

from r(s), one can inspect them one by one or, better,

by making a ‘‘movie’’, as suggested by MOSEGAARD

and TARANTOLA, (1995), explore their common prop-

erties. Such an inspection can provide deep insight

into plausible solutions and allows for the discovery

of some hidden correlations, particularly macroscopic

features, some trends and other features which can

even be difficult to quantify. This is rather an

important point because searching for correlations is

quite a difficult task, especially for numerical algo-

rithms. In fact, any feature which appears in a large

fraction of generated models leads to non-vanishing

average values of some functionals F such as, for

example, multi-parameter correlation moments

Fi,j,…n = si sj…sn. However, finding the F which is

the best indicator of a particular ‘‘feature’’ is usually

extremely difficult (VAN KAMPEN, 1992).

3.2. Markov Chain Monte Carlo Sampling

The choice of a scheme of sampling r(s) is by

no means a trivial task, especially when the number
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of estimated parameters is large (MOSEGAARD and

TARANTOLA, 2002; BOSCH et al., 2000). This is due

to the fact that with an increasing number of

parameters the model space becomes extremely

large but only a very small part contributes to the

a posteriori distribution (CURTIS and LOMAX, 2001).

In such a case any geometrical sampler, meaning a

deterministic algorithm which explicitly depends on

the size of the model space, such as the neighbor-

hood algorithm for example (SAMBRIDGE, 1999),

becomes prohibitively inefficient. A similar situa-

tion occurs if blind (random) stochastic sampling is

used. This difficulty can, however, be overcome if

a posteriori PDF is sampled by the Markov Chain

Monte Carlo (MCMC) technique (MOSEGAARD and

TARANTOLA, 1995; TIERNEY, 1994; ROBERT and

CASELLA, 1999).

The MCMC technique is a class of numerical

algorithms which originally aimed to simulate so-

called short-memory stochastic processes (Gillespie,

1992; Robert and Casella, 1999). By a short-memory

stochastic process I mean here a dynamical process

(an evolution of a given physical system in time)

which fulfills the following two conditions.

1. The future state of the system depends only on its

current state and not on the entire evolution

history-previous states are ‘‘forgotten’’. This fea-

ture is commonly called a short-memory of the

process.

2. The next state of the system cannot be predicted

deterministically but only a probability of transi-

tion to other states can be provided (stochastic

process).

As can be deduced from the above conditions,

the state of the short-memory stochastic process is

never uniquely determined at any time. Instead, it

assumes the form of a probability distribution

evolving in time over the space of all the possible

states of the system (GILLESPIE, 1992). If some

conditions are fulfilled (ROBERT and CASELLA, 1999)

this probability is stationary-it does not change in

time. As a consequence, the subsequent states of

such a stationary process are distributed according

to the same probability distribution. Actually, they

can be regarded as correlated samples drawn from

the same distribution. Short-memory processes with

a discrete evolution time are called Markov chains

and have been used in analyses of various scientific

and engineering problems (e.g. GAMERMAN, 1997;

GILKS et al., 1995; TIERNEY, 1994; CASELLA, 1999;

DȨBSKI, 2008).

A mathematical procedure for building a Markov

chain with the prerequisite stationary distribution r(s)

was put forward by HASTINGS (1970) who generalized

the algorithm proposed by METROPOLIS et al. (1953).

The simplest form of such an algorithm (the original

Metropolis algorithm) is shown in Fig. 1 (TIERNEY,

1994; MOSEGAARD and TARANTOLA, 2002; ROBERT and

CASELLA, 1999).

The important feature of the Metropolis algo-

rithm (also the more general Metropolis-Hastings

algorithms) is that it does not depend explicitly on

the size of the sampled space. Such a dependence

appears only when solving the forward problem

necessary for calculating r(sb). This independence

gives the Metropolis-Hastings sampling algorithms

very high efficiency when applied to large parameter

problems, such as seismic tomography. More details

on the application of the Metropolis or Metropolis-

Hastings algorithms, setting the parameters, moni-

toring convergence, and so forth, can be found in

the literature of the subject (ROBERT and CASELLA,

1999; GAMERMAN, 1997; GILKS et al., 1995; DȨBSKI,

2004).

4. Rudna Copper Mine Case

The three algorithms described above, namely

LSQR, the optimization technique based on genetic

algorithm optimization and MC sampling, were

used to image the velocity distribution in a part of

the Rudna copper mine in southwestern Poland.

