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Abstract—The occurrence of the Indian Ocean Tsunami on 26 December, 2004 has raised concern about the

difficulty in determining appropriate tsunami mitigation measures in Australia, due to the lack of information on

the tsunami threat. A first step in the development of such measures is a tsunami hazard assessment, which gives

an indication of which areas of coastline are most likely to experience tsunamis, and how likely such events are.

Here we present the results of a probabilistic tsunami hazard assessment for Western Australia (WA). Compared

to other parts of Australia, the WA coastline experiences a relatively high frequency of tsunami occurrence. This

hazard is due to earthquakes along the Sunda Arc, south of Indonesia. Our work shows that large earthquakes

offshore of Java and Sumba are likely to be a greater threat to WA than those offshore of Sumatra or elsewhere

in Indonesia. A magnitude 9 earthquake offshore of the Indonesian islands of Java or Sumba has the potential to

significantly impact a large part of the West Australian coastline. The level of hazard varies along the coast, but

is highest along the coast from Carnarvon to Dampier. Tsunamis generated by other sources (e.g., large intra-

plate events, volcanoes, landslides and asteroids) were not considered in this study.

Key words: Tsunami, probabilistic hazard assessment, Western Australia, earthquake recurrence, Sunda

Arc, subduction zone.

1. Introduction

Western Australia appears to experience larger tsunamis with a higher frequency of

occurrence than other parts of Australia, primarily due to its proximity to the zone of

tectonic activity known as the Sunda Arc, which skirts the southern edge of the

Indonesian archipelago. In addition to the Indian Ocean Tsunami of 2004, four tsunami

events have affected the coast of Western Australia with runup (maximum inundation

height above sea level reached by the tsunami) of 2 meters or more (Fig. 1), with the

maximum recorded runup of 9 meters originating from the July 2006 Java earthquake.

Although tsunamis have as yet caused no confirmed fatalities in Australia, dozens of

bathers on some WA beaches were dragged out to sea (and subsequently rescued by boat)

during the 2004 Indian Ocean Tsunami, and campers at Steep point (the purple bar in

Fig. 1) were lucky to escape with their lives following the tsunami caused by the 2006

Java earthquake (The Western Australian, 19 July, 2006).
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Assessing just how often and where significant tsunami runup might occur, however,

is a difficult problem that would require either an extensive catalogue of historical

tsunami inundation events, or sophisticated numerical modelling of the shoaling and

inundation that occurs when a tsunami reaches the shoreline. The former does not exist

for Western Australia, since there is little or no historical record prior to the 1800s. To the

best of the authors’ knowledge there has not previously been a probabilistic tsunami

hazard assessment specifically for WA, although some preliminary assessments based on

limited historic data or a restricted set of numerical models have been completed (RYNN

and DAVIDSON, 1999; BURBIDGE and CUMMINS, 2007). Here we present the first

probabilistic tsunami hazard assessment for WA expressed in terms of an offshore

tsunami amplitude which has a given probability of being exceeded per year. Offshore is

defined here to be a water depth of 50 m or greater. Because the modelling of tsunami at

this depth or greater is considerably simpler and is less sensitive to shallow bathymetry,

thousands of potential sources of tsunami can be simulated, and the results combined into

an aggregate ‘offshore tsunami hazard map’ that should provide some indication of which

broad areas of the Western Australian coast are susceptible to tsunami impacts. These

areas can then be taken as the focus of subsequent work using more detailed inundation

modelling.

The tsunami hazard assessment described here was commissioned by the Fire and

Emergency Services Authority of Western Australia (FESA) to cover the coastline of

Western Australia. The coastline at which tsunami hazard has been assessed is therefore

that of continental Australia west of 130�E longitude. Although results for other

coastlines may appear in some figures, the hazard assessment presented here may not be

valid for these coastlines (e.g., local tsunami may not have been adequately considered

for Christmas Island or Indonesia). The sources considered to have a significant tsunami

impact on the coastline of Western Australia are those in the Indian Ocean — in

particular the Sunda Arc, east of 90�E longitude and west of 135�E longitude (Fig. 2).

The only type of tsunami source considered in this study are subduction zone

earthquakes generated along the Sunda Arc, because they are by far the most frequent

source of tsunamis that affect the coast of Western Australia. Three quarters of the

world’s tsunamis are caused by earthquakes (GUSIAKOV, 2005), and of the 18 historical

Indian Ocean-wide tsunami events, only one was not caused by an earthquake (DOMINEY-

HOWES et al., 2006). The other sources of tsunamis are:

Volcanic eruptions. The 1883 eruption of Krakatau is the only known major volcanic

eruption that has triggered a tsunami which has affected Western Australia. The Krakatau

eruption caused a moderate (1–2 m runup) tsunami which was observed all along the WA

coast (see Fig. 1). The recurrence time for major eruptions at Krakatau is thought to be

21,000 years (BEAUREGARD, 2001). The potential for other volcanoes in the region

generating a tsunami large enough to contribute to the tsunami hazard off WA is unclear.

Asteroid/meteorite impacts. These are a concern for any coastal community, with

estimates of return times of 11,000 and 30,000 years for a (respectively) 2 m and a 5 m

maximum amplitude offshore tsunami impacting Perth (WARD and ASPHAUG, 2000). More
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recent work, however, suggests that both the rates and tsunami impacts of the 200–300 m

meteors that dominate this hazard source are grossly overestimated (BLAND and

ARTEMIEVA, 2003; MELOSH, 2003; KORYCANSKY and LYNETT, 2005)—although CHESLEY

and WARD (2006) still consider the higher rates and impacts plausible.

Submarine landslides. Submarine landslides near the coast have the potential to

produce large, local tsunamis. While there is evidence of large, potentially tsunami-

generating submarine slope failures off Australia’s eastern coast (JENKINS and KEENE,

1992), the sparsity of data along the western coast precludes any definitive statement
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WA Tsunami runup observations and the corresponding tsunamigenic events, with events color-coded to match

the runup observations. The basemap shows the bathymetry off the West Australian Coast. Mw is the moment

magnitude, while VEI is the Volcanic Explosivity Index, with 6 for Krakatoa being one of the largest in recorded

history. There are no recorded observations in Australia of the tsunami events of 1833 and 1861. The length of

the columns increases with the height of the observed runup (the scale of the columns is shown in the bottom left

hand corner of the figure).
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about the frequency of submarine slope failures. It is also thought that ocean-wide

tsunamis can be produced by massive failure of a volcanic edifice (WARD and DAY, 2001).

Although an argument could be made for possible edifice collapse at Heard/McDonald

Island, there is no information on the likelihood of such an event occurring.

While there is some evidence that suggests ‘megatsunami’, possibly generated by the

non-earthquake sources described above, may have impacted Western Australia during

the past millennium (NOTT and BRYANT, 2003), the evidence is not conclusive. In any

case, what we do know of the above non-earthquake sources of tsunamis suggests the

recurrence times of such events will be 10,000 years or more.

In this study, we will only quantitatively estimating the tsunami hazard to WA from

tsunamis generated by earthquakes along the Sunda Arc. Not including the other non-

Sunda Arc sources like landslides has the effect of underestimating the total tsunami

hazard. The magnitude of this effect is difficult to estimate because of the large

uncertainty in the frequency of many of these non-Sunda Arc zone sources. However, we
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A map of major faults and islands in Indonesia discussed in this study, from BIRD (2003). The northward

extension of the Andaman suduction zone (dashed blue line) is from ACHARYYA (1998). In the text we refer to

plate boundaries by the name of the nearest island (shown in bold type).
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feel that they have the potential to be significant to the hazard for return periods of

10,000 years or longer. Therefore, all hazard maps shown in this paper are for return

periods of 2000 years or less, where we feel that tsunamis generated by earthquakes

along the Sunda Arc are probably the dominant source of the hazard to WA.

2. Sunda Arc Earthquake Sources of Tsunami

In this study we consider the most likely source of tsunamis, earthquakes in the Sunda

Arc from the Andaman Islands in the west to Aru in the east (Fig. 2). Although CUMMINS

(2007) has suggested that the earthquake potential for the Sunda Arc extends further

northward along the coast of Myanmar, as indicated by the dashed line in Figure 2,

tsunamis generated by earthquakes along this extension have not been considered here,

because they do not direct significant energy towards WA. We also consider tsunamis

from the Flores thrust fault to the north of Timor and the Seram subduction zone. In the

following sections we discuss the three main regions of the Sunda Arc subduction zone

that could produce tsunamis that could affect WA: Sumatra, Java, and Sumba. Unless

otherwise specified, we use the moment magnitude values from the Global CMT project

(http://www.globalcmt.org/) in this section. However, we acknowledge that various other

researchers may give other estimates which can differ by up to about 0.3 units from the

USGS value for specific events by using other methods to calculate the magnitude.