The same data set and the same initial (a priori)

velocity model was used in each case to make a

comparison between the different methods as

straightforward as possible. The remaining inver-

sion parameters, namely the damping factor c in

the LSQR method, the weights Cd and Cv in the

optimization technique, and the form of the a priori

and likelihood functions, were chosen to assure the

methods’ maximum compatibility. Their choice is

briefly discussed below.

Vol. 167, (2010) Seismic Tomography by Monte Carlo Sampling 139



4.1. Algorithms

The algebraic approach to the tomography task,

referred to as the LSQR method, requires setting of

the damping factor c. So that the optimization and

Monte Carlo approaches are consistent with each

other, I define the damping factor as the ratio

c ¼ Cd=Cv; ð21Þ

where the parameters Cd and Cv can be interpreted as

the estimator of data uncertainties (Cd) and the

expected variation of velocity around the a priori

model (Cv).

In the case of the optimization technique I

assumed the l2 norms in both the data (||�||D) and

model (||�||M) spaces with diagonal covariance matri-

ces. Specifically, I assumed that

Cij
d ¼ C�2

d dij for the data space

Cij
v ¼ C�2

v dij for the model space
ð22Þ

where dij is the Kronecker delta function (dij = 1 if

i = j, otherwise 0).

To solve the optimization problem, the Genetic

algorithm-based optimizer was used with parameter

settings assuring maximum robustness of the calcu-

lation, but at the cost of a rather slow convergence

rate (for details see DȨBSKI (2002) and references

therein). The velocity tomograms obtained by this

method are marked from here forward as the GA

solutions.

Finally, the Monte Carlo (Metropolis) sampler

was run assuming Gaussian probability densities for

both the a priori distribution f(s) and the likelihood

function L(s) with the same covariance matrices as in

the GA case defined in Eq. 22. The Metropolis

sampler was used to generate 100,000 models

according to the a posteriori distribution. The update

step was always selected to keep the acceptance ratio

at around 50% (see flowchart in Fig. 1). The gener-

ated models (samples) were used to approximate the

a posteriori distribution and to calculate the maxi-

mum likelihood model (MC-ML), the average

velocity model (MC-AV), and the a posteriori covari-

ance matrix.

Within this selection the velocity images pro-

vided by each method should be identical, since

from a mathematical point of view the solutions

provided by all three methods are equivalent with

the analytical solution given in Eq. 6. In reality,

they will differ and the difference can be used to

evaluate the performance of each of the inversion

methods.

Figure 1
The Metropolis algorithm for sampling a posteriori PDF r(s)
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4.1.1 Data and Velocity Parameterization

The three described algorithms were applied to a set

of events occurring in 1998 at the Rudna copper

mine, Poland. This mine, located in southwestern

Poland, is monitored by a digital seismic network

composed of 32 vertical Willmore MK-II and MK-III

sensors located underground at depths from 550 to

1,150 m. The data is digitized with a frequency band

ranging from 0.5 to 150 Hz, and the recording

dynamics is about 70 dB. The sampling frequency

is Fs = 500 Hz and determines the absolute accuracy

of travel-time estimate (Cd = 2 ms). The uncertainty

in event location is better than 100 m, typically

around 50 m.

For the current study I selected a set of 36 events

which were recorded by at least 4 of the 8 nearest

stations located approximately at the same depth as

the estimated hypocenters. This resulted in a subset of

177 travel times used in the P-wave velocity inver-

sion. The distribution of selected events, employed

stations and considered ray paths is shown in Fig. 2.

The events were located assuming a constant back-

ground velocity, Va = 5,800 m/s. This value was also

assumed as the initial a priori velocity distribution for

the inversion.

The studied area of around 5 9 5 km was

discretized into 250 m by 250 m square cells, for a

total of 400 blocks. However, the ray paths did not

sample most of these cells, as shown in Fig. 2. In

fact, only 109 cells marked in Fig. 2 in gray colors

were touched by at least one ray path. Only such cells

were effectively considered during the inversion, and

the a priori velocity Va = 5,800 m/s was assigned to

the remaining, untouched cells.

4.1.2 Damping Parameters

Inversion of travel-time data requires two parameters

to be specified, namely Cd and Cv, or at least their

ratio c = Cd/Cv in the case of the LSQR method.

Usually, the optimum c coefficient can be determined

by analyzing the trade-off between the variance

(complexity) of the final model and the reduction of

the data variance with respect to the initial (a priori)

model (MENKE, 1989; PARKER, 1994). In this study the

analysis encountered a problem: because of the very

short distances between the event epicenters and the

recording stations, even very complex models led to a

reduction of the residua by less than 10%, as shown

in Fig. 3. In such cases the standard trade-off analysis

is meaningless, therefore I introduced physical con-

straints to estimate Cd and Cv. Firstly, I assumed on

the basis of mining practice that velocity changes

generally do not exceed 20% of background velocity

at a 95% confidence level. This a priori assumption

corresponds approximately to the choice Cv = 400 m/

s. The value of Cd which expresses the joint accuracy

of the travel-time measurements and travel-time

modeling (DȨBSKI, 2004) is limited by the sampling
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period (picking accuracy) which is 2 ms as well as by

the location uncertainties (travel-time modeling

uncertainties). Location errors of about 100 m lead

to modeled travel-time inaccuracies of about 17 ms.

For the analysis presented here I used Cv

= 400 m/s and two limiting values of data variances:

Cd = 20 ms and Cd = 4 ms, which roughly corre-

sponds to the uncertainties due to location errors and

those due to the travel time onset picking accuracy.

4.2. Tomography Images

The main results of the tomography imaging are

shown in Figs. 4 and 5.

Figure 4 shows the images obtained assuming

data uncertainties Cd = 20 ms, while the velocity

images obtained for the choice Cd = 4 ms are shown

in Fig. 5. Only the cells well probed by ray paths (at

least 10% of the maximum ray path coverage, see

Fig. 2) are plotted in both figures. The remaining

cells were excluded, as small coverage (below 10%)

creates large imaging uncertainties and leads to

unreliable results (MENKE, 1989; LIMES and TREITEL,

1983; BACKUS and GILBERT, 1970).

The results from the images presented in Fig. 4

show that the two classical methods, namely the

LSQR approach (left-hand figure) and the GA

optimization approach (center figure) led to practi-

cally identical images. This suggests that the

a posteriori imaging errors have a Gaussian distribu-

tion, and thus the use of the LSQR formula (Eq. 6)

with the damping factor c = 5 9 10-5 is justified

and consistent with the result provided by the GA

optimization.

The maximum likelihood solution (MC-ML)

which maximizes the a posteriori PDF function has

a structure similar to the GA and the LSQR solutions,

but differs in terms of small-scale variations. The

reason for this might be that the Metropolis sampler

was unable to find the global optimum solution found

by the genetic algorithm. The MC-ML solution

represents the optimum solution among all the MC

generated models, but only approaches the true global

optimum found by the GA approach. Indeed, a

comparison of the RMS residua for the LSQR GA

and the MC-ML models listed in Table 2 shows that

the MC-ML model leads to the largest residua. Thus

the MC-ML solution is only an example of ‘‘sub-

optimum’’ models. That is why we prefer to consider

the MC-AV model as the ‘‘final’’ MC-based solution.

The average image found by the MC method is

somewhat different. Although the main structure of

the velocity distribution is the same as in the LSQR

and GA cases, the amplitude of spatial velocity

variation is slightly reduced and smoother. This is

because the solution is obtained by averaging over a

number of sub-optimum models generated with

respect to the a posteriori PDF. Thus, any individual

variations among the models which are almost

equally probable as the optimum solution (for

example, the MC-ML model) average out and only

the basic structure common for all the models
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remains. If the sampled models are strongly dis-

persed, the average procedure will naturally lead to a

smoother solution. The degree of smoothing in the

MC-AV solution with respect to the MC-ML solution

is a relative measure of the accuracy and reliability of

the tomogram. The smoother the average solution is

with respect to the MC-ML, the less reliable is the

MC-ML tomogram.

Figure 5 shows the velocity images obtained

when data uncertainties were taken near the limit of

travel-time picking accuracy, namely Cd = 4 ms.

This choice corresponds to a much lower damping

factor c = 10-5, as shown in Fig. 3, consequently a

better fit to the data at the cost of a ‘‘rougher’’ model

is expected. The upper-left panel in Fig. 5 shows that

the velocity model obtained by the LSQR approach is

significantly different from the previous result calcu-

lated for c = 5 9 10-5 ms. It exhibits very large

velocity variations, in some places exceeding the

imposed physical limit of a 20% range. Thus this

model cannot be regarded as physically reasonable.