The northern most section (called here the Andaman section) was the site of the Mw

9.3 (STEIN and OKAL, 2007) 2004 Andaman earthquake. While this event created the huge

Boxing Day tsunami in the northern Indian Ocean, its effects along the WA coast were

comparatively small. We consider the Andaman section to be the entire subduction zone

from 13oN to the Island of Nias. The Sumatran section lies offshore the Island of Sumatra

between the triple junction and the Sunda Strait. The Java section is the subduction zone

directly to the south of the Island of Java between the Sunda Strait and approximately

113�E. The Sumba section continues to the east until the subduction zone ends just to the

west of the Island of Timor. In the hazard assessments we also include several of the plate

boundaries surrounding the Banda Sea; namely: Timor, Tanimbar, Aru, Flores and

Seram. Finally, we also discuss the diffuse seismicity between the Indian and Australian

plates to the northwest and west of WA.

The purpose of this section is to define the range of sources used in the tsunami hazard

map. The discussion of seismicity in the various segments of the Sunda Arc presented here

will allow us to establish the combinations of source mechanisms and maximum

magnitudes to be used in the logic tree that will serve as the source specification for our

hazard map, as described in, e.g., GEIST and PARSONS (2006). Details of this logic tree are

presented in Table 1. The dip values for the subduction zones were found by averaging the

0–50 km dip angles of CRUCIANI et al. (2005). The maximum seismogenic depth was found

by matching the maximum depth of the sub-faults to observed seismicity along each fault.

The other columns in Table 1 are determined in the following sections.
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2.1. Sumatra-Andaman

Historically most of the larger earthquakes offshore Sumatra appear to be shallow-

dipping thrust fault events on the megathrust, as were the 26 December, 2004 Mw 9.3

Andaman earthquake and the 28 March, 2005 Mw 8.6 Nias earthquake, and more recent

events in September 2007 (Fig. 3). Great (i.e., larger than magnitude 8.0) thrust

earthquakes have also occurred in historic times, prior to the events of 2004 and 2005.

NEWCOMB and MCCANN (1987) document the occurrence of three major tsunamigenic

earthquakes in 1797, 1833 and 1861. More recent analyses of coral microatolls

(ZACHARIASEN et al., 1999, and NATAWIDJAJA et al., 2006) have shown that these events

likely ranged from magnitude 8.5 to 8.7.

Since 1976, a much smaller number of normal faulting events have occurred to the

west of the trench on the outer rise (Fig. 3). This type of earthquake appears to occur

much less frequently than the megathrust events, and their magnitudes appear to be

considerably smaller (rarely greater than Mw = 7). We therefore discount such events as

contributing significantly to the tsunami hazard in Western Australia.

Between the trench and the coast, some strike-slip earthquakes have occurred off

Sumatra since 1976. These are thought to be a combination of events on the Mentawai

and the Great Sumatran faults. Motion on these faults appears to reflect strain partition of

the oblique subduction (BURBIDGE and BRAUN, 1998) in the Sumatra section of the Sunda

Table 1

Geometry and physical properties of the fault segments used in the probabilistic tsunami hazard assessment

Segment Name Maximum

Magnitude

(Mw)

Dip

(deg)

Maximum

Seismogenic

Depth (km)

Number

p.a.C

Mw7.0

Slip-rate

(mm/yr)

Andaman Megathrust 9.3/9.51 14 50 0.043

Sumatra Megathrust 9.3/9.51 15 50 0.075

Java Megathrust 8.5/9.0/9.3/9.52 16 60 0.093

Sumba Megathrust3 8.5/9.0/9.3/9.52 14 60 0.075

Sumba Normal3 8.5/9.01 55 47 0.075

West Timor Thrust 7.5/8.01 20 17 23.0

East Timor Strike-Slip 7.5/8.01 73 48 17.3

Tamibar Normal 7.5/8.01 55 41 41.0

Wetar-Flores Thrust 8.0/8.51 20 17 34.5

South Aru Strike-Slip 7.5 73 48 47.8

Aru Normal 7.5 55 41 41.0

South Seram Thrust 7.5 20 17 75.7

Seram Megathrust 8.5/9.11 14 30 0.031

West Seram Thrust 7.5 20 17 64.9

1 Two models with these maximum magnitudes are considered for this fault segment, each weighted with a 50%

chance of being correct.
2 Four models with these maximum magnitudes are considered for this fault segment, each weighted with a

25% chance of being correct.
3 Two models are considered for the Sumba section of the Sunda Arc, one with only a megathrust and another

with both a megathrust and a normal fault; each model is weighted with a 50% chance of being correct.
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Arc. The Great Sumatran fault will not produce any tsunami since it is entirely onshore,

so it is not included in the tsunami hazard analysis. The Mentawai fault might generate a

tsunami, however because it is a strike-slip fault the amount of uplift is likely to be quite

small even for a large earthquake. The Mentawai fault is therefore not included in the

probabilistic tsunami hazard analysis because it probably has a small maximum

magnitude, a low rate of earthquake occurrence, and the earthquakes that do occur are

unlikely to generate large tsunamis.

For the reasons described above, only megathrust earthquakes are considered to

contribute to the tsunami hazard in WA for the Sumatra-Andaman section of the Sunda

Arc. While the maximum magnitude may be only as large as the largest historical event

(Mw = 9.3, STEIN and OKAL, 2007), the wide megathrust seismogenic zone demonstrated

by 2004 and later earthquakes suggests that even larger events may be possible. We

therefore consider two branches to the logic tree for this section of the Sunda Arc, one

with maximum magnitude of 9.3 and the other with maximum magnitude of 9.5.

2.2. Java

Like the Sumatra section, most of the larger earthquakes offshore Java appear to have

been megathrust events. The two largest ones (the Mw 7.8 1994 and Mw 7.7 2006 Java

events, see Fig. 3) are both considerably smaller and occurred closer to the trench than the
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Earthquake focal mechanisms of all the earthquakes in the Global CMT catalogue for the eastern Indian Ocean

region since 1976 with Mw C 7.0 and depth less than 100 km, as well as the mechanism of OKAL and REYMOND

(2003) for the 1938 earthquake. The background shows the bathymetry from the ETOPO2 elevation model.

Earthquakes discussed in the text have their years indicated.
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largest Sumatra events in the same period. Both of these events created significant tsunamis

along the WA coast (Fig. 1). The 2006 event created the largest confirmed tsunami runup in

Australian history at Steep Point (approximately 9 m, purple bar in Fig. 1). These events

also created a damaging tsunami in Java and killed hundreds of people. Both of these events

are examples of ‘‘tsunami earthquakes’’ which produce larger tsunamis than expected for

their earthquake magnitude. Historical reports (NEWCOMB and MCCANN, 1987) indicate that

earthquakes in 1875 and 1859 were large, causing more shaking to Java than recent events,

but it is hard to estimate exactly how large any earthquakes may have been before the

widespread use of seismographs (i.e., anything before the twentieth century). Other

historical earthquakes in 1840, 1859 and 1921 affected an extent of coast similar to the

more recent earthquakes and shook Java to a similar level.

While there is now no question that earthquakes of magnitude 9 and greater occur in

the western Sunda Arc off northern and central Sumatra, the maximum magnitude of

earthquakes occurring in the eastern Sunda Arc off Java is unknown. On the one hand,

there are arguments that, because the Australian plate being pushed beneath Java is

relatively old, the cooler temperature of the interplate contact will lead to a narrow

seismogenic zone, hence smaller earthquakes can be expected off Java (RUFF and

KANAMORI, 1980; HYNDMAN and WANG, 1993; OLESKEVICH et al., 1999). This argument is

supported by the apparent lack of a wide zone of interplate coupling suggested by

geodetic measurements (BOCK et al., 2003). Cooler temperatures would also lead to

higher densities, lower buoyancy and potentially weaker coupling which may also

influence the maximum magnitude and/or rate of seismic moment release. On the other

hand, other studies suggest there is little dependence of subduction zone seismicity (rate

or maximum magnitude) on plate age (BIRD and KAGAN, 2004; NISHENKO, 1991; PACHECO

et al., 1993), in which case there is no basis for inferring that magnitude 9 earthquakes

cannot occur off Java. WELLS et al. (2003) have argued that the presence of sedimentary

basins between the trench and the coast (the forearc of the subduction zone) correlates

with regions of increased megathrust earthquake slip, and since Java and Sumatra both

have well developed forearc basins (see, e.g., the seismic reflection profiles of KOPP,

2002), it might be argued that both can host very large earthquakes. Finally, another

school of thought suggests that large earthquakes occur when some of the incoming

sediment is subducted into a channel between overriding and subducting plates (RUFF and

KANAMORI, 1980; RUFF 1989). According to LASKE and MASTERs’ (1997) global sediment

thickness map, there is a thickness of several kilometers of sediment along the Java

trench and even more for southern Sumatra, arguing again for a high maximum

magnitude for megathurst earthquakes off Java.