The image provided by the GA procedure (upper-

right panel) still resembles the smooth model from

Fig. 4, but is characterized by smaller-scale variations
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likely due to noise. Thus, the optimization method still

produces a reasonable velocity distribution although

with exaggerated velocity contrasts. The fact that the

GA and LSQR solutions are so different in this case is

a consequence of the GA optimization method’s much

greater robustness. The MC-ML solution (lower-left

panel) also behaves similarly to the GA method,

where decreasing the damping leads to an increased

roughness of the solution.

The situation is different for the MC-AV solution

(lower-right panel). It is the smoothest model among

the considered four solutions and, like the other

models obtained for Cd = 4 ms, it shows a broadening

of the high velocity zone located around the region

x = 2 km, y = 2 km. In contrast to the GA and MC-

ML models, changing the damping factor had very

little influence on the ‘‘roughness’’ of the model. In

fact, comparing the MC-AV solutions for the two
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damping factors, the main differences in the solutions

are the aforementioned broadening of the high

velocity zone as well as an increase in the velocity

amplitude heterogeneities. Since choosing a proper

regularization (damping) factor is always a difficult

task and often subjective in any tomographic imaging

problem, it is obvious why the weak sensitivity of the

MC-AV solution to the damping factor is an impor-

tant issue.

To explore this in more detail, let us consider the

following. Let us assume that we can divide the

inverted velocity image into a ‘‘noisy part’’ (vn) due

to all the uncertainties, such as data noise, forward

modeling inaccuracy, optimization errors, etc., and

the remaining ‘‘true’’ distribution (vb) we would

expect in the ideal case. What type of behavior would

we expect for these two parts when c or Cd change? A

change in the damping factor will influence vb and vn

in different ways. While vb is expected to interpolate

more or less smoothly between the a priori (c ? ?)

model and the model which exactly fits the observa-

tional data (c = 0), vn will behave in an

unpredictable way due to the randomness of all the

uncertainties. This type of expected behavior is

visible in the considered cases. In all but the LSQR

solutions, the region of high velocity broadened when

the damping factor was decreased. However, for the

GA and MC-ML solutions, there is an additional

increase in roughness . This increase in roughness or

‘‘noise’’ is much weaker in the case of the MC-AV

solution. This suggests that the average model is a

considerably more robust estimator of the true (noise-

free part vb) velocity distribution than any of the

maximum likelihood models. When averaged, this

noise suppression effect is, in fact, very similar to

noise reduction in the case of seismogram stacking

(CLAERBOUT, 1985) and follows from the incoherent

nature of the noise (JEFFREYS, 1983; Claerbout, 1985).

Assuredly, any optimization algorithm which

searches for a single, best solution, cannot perform

noise reduction.

4.3. Imaging accuracy

The very first step in evaluating tomography

results relies on inspecting the residuals for the

‘‘best’’ fit models. Figs. 6 and 7 display the residuals

for the models obtained for Cd = 20 and 4 ms,

respectively. Table 2 displays the root mean squares

of the residuals calculated for all the models.

Note that all the residua histograms (for both Cd

= 20 ms and Cd = 4 ms) are very similar, with a

variance around 30 ms. The residuals exceed 50 ms

only for a few data points. Thus the residuals suggest

that the approximation of the sum of the travel time

measurement and ray tracing errors by a Gaussian

distribution (Gaussian Likelihood function) with

variance Cd = 20 ms is justified. Furthermore Figs. 6

and 7 indicate that the choice Cd = 4 ms as the

variance for the sum of observational and model

errors is incompatible with the calculated residuals.

In the case of the well-damped inversion (Cd

= 20 ms), all the methods led to similar residuals and

hence, similar velocity images. It is interesting to

note, however, that in the under-damped case (Cd

= 4 ms) the differences between the velocity models

are very substantial, yet the residuals are still similar

for all four models. This demonstrates that evaluating

the accuracy of a tomographic solution by inspecting

the a posteriori residua alone is not sufficient. As in

the studied case, there exist completely different

models leading to, similar travel-time predictions.

A more comprehensive insight into imaging

accuracy is obtained by inspecting the a posteriori

covariance matrix which can be calculated easily as

part of the MC technique. Figure 8 shows the spatial

distribution of the velocity imaging errors estimated

from the diagonal elements of the covariance matrix

calculated from the a posteriori PDF for the MC

solutions. Note that the a priori value Cv = 400 m/s is

Table 2

Root mean square (RMS) values of residua calculated for the

models obtained by LSQR, GA, and MC (the maximum likelihood

(MC-ML) and average (MC-AV) models) for two considered data

uncertainties

Cd

(ms)

LSQR

(ms)

GA

(ms)

MC-ML

(ms)

MC-AV

(ms)

4 26.15 28.32 28.42 28.46

20 29.96 29.96 30.02 30.09

Note that for both Cd all models lead to very similar RMS values

with slightly larger values obtained for the MC-ML solutions. The

residua obtained for ‘‘under-damped’’ inversion (Cd = 4 ms) are

smaller than for Cd = 20 ms as expected
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attached to cells probed by no rays. The obtained

distribution shows that within the applied velocity

parameterization (cell size) the imaging errors are

almost homogeneously distributed over the imaged

area and are approximately dv * 160 m/s for the

image obtained, assuming Cd = 20 ms and

dv * 50 m/s for Cd = 4 ms.

Comparing these results with the images in Figs. 4

and 5 indicates that great care must be taken when

interpreting covariances as imaging errors. While

such an interpretation seems to be justified in the case

of the well-damped solution (Fig. 4), it is meaningless

for the GA and LSQR in the case of the under-damped

solutions, in which the final velocity images are

strongly influenced by additional numerical artifacts

far exceeding dv. The interpretation of the covariance

matrix as a ‘‘measure’’ of inversion errors still seems

to be justified (at least for this case) when the average

model is taken as an estimator of the sought velocity

distribution.

Estimating the imaging errors by the covariance

matrix is justified if the a posteriori PDF has a ‘‘bell-

shaped’’ and approximately symmetric, unimodal

distribution. To verify whether this assumption is

fulfilled in this study, I have selected a few cells (see

Fig. 2) for which 1-D a posteriori marginal PDF’s

were calculated according to Eq. 20. The results are

shown in Figs. 9 and 10 for well-damped and

under-damped cases, respectively. In both cases the

marginal distributions resemble the Gaussian PDF,
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Figure 6
Travel time residua for the LSQR (upper left), GA (upper right), MC-ML (lower left), and MC-AV (lower right) velocity models obtained

using Cd = 20 ms setting. In this case the GA and LSQR algorithms performed equally well. The average MC solution provides slightly more

scattered residua. The MC-ML model leads to the largest residua
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which means that the assumptions regarding the data

and modeling error having a Gaussian distribution as

well as the specific choice of the Gaussian a priori

PDF were justified and consistent.

Finally, a question that remains to be addressed is

which of the tomographic inversion methods is the

preferred approach to estimate the true velocity

distribution. Figures 11 and 12 compare the differ-

ences between the LSQR, GA, MC-ML models and

the MC-AV model obtained for the two damping

factors. For the case of a properly chosen damping

factor all the models are compatible within one

standard deviation range. For the LSQR solution,

decreasing the damping factor leads to an unphysical

solution. The remaining GA, MC-ML and MC-AV

models are still compatible. However, for the reasons

discussed above, the GA solution is expected to be a

more reliable MLL estimator of the true velocity

distribution than the MC-ML solution.

5. Discussion

Two types of conclusions can be drawn on the

basis of the analyzed case study. The first concerns

the performance of different inversion algorithms

when applied to small-scale seismic tomography

tasks. The second concerns a very preliminary

quantitative interpretation of the obtained velocity

images.

The MC sampling technique seems to provide the

most robust estimation of the velocity distribution
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Travel time residua for the LSQR (upper left), GA (upper right), MC-ML (lower left), and MC-AV (lower right) velocity models obtained
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compared to any of the other inversion techniques

based on the maximum likelihood estimator. In fact,

the average image found by the MC technique

was much smoother and, more importantly, provided

a more realistic solution than the other two

methods.
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This indicates that sub-optimum models which

lead to similar residua such as the GA or LSQR

solutions and provide the main contribution to the

MC-AV model are quite different. However, when

summed up, the individual variations among them are

smoothed out and the basic structure common to all

the models remains. This is an important point and

suggests that the MC technique is the most favorable

and robust inversion approach.