In summary, the age of the plate argues against large earthquakes off Java, but the

sediment subduction, rapid convergence and presence of forearc basins argues for it. It

should be noted that none of these indications can definitively prove that large

earthquakes can or can not occur at a particular subduction zone. In our opinion, the

possibility of a large earthquake occurring off Java cannot be ruled out, and we therefore

consider a wide range of possible maximum magnitudes for megathrust earthquakes off
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Java: 8.5, similar to the largest historical events, but also 9.0, 9.3 and 9.5 (Table 1) to

account for the possibility that much larger events occur but are not reflected in the

historical record.

2.3. Sumba

To the east of Java there is a major change in the mode of seismicity seen along the

Sunda Arc. There have been several major (above magnitude 6.0) normal faulting

earthquakes along this section of the Arc. There has also been a host of smaller normal

faulting earthquakes right along the trench from Timor to about 113�E. This is a highly

unusual pattern of earthquakes for a subduction zone since they are usually dominated by

shallow dipping thrust fault earthquakes rather than normal faulting earthquakes. The

largest earthquake in this normal faulting sequence was the Mw 8.3 Sumba 1977 event

(Fig. 3) which caused a significant tsunami along the northwest coast region of Australia

to the south (Fig. 1). This event was located to the south of the trench and had an

extensive series of aftershocks, most of which also had normal faulting mechanisms

(SPENCE, 1986). The 1977 Sumba event was the largest earthquake to have occurred

anywhere along the Arc from the Andaman Sea to Timor during the twentieth century.

The extensive normal faulting along this section of the Sunda Arc suggests that a

major change in stress occurs between 113�E and Timor. This could be due to the

relatively old (and thus dense) crust subducting along this section of the Arc. The plate

itself may be breaking off along a major normal fault at the trench (SPENCE, 1986). This

would have the effect of decoupling the megathrust and is consistent with the small

number of earthquakes between the trench and the coast. Although there are some

earthquakes with a shallow-dipping focal mechanism beneath the Island of Sumba itself

(which is consistent with an active megathrust) these are fairly small and quite rare.

In the hazard model, we have two branches to the logic tree representing two different

fault models for this section of the Sunda Arc. One has a normal fault extending from

113.5�E to Timor and the other is a shallow-dipping megathrust along the same section of

Arc (see Table 1 for details).

2.4. Banda Sea

The tectonic history of the eastern Sunda Arc around the Banda Sea has been the

subject of many decades of debate. It has been described by some as one of the most

complicated tectonic regions on Earth. The Java trench becomes much more shallow

south of Timor. From here to Aru it is known as the Timor Trough. There is no evidence

of any large (greater than magnitude 6.0) earthquakes to the south of Timor, though some

smaller earthquakes have occurred there. They occur on steeply dipping fault planes, are

fairly small, and have only occurred south of West Timor. Most of the major earthquakes

in this area have occurred to the north of Timor along the Flores and Wetar thrusts (the

pink boundary in Fig. 2 running from east to west and lying just to the north of Timor).
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The faults associated with these events are also quite steeply dipping. In between the

Flores and Wetar thrusts and the Timor Trough, there is a complicated mixture of

earthquake types with no clear dominant mechanism.

To the east, near the Islands of Tanimbar and Aru (Fig. 2), there has been only one

major event since 1976 (a Mw 6.9 event in 1988). The events in this region have

extensional focal mechanisms. To the north of the Island of Seram we again see shallow-

dipping thrust earthquakes between the trench and under the island itself, just like those

off the southern coasts of Java and Sumatra. This suggests that a southward-dipping

active subduction zone exists in this area beneath the island.

An analysis of GPS measurements by BOCK et al. (2003) has shown that the

convergence rate between the Australian Plate and the islands of the Sunda Arc

immediately to its north decreases dramatically east of Sumba. The convergence rate

between the Australian Plate and Timor is low, while the islands further to the north (e.g.,

Sulawesi) are moving much faster towards Australia than Timor is. This suggests that

most of the relative convergence is being accommodated to the north of Timor along the

Wetar and Flores thrust faults. The GPS data also indicate that the area around Aru and

Tanimbar is extensional since it is moving away from the Australian plate.

In our opinion, the most likely explanation for all these observations is that

subduction ceased between Timor and Aru when the Australian plate started to collide

with Timor (between 2 million and 10 million years ago). Timor consists of lighter

continental crust and so will resist subduction. Most of the convergent motion is now

being taken up by the Wetar and Flores thrust faults to the north of Timor. The area to the

east near Aru appears to be now undergoing rifting, probably also because of the Timor-

Australia collision. The Seram area appears to be the only active subduction zone left in

the Banda Sea area.

There is no consensus on the nature of the tectonics in the Banda Sea itself. Some

argue that the area is convergent (BIRD, 2003); others argue that it is mostly strike-slip

(MCCAFFREY, 1988). The latter is more consistent with the recent focal mechanisms;

however they are quite complex and subject to multiple interpretations. The largest

earthquake in the Banda Sea itself was the 1938 event (Fig. 3). This event has been

estimated to have a magnitude of about Mw 8.6 with a thrust mechanism and to be

approximately 60 km deep (OKAL and REYMOND, 2003). It created only a relatively small

tsunami for an earthquake of this size, which appears to have caused damage local to the

source but did not produce a significant impact in Australia. We believe that any

earthquake with a plausible magnitude produced in the central to northern Banda Sea

could well produce a local, damaging tsunami in the Banda Sea region. However, any

tsunami generated here would be very unlikely to reach Western Australia with a

damaging height due to the number of islands between the Banda Sea and Australia.

Due to the great uncertainties and the low likelihood of a hazardous tsunami from the

central to north Banda Sea reaching Western Australia, the central Banda Sea itself is not

included as a source for the WA tsunami hazard maps. However, the Seram subduction

zone, the Timor-Australian plate boundary and the Flores and Wetar thrusts are all
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included as earthquake sources in the probabilistic tsunami hazard map, as indicated in

Table 1.

2.5. Central Indian Ocean

In June 2000 an Mw 7.9 event occurred about 150 km to the southeast of the Cocos

(Keeling) Islands in the middle of the Indian Ocean (the isolated focal mechanism in

Fig. 3). Analysis of the event indicates that the earthquake started as a strike-slip event

but then may have triggered a simultaneous earthquake on another fault (a compound

rupture). The second fault has variously been argued to be another strike-slip fault or a

thrust fault (ABERCROMBIE et al., 2003). This earthquake was typical, if large, example of

the earthquakes that occur right across the Indian Ocean. Events in this region tend to be a

mix of thrust and strike-slip earthquakes. The central Indian Ocean is one of the most

seismically active ocean basins, however, its level of activity is still considerably less

than the Sunda Arc.

The central Indian Ocean region is currently thought to be a diffuse plate margin

separating the Indian and Australian plates (BIRD, 2003). Australia and India are

approaching each other by less than 8 mm/yr (BIRD, 2003). Unlike other oceanic plate

margins this convergence is being accommodated over a region, which is at least 25

degrees in longitude and 15 degrees in latitude. One transect of the region counted 134

active faults over a distance of 2100 km (CHAMOT-ROOKE et al., 1993). The deformation

in this region appears to be accommodated by a complex mix of:

• strike-slip earthquakes along pre-existing transforms formed at the Australian-

Antarctic spreading center;

• pre-existing normal faults formed at the spreading center and reactivated as reverse

faults; and

• recently formed thrust faults scattered throughout the Indian Ocean.

Since the convergence is spread over so many small faults, the individual slip rate

on any fault is probably less than 0.1 mm/yr. Cumulatively this adds up to the still

very small *8 mm/yr of relative convergence between the Indian and Australian

plates.

There are far too many faults in this area to consider in a probabilistic tsunami hazard

assessment using unit sources (like the one done for this study). One would have to use an

areal source, similar to the method used in seismic hazard studies in other intra-plate

regions, since there is also no known fault map for the area. The slip rates are probably

low, so it is quite likely that the effect on the hazard maps to follow will be very small.

However, it is worth keeping in mind that there is a small, but non-zero, chance of a

major earthquake (up to at least magnitude 8) occurring anywhere in the Indian Ocean. If

they are large enough and located close enough to the coast, they may produce a

hazardous tsunami. The return periods for a hazardous tsunamigenic events is likely to be

very long for any particular fault.
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Given the high maximum magnitude and the frequent earthquakes, by far the most

likely source of tsunamigenic earthquakes that could affect WA is the Sunda Arc

subduction zone off Sumatra and Java. However, it should be remembered that it is still

possible (albeit very unlikely) to get tsunamigenic events from earthquakes which could

be located anywhere in the Indian Ocean. Such events could potentially be included in a

future study of tsunami hazard in this region using area-based sources.

3. Tsunami Hazard Analysis Method

The goal of hazard assessment is to estimate how likely hazardous events are and how

large their effects might be. There are two approaches used for hazard assessment: A

scenario or deterministic approach that usually focuses on a maximum credible event and

historical experience, and a probabilistic approach that considers a broad range of

potential events and their likelihoods. In the case of tsunami, the former is normally used

for developing inundation maps and evacuation procedures. Because they contain little or

no information about likelihood, however, scenario-based methods are of limited

usefulness for broader policy and planning decisions. We therefore consider a

probabilistic approach here.

Probabilistic Tsunami Hazard Analysis (PTHA, see, e.g., LIU et al. 2007; GEIST and

PARSONS, 2006; WARD and ASPHAUG, 2000; RIKITAKE and AIDA, 1988) was rarely

considered until recently—i.e., since the occurrence of the 2004 Indian Ocean Tsunami.

PTHA is based on Probabilistic Seismic Hazard Analysis (PSHA, see CORNELL, 1968;

MCGUIRE, 1976), which is widely used for insurance, planning and design purposes.

PSHA considers the probability that some measure of earthquake ground motion, such

as Peak Ground Acceleration, may be exceeded at a location of interest. The

implementation of PTHA used here, which was described by THIO et al. (2008), instead

considers the probability that a tsunami wave height will be exceeded immediately

offshore at a location of interest. Like almost all implementations of PSHA, the

theoretical development of PTHA begins with the assumption that events causing a

tsunami exceeding some height follow a time-independent Poisson process (see, e.g.,

page 128 of KRAMER, 1996). Under this assumption, the probability of at least one event

occurring in t years that has an offshore tsunami height h greater than hcrit at the

location of interest i is:

Piðh� hcritÞ ¼ 1� exp �/iðhcritÞtð Þ; ð1Þ

where /i(hcrit) is the annual mean number of events per year that will cause an offshore

tsunami height exceeding hcrit at the location of interest i. /i(hcrit) is also known as the

annual frequency of exceedence. The reciprocal of /i(hcrit) is known as the ‘return

period’, si(hcrit) = 1//i(hcrit). /i(hcrit) is calculated as the sum over all source zones of the

mean number of earthquakes resulting in tsunamis satisfying h > hcrit at the location of

interest:
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/iðhcritÞ ¼
X

j
NjðM�Mi

critÞ: ð2Þ

Here Nj (M C Mcrit
i ) is the annual number of earthquakes that occur in source zone j,

whose magnitude exceeds Mcrit
i , which is the magnitude of an earthquake that produces a

tsunami whose offshore height is hcrit at location i. Mcrit
i here will be determined by

numerically modelling tsunamis from various magnitude earthquakes to the coast.

The calculation of the functional form of Nj (M C Mcrit
i ) can be based on the historic

occurrence of subduction zone earthquakes and/or a relationship between the frequency

and magnitude of earthquakes, such as the well-known Gutenburg-Richter law. This is

considered in more detail in the next section.

3.1. Earthquake Frequency

The simplest way to estimate Nj (M C Mcrit
i ) for earthquakes or tsunamis is from the

frequency at which the event has occurred historically. Unfortunately this method is

rarely possible for large earthquakes because they happen so infrequently. Before the

2004 Andaman earthquake, no event greater than magnitude 8 was known to have

occurred on this fault, so the above method would give a value for NAndaman(M C 8.0) of

zero before 2004, a serious underestimate. The last time an event of this size or larger

occurred along this part of the subduction zone may have been long before historical

records began. Records of seismicity are rarely long enough to estimate earthquake

frequency reliably with this empirical method.

Our alternative method for estimating Nj (M C Mcrit
i ) for the Sunda Arc subduction

zones segments proceeds as follows:

1. Obtain the most comprehensive global catalogue of earthquakes;

2. Determine which events were generated at subduction zones and remove the rest;

3. Work out for this catalogue how many subduction zone earthquakes per annum occur

globally above a given magnitude;

4. Find the best recurrence model which fits this data (e.g., the tapered Gutenburg-

Richter model). This now gives us the global annual frequency of a subduction zone

earthquake NG (M C Mx) for any magnitude Mx;

5. Determine the annual frequency of earthquakes above magnitude Mx, Nj
sub(M C Mx),

for subduction zone j. We use the following equation to do this:

Nsub
j ðM�MxÞ ¼ NGðM�MxÞ

vjLjP
i
ðviLiÞ

; ð3Þ

where vj is the rate of convergence of subduction zone j and Lj is its length. The sum in

the denominator is taken over all subduction zones in the world large enough to host an

earthquake of size Mx or greater. The minimum length of the subduction zone required to
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host an event of size Mx is assumed to be LMIN = Mx/a, where a = 2.0 9 10-2 km-1

from SCHOLTZ (2002). This is quite a conservative minimum and is well below the

observed length of historic events above magnitude 7 (the minimum magnitude

considered here).

6. Determine the fraction of earthquakes for a given subduction zone that is likely to be

on the megathrust (as opposed to some other fault in the subduction zone area like the

Great Sumatran fault). When the angle of convergence is low the strain is partitioned

between strike-slip faults landward of the outer-arc high and slip on the megathrust.

Using the formula of BURBIDGE and BRAUN (1998) we can calculate this angle for each

subduction zone (assumed to be about 16 degrees for all the megathrust faults used

here). For subduction zones with this obliquity angle or less (partitioned subduction

zones) we assume that the annual frequency of an earthquake on the megathrust can be

found by:

NjðM�MxÞ ¼ Nsub
j ðM�MxÞ

vcon
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvcon
j Þ

2 þ ðvlat
j Þ

2
q ; ð4Þ

where vcon is the convergent component perpendicular to the fault and the lateral

component is vlat. For all other (non-partitioned) subduction zones Nj(M C Mx) is

assumed to be the same as Nj
sub(M C Mx).

For steps 1–3 we used the results of BIRD and KAGAN (2004). In this paper they

classified earthquakes from the PACHECO and SYKES (1992) catalogue according to the

nearest plate margin to the earthquake which is appropriate for that earthquake’s focal

mechanism. They found that all earthquakes across the globe could be approximated by

fitting the tapered Gutenburg-Richter (G-R) relationship. The (non-tapered) G-R

relationship states that the number of events with magnitude greater than Mx obeys the

following relationship:

log NGðM�MxÞ½ � ¼ a� b�Mx; ð5Þ

where a and b are two constant numbers. They found that b is always close to 1.0 for small

earthquakes, despite the different geological settings. However, for large earthquakes the

earthquakes became exponentially less common. So they use a tapered G-R relationship to

better fit all earthquakes, large or small. The tapered relationship is given by:

NGðm�mxÞ ¼
mx

mt

� ��b

exp
mt � mx

mC

� �
; ð6Þ

where b = 2/3b, m is the seismic moment, mt is the seismic moment threshold of the

catalogue (i.e., the minimum seismic moment that can be reliably determined) and mC is

the ‘‘corner’’ seismic moment. The seismic moment is related to the magnitude by

(PURCARU and BERCKHEMER, 1978):
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log m ¼ 1:5M þ 9:1: ð7Þ

The corner moment (mC) roughly corresponds to the magnitude at which the G-R

relationship began to taper significantly. It is related to the corner magnitude, MC, by

equation (7).

BIRD and KAGAN (2004) found that the main difference between earthquakes in

different geological settings were with their estimates of a and MC for each setting. In the

case of subduction zone earthquakes, BIRD and KAGAN (2004) argued that there is no

statistically significant justification for subdividing the subduction zone setting into

smaller subsets (e.g., subduction zones subducting old crust versus subduction zones

subducting new crust). The only effect they noticed was that a increases with the rate of

subduction (i.e., how fast the plates were moving closer together). The faster the plates

converge the more earthquakes above a certain magnitude occur, hence a is larger. For

subduction zones they found that MC was equal to 9.58. The 90% confidence interval for

this estimate of MC had a lower limit of 9.18, but had an unbounded upper limit because

of the lack of earthquakes with these high magnitudes in the historic record.