In fact, this noise suppression effect is similar to

that encountered in seismic stacking procedures

(CLAERBOUT, 1985). This possibility of enhancing the
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Figure 10
Examples of the a posteriori 1-D marginal PDF functions for a few selected cells (see Fig. 2) for the Cd = 4 ms case. In this case the velocity

resolution is sufficient to identify regions with velocity contrasts larger than the imaging errors

0

1

2

3

4

5

Y
 [k

m
]

0 1 2 3 4 5

X [km]

∆LSQR

0

1

2

3

4

5

Y
 [k

m
]

0 1 2 3 4 5

X [km]

∆GA

0

1

2

3

4

5
Y

 [k
m

]

0 1 2 3 4 5

X [km]

∆ML

0.0 0.5 1.0 1.5 2.0

∆V/δv

Figure 11
The difference between LSQR (left), GA (middle) and MC-ML solutions and the MC-AV model obtained for Cd = 20 ms scaled down by the

a posteriori imaging errors. Note that the differences between the LSQR, GA and MC-AV models are smaller than half the standard deviation

(imaging error) in the whole imaged area. This means that the LSQR, GA, and MC-AV models are compatible with each other at a 68%

confidence level. Only in the case of the MC-ML solutions the difference occasionally increases to one standard deviation

Vol. 167, (2010) Seismic Tomography by Monte Carlo Sampling 149



imaging accuracy by the proper choice of the inver-

sion approach makes the MC technique more

versatile than any other tomography technique known

today.

Another important feature of the MC approach

when compared with the classical (optimization and

algebraic) techniques is its robustness with respect to

the choice of the damping parameters. In fact, while

all three methods perform rather similarly in a well-

damped case, they differ when the algorithms are

significantly under-damped. In an under-damped

case, the algebraic approach completely fails to pro-

duce a reasonable solution. The optimization

technique, due to the robustness of the used opti-

mizer, is still able to produce an acceptable image.

However, the solution is strongly influenced by

numerical noise. On the other hand, in spite of

apparently insufficient damping, the MC technique

provides an image which differs only slightly from

the result obtained for an optimum choice of c.

Following these arguments, one can state that the

Bayesian probability inversion approach with Monte

Carlo sampling for the tomographic imaging problem

is a very promising technique which is able to pro-

vide robust and generally more reliable images than

currently used techniques. Its application is only

limited by the size of the problem in hand. In the

studied case, the simple Metropolis sampling

algorithm was efficient enough to sample the a pos-

teriori PDF due to the very small scale of the problem

(109 model parameters and 177 data). In the case of

larger-scale problems, when significantly more

parameters have to be estimated (sampled), more

complicated sampling techniques such as multi-step

Metropolis (BOSCH et al., 2000; MOSEGAARD and

TARANTOLA, 1995) or more general random walk

techniques will have to be employed (ROBERT and

CASELLA, 1999; MOSEGAARD and TARANTOLA, 2002).

Finally, having obtained velocity distribution

images, it is natural to attempt to infer information on

the correlation of the velocity field and the structure

of the observed seismicity. Although the current

investigation was carried out primarily to evaluate

various numerical algorithms for tomographic inver-

sion, the obtained MC results seem to be robust

enough to draw preliminary conclusions. Firstly, note

that the events used in the current studies formed four

different spatial clusters, as shown in Fig. 2. Exces-

sively large uncertainties in clusters A and C prevent

any reasonable correlation of seismicity in these two

clusters with velocity distribution. In clusters B and D

the MC velocity image has a high enough resolution

to distinguish between fine velocity heterogeneities

with sufficient precision. The obtained tomograms

indicate that clusters B and D are located in regions

of high spatial velocity gradients. The geomechanical
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interpretation of this fact is not quite clear. One

possible explanation of this fact is the hypothesis on

the existence of a spatially complex zone consisting

of ‘‘hard’’ and ‘‘weak’’ parts. Physically, the ‘‘hard’’

part may consist of intact rock masses which have the

possibility of accommodating larger stresses and thus

showing higher velocities. The weaker part could be

partially crushed rock masses. In such a condition we

can expect a transfer of large stresses from the hard

part to the weak one which cannot withstand them

and will crush. Such a process would result in

localized (clustered) seismicity.
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DȨBSKI, W. (2002), Seismic tomography software package, Publs.

Inst. Geophys. Pol. Acad. Sci. B-30, 1–105.
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