From BIRD and KAGAN’s (2004) data we can calculate their estimate of a for all

subduction zones lumped together (based on the Pacheco catalogue and the maximum

probability method described in BIRD and KAGAN (2004)). According to their catalogue,

on average 0.5 events greater than Mw 8.0 happen per year somewhere on one of the

world’s subduction zones. For a Poisson process, this means that the probability of an

event greater than Mw 7.5 ocurring somewhere on the globe per year is about 38%.

However, while this is a good estimate of a global frequency of occurrence, we really

need an estimate for the specific subduction zones in this study: Sumatra, Java, Sumba and

Seram. To calculate this we use equation (3). This equation was chosen in order to partition

NG (M C Mx) into different subduction zones according to the area being subducted per

annum on the subduction zone (vL). Essentially, this implies that earthquakes of a given

magnitude are more likely to occur somewhere on a large, fast-moving subduction zone than

on a small and/or slowly converging subduction zone. This is motivated by the observation

that earthquakes more frequently occur (have a higher a) on faster moving subduction zones

than small ones because the rate at which the faults are loaded to failure is faster on rapidly

converging subduction zones than on slowly moving subduction zones (BIRD and KAGAN,

2004). We believe it is also reasonable to assume that an earthquake is more likely to occur

on a longer subduction zone than a smaller one because there are simply more places for an

earthquake to happen on a large fault than a small one. The accumulation of tectonic

moment on the large fault would be much more rapid, and thus the release of seismic

moment can be expected to be more rapid too (KAGAN, 2002). The frequency of a very large

earthquake occurring on a subduction zone with length less than LMIN is zero because the

fault is simply too small to host such a large event. Note that splitting up the global

seismicity in this way implicitly assumes that the coupling on any given subduction zone is

not significantly different from the global average for seismic coupling along megathrusts.
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The length and velocity of every subduction zone in the world was calculated using

BIRD’s (2003) digitized plate model. Sections of subduction zones within ‘‘orogenic

zones’’ are considered to be distinct from those not within orogenic zones. This splits

zones such as the Sunda Arc into two (because Sumatra is within an orogenic zone but

Java and Sumba are not). Triple junctions also act to segment subduction zones (i.e., they

act like a rupture barrier so that earthquakes on one side cannot propagate to the other).

Finally, the Sumba and Java sections were also split into two because of the major change

in focal mechanisms that occur there.

When the angle between the fault and the direction of convergence is smaller than a

critical angle, the strain is partitioned between strike-slip faults landward of the fault and

the megathrust. The strike-slip faults take all the lateral motion, while the thrust fault

takes up the convergent component of the motion. Using an argument based on work

minimization (BURBIDGE and BRAUN, 1998), one can show that the only megathrust fault

considered in this study that will be strain partitioned is Sumatra. This is consistent with

the fact that only Sumatra has large strike-slip faults between the trench and the coast.

Since some of the deformation will be occurring on faults other than the megathrust, this

will reduce the frequency of events on the much more tsunamigenic megathrust fault. To

represent this we reduce the frequency of all partitioned subduction zones by using

equation (4).

Figure 4 shows the return period (the inverse of the annual frequency of exceedence)

vs. magnitude for the global subduction zone earthquake catalogue and for six specific

subduction zone segments: Java, Sumatra, Sumba, Seram, Nankai (off Japan) and

Southern Chile. Our method implies that an event of any given magnitude and year is

much more likely on the Java zone, since it is fast and long, and much less likely on

Seram, since it is shorter and slower. The Sumba section of the Sunda Arc ends up having

much the same frequency of occurrence as the Sumatra section. However, it is important

to remember that the Sumba section may or may not be seismically coupled (see

discussion in Section 2.3). Since the Sumba section is shorter than the Sumatra section it

has a lower maximum magnitude than Sumatra. Events around Mw 9.5 are only possible

on long subduction zones like Sumatra, South Chile and Java because of the large area

required for a great earthquake of this size. The curves for individual subduction zones

flatten at high magnitudes because the tapering of global frequency of earthquakes is

almost exactly cancelled by the reduced number of faults big enough to host large

earthquakes (the number of large faults decreases exponentially above a certain size,

nearly cancelling the exponential taper in equation (6)). This means for the PTHA

calculations to follow, we will assume a linear GR relationship up until a given value

maximum magnitude. The maximum magnitude chosen depends on fault length and

earthquake history along that particular fault.

Nankai and Chile curves are shown in Figure 4 because they have two of the longest

catalogues of seismicity anywhere on the globe. The return periods estimated from these

catalogues (SCHOLTZ, 2002, for Nankai, and the Servicio Sismologico Universidad

de Chile’s website for South Chile) are also shown in Figure 4. There have been 11
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events greater than 8.0 on the Nankai subduction zone in the last 1500 years (SCHOLTZ,

2002). Using the historical method this catalogue gives a return period (mean spacing

between events of M C 8.0) of 124 ± 93 years. This is statistically indistinguishable

from the value calculated with our method (131 years). Similarly the spacing between the

two events of magnitude 8.6 or greater (661 years) is very close to our predicted value

(640 years).

There is also an extensive seismic catalogue for the southern Chilean subduction zone

(the location of the magnitude 9.5 event in 1960). According to the Servicio Sismologico

Universidad de Chile’s website there have been 7 events greater than 8.0 since 1570. This

gives a return period of 65 ± 41 years which compares well with the calculated return

period of 61 years. The return period for 8.5 or greater events has been observed to be

128 ± 46 years; our model estimates this to 187 years, again quite close (and still within

two standard deviations of the observation). Since the Nankai and Chile subduction zones

fit this method quite well, this gives us some confidence that the method we are using

here to calculate the return periods is reliable.
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Figure 4

Subduction zone earthquake return period as a function of magnitude. The black line is an empirical model

based directly on the maximum probability subset of the Pacheco catalogue (BIRD and KAGAN, 2004). The red

line is based on the BIRD and KAGAN’s (2004) best fit to these data using the tapered Gutenburg-Richter model.

The other lines are the mean return periods for some of the other subduction zones. The zones shown are: Java

(cyan), Sumatra (blue), Nankai (brown), Seram (green) and South Chile (orange). The curve for Sumba overlaps

Sumatra but has a lower maximum magnitude. The stars with the error bars show the estimated return times

from the catalogue by Servicio Sismologico Universidad de Chile and the history of Nankai seismicity described

by SCHOLTZ (2002).
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The return periods for magnitude 8.0 or greater events for Java, Sumatra, Sumba,

Andaman and Seram subduction zones are (respectively) 98 years, 121 years,

122 years, 212 years and 287 years. According to our method, large events occur

more frequently on the Java and Sumatra sections of the Sunda Arc than the others

studied in this paper. The Sumba megathrust (if coupled) has a similar rate to the

Sumatra megathrust. Note that this method does not take into consideration any change

in the rate due to the other factors mentioned in the introduction (e.g., sediment, plate

age or presence of forearc basins). While these may be linked to the frequency of

exceedance, there is currently no way of quantitatively estimating their effect on the

earthquake frequency or maximum magnitude. Since this method fits the observations

for Nankai and Chile so well, these features may not even be necessary to predict

subduction zone earthquake reoccurrence to the accuracy of the historical observations.

So for the purposes of this study we will use the values shown in Figure 4 for the

subduction zones of interest.

Note that the rates here are for the total seismic release for the subduction zone faults

and thus would be comprised of both mainshocks and aftershocks for earthquakes smaller

than approximately Mw 7. Thus the observed rate of Mw 7 or smaller events cannot be

accurately estimated, even though their return times are less than the instrumental

catalogue length, since the number of aftershocks over the last thirty years depends on the

number of great (Mw 8?) events over that period. The current rate of Mw 6 and above for

Sumatra, for example, is somewhat higher than a direct extrapolation of the curve shown

in Figure 4 would suggest, but this is to be expected since the modern catalogue includes

a great earthquake and numerous aftershocks above magnitude 6. Thus the instrumental

rate of Mw 6 and above over the last few decades may not representative of the long-term

rates.

The best value for the maximum magnitude used in the PTHA calculations is highly

uncertain, as discussed in Section 2. One can assume that the maximum magnitude is

simply a function of length (using SCHOLTZ’s, 2002, formula) or we can assume that it is

the largest earthquake known for the area. The length restriction limits the Seram

subduction zone to a maximum magnitude of approximately 9.1. The Java, Sumatra and

Andaman subduction are all long enough to host events up to (and even beyond)

magnitude 9.5 (the size of the 1960 Chilean earthquake).

4. Hazard Assessment Results

By combining the information summarized above, we can use the PTHA method to

produce a synthetic catalogue of hypothetical earthquakes which includes an estimate of

their frequency. The maximum height of the resulting tsunami is then calculated by

breaking each fault comprising the tsunamigenic source zones of the Sunda Arc into an

array of unit sources. We then numerically model the amount of vertical deformation

expected from 1 m of slip on each unit source using WANG et al.’s (2005) crustal
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deformation model. The crustal model uses three layers above a vertical half space. The

parameters of each layer and the halfspace are shown in Table 2.

We then use the vertical component of the crustal deformation as the initial condition

for a staggered grid finite-difference numerical model to propagate each tsunami to the

coast. The model solves the linear shallow water wave equations over a 2 minute

bathymetry grid. The bathymetry data used is a combination of global bathymetry model,

DBDB2 V2 (2004) and a downsampled version of Geoscience Australia’s 250 m

bathymetry model for Australia.

The results of these computations are stored in a rapidly accessible library of unit

source ‘Green’s functions’ (i.e., the solution to a differential equation for a point source

forcing term). Any one of the tsunami used for the calculation of /i(hcrit) can then be

simulated by appropriately scaling and summing the results for the combination of unit

sources that most closely represents the actual earthquake to be simulated. (Note that this

type of source decomposition is mathematically valid only for the linear shallow water

simulations used in this study—e.g., they would not be valid for non-linear inundation

simulations). For this study, over 5000 earthquakes were simulated in this manner using

about 500 unit sources, each corresponding to a 50 km 9 50 km subfault. The subfaults

were spaced evenly along the strike and down the dip of each fault.

At the end of this process, we now have a maximum tsunami amplitude estimate for

each hypothetical earthquake. Since we also have an estimate of the frequency of the

earthquake, we can then calculate the wave height which has the required probability of

being exceeded (i.e., the tsunami hazard) for points along the WA coast. Below we

consider three ways of visualising the hazard: hazard curves, hazard maps, and

deaggregated hazard.

4.1. Hazard Curves and Uncertainty

While the goal of any hazard assessment is to give a best estimate of likelihood and

impact, it is also important to address the issue of how uncertain these estimates may be.

All of the parameters summarized in Table 1 are known with only limited precision, so

they all contribute to the uncertainty in this hazard assessment. Other parameters, such as

Table 2

Crustal properties of the linear elastic crustal layers used to calculate the vertical component of the sea-floor

deformation for each unit source

Layer Depth beneath

surface (km)

Compressional

wave speed (km/s)

Shear wave

speed (km/s)

Density

(kg/m3)

0–1 4.5 2.4 2,700

1–13 5.6 3.3 2,700

13–30 6.2 3.7 2,900

30? 7.9 4.6 3,300
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the elasticity of the crust which controls the sea-floor deformation and therefore the size

of the initial wave, also contributes to the uncertainty in the final hazard assessment.

However, at least for the longer return periods, we believe that two of the largest sources

of uncertainty are our poor knowledge of (a) the maximum magnitude of the largest

earthquake along the Java section of the trench (Mmax
J ) and (b) the presence or absence of

a normal fault along the Sumba section of the Sunda Arc. Figure 5 shows some hazard

curves (i.e., exceedance height of offshore tsunami as a function of return period) for

selected locations off the coast of WA and one for a location on the south coast of Java

(near the town of Cilacap). The preferred model is the purple curve in Figure 5. For the

preferred model we have given an equal weighting to the Mmax
J = 8.5 (blue), 9.0 (cyan),

9.3 (orange) and 9.5 (red) models in the logic tree (i.e., they each have a 25% chance of

being correct) and the two Sumba models (i.e., both the normal only (black) and

megathrust only (green) fault models have a 50% chance of being correct). Over 5,100

events were included in the preferred (evenly weighted) model, one for each branch of

the logic tree. For most locations the preferred model (the purple curve) has a similar

hazard curve to the Mmax
J = 9.0 model (the cyan curve). Note that this is the ‘‘deep-

water’’ wave height at depths of around 50 m. At depths shallower than this the wave

shoals significantly and runups could be several times the values shown here. The exact

runup amplification factor will vary significantly along the coast depending on the details

of the local bathymetry.

The spread in the hazard estimates for the longer return periods shown in Figure 5

gives some idea of the effect of model uncertainty on our hazard estimates. For small

return periods the different models do not tend to have much effect on the hazard. At the

longer return periods the uncertainty in Mmax
J has a considerable impact on the hazard for

locations along the Java coast (like Cilacap) and locations south of about Exmouth (e.g.,

offshore Fremantle). For locations along the northwest shelf, the model chosen for the

Sumba section can also have a significant impact on the wave heights. If only the normal

fault is active (the black curve), the hazard is much lower than if only the megathrust is

active (the green curve) or if they have a 50/50 chance of being active (the cyan curve).

Constraining the wave heights at the longer return periods is always going to be quite

uncertain because our historic catalogues do not go back far enough to constrain the

maximum magnitudes or (in the case of Sumba) even the type of earthquake we can

expect at the zone.

Figure 5

Some hazard curves for points off the coast of WA and Java. All the points are in water close to 50 m deep. The

x axis shows the return period, and the y axis shows the wave height exceedances. The blue, cyan, orange and

red curves are four models with different estimates of the maximum magnitude earthquake possible on the Java

subduction zone (8.5, 9.0, 9.3 and 9.5, respectively). The red curve is usually the ‘‘worst case’’ scenario since it

assumes the largest maximum magnitude. The green and black curves are two different models of the Sumba

subduction zone. The black curve assumes that the megathrust fault is completely uncoupled and the green one

assumes that it is completely coupled to the subducting plate. The thick purple line is our preferred model which

is a weighted mean of all the other curves on these figures.
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There are other sources of uncertainty which we were not able to include since we

needed to keep the number of branches of the logic tree to reasonable values (5,100

branches in this case). For example there is the uncertainty due to errors in the

bathymetry, uncertain crustal properties (e.g., elastic parameters) and fault geometry

(e.g., dip, rupture area, rupture width, etc). We also assume uniform slip and use the

linear shallow water wave equation to solve the propagation of the tsunami. Non-uniform

slip is likely to be more important closer to the source (GEIST, 2002), but can also be

important in the far field, particularly if islands are in the rupture zone of the earthquake.

Nonlinear effects on the wave propagation (such as dispersion) may also become

important (HORILLO et al., 2006). All these uncertainties, could in principle, be included in

a probabilistic hazard analysis by adding more branches to the appropriate logic trees.

However, in practice this is limited by the computational resources available to do the

PTHA. Future PTHA are likely to cover a wider range of possibilities than can be

considered here, but Figure 5 should give at least some indication of the likely effect of

some of the uncertainty for at least Mmax.

4.2. Hazard Maps

Figure 6 shows the maximum wave heights for different return periods for points

interpolated to the 50 m contour off the coast of WA for the preferred model (the purple

curve in Figure 5).

The maximum wave heights increase very rapidly with return period. For return

periods approaching 2000 years it is very likely that at least one major earthquake (above

magnitude 8.5) will occur somewhere along the Java-Sumba sections of the Sunda Arc

and create a significant wave. These large waves could inundate a large section of the

coast within a few hours, greatly complicating emergency response.

For any given return period, the hazard is largest for WA in the Shark Bay to

Exmouth region. The continental shelf tends to reflect energy away from the northwest

coast so its hazard tends to be smaller to the northeast of Exmouth. The hazard south of

Shark Bay is much lower since it is not in the direct path of any tsunami generated along

the Sunda Arc. The hazard along the south coast of WA is very small from tsunami

generated by Sunda Arc subduction zone earthquakes since this area of the coast is

protected by the Australian landmass.

4.3. Deaggregated Tsunami Hazard

The above results present the variation of offshore tsunami exceedance heights as a

function of return period and location along the WA coast. These are based on an

aggregate of many different tsunami generated in different parts of the Sunda Arc. These

exceedance heights are, therefore, not associated with any particular earthquake or any

particular part of the Arc. As discussed above, risk analyses and inundation maps require

that inundation modelling be conducted at locations of interest, but these numerical
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computations can only be realistically performed on a per-event basis. Some objective

decision must be made then, about which earthquake or set of earthquakes should be used

for inundation modelling at a particular location.

The decision of which scenario(s) to simulate for a particular location of interest is

complicated by the fact that tsunami propagation is very sensitive to bathymetry, so that it

is difficult to tell which part of a coastline will be most affected by a tsunami excited by a

given source. This is illustrated in Figure 7a, where the pattern of energy radiated by the

17 July, 2006 Java earthquake is shown. As has been the case for most historical tsunami

in WA, most parts of the coast did not experience a significant tsunami during this event,

but the combined influence of deep ocean and near-shore bathymetry resulted in

pronounced focussing of tsunami energy at a few very limited stretches of coastline. In

this case, such focussing lead to a 9 m tsunami runup at Steep Point (purple bar in Fig. 1),

the highest ever measured in Australia.
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Figure 6

Maximum wave heights along the WA coast (interpolated to the 50 m depth contour) with mean return period of

(a) 100 years, (b) 500 years, (c) 1000 years and (d) 2000 years.
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Geographic deaggregation of probabilistic hazard is used in PSHA (e.g., HARMSEN

and FRANKEL, 2001) for the determination of the location of the most probable source

contributing to the hazard at a particular site. This technique is used here to determine

the source locations along the Sunda Arc which make the largest contribution to the

hazard at a particular site of interest, for a given offshore tsunami exceedance height.

Once a particular section of the Sunda Arc has been identified as making the dominant

contribution to the hazard at a site of interest, then one or more scenarios appropriate to

that section of the arc can be used for inundation modelling. This idea is illustrated in

Figure 7b, where the deaggregation for Steep Point (red dot in the fig.) is shown for an

exceedance height of 0.5 m. The deaggregation shows that the 2006 Java earthquake

occurred precisely where we would expect the dominant contribution to tsunami hazard

at Steep Point to originate. If we had been concerned about tsunami impacts at this site,

even prior to the occurrence of the 2006 event, the deaggregation would have suggested

that inundation modelling be performed for a scenario similar to that event. Such

modelling should have established that these events can lead to high runup at Steep

Point, knowledge which may have been useful had it been available at the time of the

tsunami.

Deaggregated tsunami hazard for an exceedance height of 0.5 m is shown in

Figure 8 for Christmas Island and a selection of three sites along the WA coast:

Broome, Exmouth, Freemantle. These show that the bulk of the hazard at this wave

height for communities in the northern part of WA comes from the eastern Sunda Arc

off Sumba (Fig. 8a). For communities further to the south, the most important region

becomes first Java (Fig. 8b) and then to some extent Sumatra (Fig. 8c) becomes

increasingly important. However, for most locations Java is the single most important

section of the Sunda Arc. This is due to both Java being predicted to be quite active and

offshore bathymetry which tends to focus the tsunami towards the coast (Fig. 7a). The

Java section only becomes roughly as important as the Sumatra section for the WA

coast south of Fremantle (Fig. 8c). The hazard faced by Christmas Island, just to the

south of Indonesia, is naturally dominated by the subfaults immediately to the north of

the island, off Java (Fig. 8d).

5. Conclusion

We have completed a probabilistic tsunami hazard assessment for WA for

earthquakes generated by subduction zone earthquakes. The results of this assessment

Figure 7

(a) Maximum tsunami amplitude in the Indian Ocean calculated for the 17th July, 2006 Java earthquake, which

resulted in a 9-m tsunami runup at Steep Point, WA; (b) Tsunami hazard deaggregation for Steep Point WA,

showing the tsunami hazard at Steep Point is dominated by earthquakes near the epicenter of the 2006 Java

earthquake (indicated by green crosshairs). The height of the column shows the percentage of the probability

that comes from each unit source for the location of the red dot (Steep Point).
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show that the area offshore Exmouth consistently has the highest hazard (at 50 m water

depth) for any location along the WA coast, and that the hazard is moderate to high

offshore the region roughly between Shark Bay and Dampier, and is moderate offshore

the region between Dampier and Broome. The hazard is much lower further to the

south of Shark Bay, and is very low along the south coast of WA. The hazard

assessment reported here gives an indication of which areas of the WA coastline are

most likely to experience tsunamis, and how likely such events are. The central to

southern part of the west coast is most likely to be affected by the Java segment of

the Sunda Arc, while the northeastern part of the west coast is mostly affected by the

Sumba section of the arc. Bathymetric focussing seems to generate large waves in the

Exmouth area.

From the perspective of constraining the hazard, one of the urgent priorities

identified by this report is the development of a better understanding of the maximum

size of earthquakes which could occur off Java and Sumba. There have been no

historical events of magnitude 9.0 in this area, but if they occur they will likely

generate tsunami heights on the WA coast considerably larger than what has been

experienced historically. However, accurately estimating slip rates and seismic coupling

for subduction zones is a very difficult scientific problem and is likely to remain so for

some time.

Acknowledgements

The authors would like to acknowledge the editor, Kenji Satake and the reviewers of

this paper, Tom Parson, John Schneider and an anonymous reviewer for their contribu-

tions to this manuscript. We would also like to thank the reviewers who also reviewed the

original report on which this paper is based, namely Eric Geist, William Power, Clive

Collins, Augusto Sanabria and Chris Thomas. Finally we would also like to acknowledge

the financial contribution made by the Fire and Emergency Services Authority, Western

Australia, who helped to fund this project.

REFERENCES

ABERCROMBIE, R. E., ANTOLIK, M., and EKSTROM, G. (2003), The June Mw 7.9 earthquake south of

Sumatra: Deformation in the India-Australia Plate, J. Geophys. Res. 108, B1, 2018, doi:10.1029/

2001JB000674.

Figure 8

Tsunami hazard deaggregations calculated for a tsunami exceedence height of 0.5 m, for: (a) Broome;

(b) Exmouth; (c) Freemantle, and; (d) Christmas Island. The height of the column shows the percentage of the

probability that comes from each unit source for the location of the red dot.

b

Vol. 165, 2008 Probabilistic Tsunami Hazard for Western Australia 2085



ACHARYYA, S. K. (1998), Break-up of the greater Indo-Australian continent and accretion of blocks framing

south and east Asia, J. Geodynamic 26, 149–170.

BEAUREGARD, J. O. (2001), Explosive rhyodacitic volcanism: The evolution and frequency of pre-1883 eruptions

at Krakatau volcano, Indonesia, Ph.d. Thesis, University of Rhode Island, 358 pp.

BIRD, P. (2003). An updated digital model of plate boundaries, Geochem. Geophys. Geosys., 4, 1027,

doi:10.1029/2001GC000252.

BIRD, P. and KAGAN, Y. Y. (2004), Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta,

corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings, Bull. Seism. Soc.

Am. 94, 2380–2399.

BLAND, P. A. and ARTEMIEVA, N. A. (2003), Efficient disruption of small asteroids in Earth’s atmosphere, Nature

424, 288–290.

BOCK, Y., PRAWIRODIRDJO, L., GENRICH, J. F., STEVENS, C. W., MCCAFFREY, R., SUBARYA, C., PUNTODEWO, S. S. O.,

and CALAIS, E. (2003), Crustal motion in Indonesia from Global Positioning System measurements,

J. Geophys. Res. 108, 2367.

BURBIDGE, D. R. and BRAUN, J. (1998), Analogue models of obliquely convergent continental plate boundaries,

J. Geophys. Res. 103, B7, 15,221–15,237.

BURBIDGE, D. and CUMMINS, P. (2007), Assessing the hazard to western Australia from tsunami generated by

earthquakes along the Sunda Arc, Natural Hazards 43(3), 319–331.

CHAMOT-ROOKE, N., JESTIN, F., DE VOOGD, B. and PHEDRE WORKING GROUP (1993), Intraplate shortening in the

central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile, Geology

21, 1043–1046.

CHESLEY, S. R. and WARD, S. N. (2006), A Quantitative assessment of the human and economic hazard from

Impact-generated Tsunami, Natural Hazards 38, 355–374.

CORNELL, C.A. (1968), Engineering seismic risk analysis, Bull. Seismol. Soc. Am. 58, 1583–1606.

CRUCIANI, C., CARMINATI, E., and DOGLIONI, C. (2005), Slab dip vs. lithosphere age: No direct function, Earth

Planet. Sci. Lett. 238, 298–310.

CUMMINS, P. R. (2007), The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal, Nature.

229, 75–78.

DOMINEY-HOWES, D., CUMMINS, P., and BURBIDGE, D. (2006), Historic records of teletsunami in the Indian Ocean

and insights from numerical modelling, Natural Hazards Doi: 10.1007/s11069-006-9042-9.

GEIST, E. L. (2002), Complex earthquake rupture and local tsunamis, J. Geophys. Res. 107, 5, 2–1.

GEIST, E. L. and PARSONS, T. (2006), Probabilistic analysis of tsunami hazards, Natural Hazards 37, 277–314.

GUSIAKOV, V. K. (2005), Integrated tsunami database for the world ocean, version 5.15, Tsunami Laboratory,

ICMMG SD RAS, Novosibirsk, Russia.

HYNDMAN, R. D. and WANG, K. (1993), Thermal constraints on the zone of major thrust earthquake failure: The

Cascadia subduction zone, J. Geophys. Res. 98, 2039–2060.

HARMSEN, S. C. and FRANKEL, A. D. (2001), Geographic deaggregation of seismic hazard in the Untied States,

Bull. Seismol. Soc. Am. 91, 13–26.

HORRILLO, J., KOWALIK, Z. and SHIGIHARA, Y. (2006), Wave dispersion study in the Indian Ocean-Tsunami of

December 26, 2004, Marine Geodesy 29, 149–166.

JENKINS, C. J. and KEENE, J. B. (1992), Submarine slope failures of the southeast Australian continental slope: A

thinly sedimented margin, Deep-Sea Research 39, 121–136.

KAGAN, Y. Y. (2002), Seismic moment distribution revisited: II. Moment conservation principle, Geophys. J. Int.

149, 731–754.

KOPP, H. (2002), BSR occurrence along the Sunda margin: Evidence from seismic data, Earth Planet. Sci. Lett.

197, 225–235.

KORYCANSKY, D. G. and LYNETT, P. J. (2005), Offshore breaking of impact tsunami: The Van Dorn effect

revisited, Geophys. Res. Lett. 32, 1–4.

KRAMER, S. L., Geotechnical Earthquake Engineering (Prentice Hall, New Jersey, 1996).

LASKE, G. and MASTERS, G. (1997), A Global Digital Map of Sediment Thickness, EOS Trans. AGU 78,

F483.

LIU, Y., SANTOS, A., WANG, S. M., SHI, Y., LIU, H., and YUEN, D. A. (2007), Tsunami hazards along Chinese

coast from potential earthquakes in South China Sea, Phys. Earth Planet. Int. 163, 233–244.

2086 D. Burbidge et al. Pure appl. geophys.,



MCCAFFREY, R. (1988), Active tectonics of the eastern Sunda and Banda Arcs, J. Geophys. Res. 93, B12,

15,163–15,182.

MCGUIRE, R. K. (1976), FORTRAN computer program for seismic risk analysis, U. S. Geolog. Survey Open File

Report 76–67, pp. 90.

MELOSH, H. J. (2003), Impact-generated tsunamis: An over-rated hazard. Lunar Planet. Sci. Conf. 34, Abstract

2013.

NATAWIDJAJA, D. H., SIEH, K., CHLIEH, M., GALETZKA, J., SUWARGADI, B. W., CHENG, H., EDWARDS, R. L., AVOUAC,

J.-P., and WARD, S. N. (2006), Source parameters of the great Sumatran megathrust earthquakes of 1797 and

1833 inferred from coral microatolls, J. Geophys. Res. 111, doi:10.1029/2005JB004025.

NEWCOMB, K. R. and MCCANN, W. R. (1987), Seismic history and seismotectonics of the Sunda Arc, J. Geophys.

Res. 92, 421–439.

NISHENKO, S. P. (1991), Circum-Pacific seismic potential: 1989–1999, Pure Appl. Geophys. 135, 169–259.

NOTT, J. and BRYANT, E. (2003), Extreme marine inundations (tsunamis?) of coastal western Australia,

J. Geology 111, 691–706.

OKAL, E. A. and REYMOND, D. (2003), The mechanism of great Banda Sea earthquake of 1 February 1938:

applying the method of preliminary determination of focal mechanism to a historical event, Earth and Planet.

Sci. Lett. 216, 1–15.

OLESKEVICH, D. A., HYNDMAN, R. D., and WANG, K. (1999), The up-dip and down-dip limits to great subduction

zone earthquakes: Thermal and structural models of Cascadia, South Alaska, SW Japan, and Chile,

J. Geophys. Res 104, 14,965–14,991.

PACHECO, J. F. and SYKES, L. R. (1992), Seismic moment catalog of large, shallow earthquakes, 1900–1989, Bull.

Seismol. Soc. Am. 82, 1306–1349.

PACHECO, J. F., SYKES, L. R., and SCHOLZ, C. H. (1993), Nature of seismic coupling along simple plate boundaries

of the subduction type, J. Geophys. Res. 98, 14133–14159.

PURCARU, G. and BERCKHEMER, H. (1978), A magnitude scale for very large earthquakes, Tectonophys. 49, 189–

198.

RIKITAKE, T. and AIDA, I. (1988), Tsunami hazard probability in Japan, Bull. Seismol. Soc. Amer. 78, 1268–

1278.

RUFF, L. (1989), Do trench sediments affect great earthquake occurrence in subduction zones? Pure Appl.

Geophys. 129, 263–282.

RUFF, L. and KANAMORI, H. (1980), Seismicity and the subduction process, Phys. Earth Planet. Int. 23, 240–252.

RYNN, J. and DAVIDSON, J. (1999), Contemporary assessment of tsunami risk and implications for early warning

for Australia and its Island Territories, Sci. Tsunami Hazard 17(2), 107–125.

SCHOLTZ, C. H., The Mechanics of Earthquakes and Faulting, Second Edition (Cambridge Univeristy Press, UK,

2002).

SPENCE, W. (1986), The 1977 Sumba earthquake series: Evidence for slab pull force acting at a subduction zone,

J. Geophys. Res. 91, 7225–7240.

STEIN, S. and OKAL, E. (2007), Ultralong Period Seismic Study of the December 2004 Indian Ocean

Earthquake and Implications for Regional Tectonics and the Subduction Process, Bull. Seismol. Soc. Am.

97, S279–S295.

THIO, H. K., SOMERVILLE, P., and INCHINOSE, G. (2008), Probabilistic analysis of strong ground motion and

tsunami hazards in southeast Asia, J. Earthquakes and Tsunami, 1, 119–137.

TSUTSUMI, A., SHIMAMOTO, T., KAWAMOTO, E., and LOGAN, J. M. (2000), Nearshore flow velocity of Southwest

Hokkaido earthquake tsunami, J. Waterway, Port, Coastal, and Ocean Engineering, 126, 136–143.

WANG, R., MARTIN, F. L., and ROTH, F. (2006), Computation of deformation induced by earthquakes in a

multi-layered crust – FORTRAN programs, EDGRN EDCMP, Comp. and Geosc. 29, 195–207 (inc.

erratum).

WARD, S. N. and ASPHAUG, E. (2000), Asteroid impact tsunami: A probabilistic hazard assessment, Icarus 145,

64–78.

WARD, S. N. and DAY, S. (2001), Cumbre Vieja volcano — potential collapse and tsunami at La Palma, Canary

Islands, Geophys. Res. Lett. 28, 3397–3400.

WELLS, R. E., BLAKELY, R. J., SUGIYAMA, Y., SCHOLL, D. W., and DINTERMAN, P. A. (2003), Basin-centered

asperities in great subduction zone earthquakes: A link between slip, subsidence and subduction erosion?

J. Geophys. Res. 108, 2507, doi:10.1029/2002JB002072.

Vol. 165, 2008 Probabilistic Tsunami Hazard for Western Australia 2087



ZACHARIASEN, M., SIEH, K., TAYLOR, F. W., EDWARDS, R. L., and HANTORO, W. S. (1999), Submergence and uplift

associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls,

J. Geophys. Res. 104, 895–919.

(Received April 6, 2008, accepted July 18, 2008)

Published Online First: December 19, 2008

To access this journal online:

www.birkhauser.ch/pageoph

2088 D. Burbidge et al. Pure appl. geophys.,


	A Probabilistic Tsunami Hazard Assessment for Western Australia
	Abstract
	Introduction
	Sunda Arc Earthquake Sources of Tsunami
	Sumatra-Andaman
	Java
	Sumba
	Banda Sea
	Central Indian Ocean

	Tsunami Hazard Analysis Method
	Earthquake Frequency

	Hazard Assessment Results
	Hazard Curves and Uncertainty
	Hazard Maps
	Deaggregated Tsunami Hazard

	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


