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Abstract—We have developed a least-squares minimization approach to determine the depth and the

amplitude coefficient of a buried structure from residual gravity anomaly profile. This approach is basically

based on application of Werner deconvolution method to gravity formulas due to spheres and cylinders, and

solving a set of algebraic linear equations to estimate the two-model parameters. The validity of this new method

is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated

from a known model with different random error components and a known statistical distribution. After being

theoretically proven, this approach was applied on two real field gravity anomalies from Cuba and Sweden. The

agreement between the results obtained by the proposed method and those obtained by other interpretation

methods is good and comparable. Moreover, the depth obtained by the proposed approach is found to be in very

good agreement with that obtained from drilling information.

Key words: Gravity anomalies, inversion of field gravity anomalies, cylinder-like bodies, sphere-like

bodies, systems of algebraic linear equations.

1. Introduction

The goal of gravity inversion is to point estimate the parameters (depth, amplitude

coefficient, and shape factor) of gravity anomalies produced by simple geometric shaped

structures (sphere, cylinder) from a set of given gravity observations. The gravity anomaly

expression produced by a simple geometrically shaped model (sphere and cylinder) can be

represented by analytical formula. This mathematical formula functions as both variables

depth and shape factor with an amplitude coefficient related to the radius and the density

contrast of the buried structure. Several numerical techniques have been presented and

reported for interpreting gravity anomalies and estimating depths and amplitude coefficients

of geological structures, assuming fixed simple source geometry as a sphere, a horizontal

cylinder, or a vertical cylinder. These techniques include, for example, graphical methods

(NETTLETON, 1962, 1976), ratio methods (BOWIN et al., 1986; ABDELRAHMAN et al., 1989),

Fourier transform (ODEGARD and BERG, 1965; SHARMA and GELDART, 1968), Euler

deconvolution (THOMPSON, 1982), neural network (ELAWADI et al., 2001), Mellin transform
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(MOHAN et al., 1986), least-squares minimization approaches (GUPTA, 1983; LINES and

TREITEL, 1984; ABDELRAHMAN, 1990; ABDELRAHMAN et al., 1991; ABDELRAHMAN and

EL-ARABY, 1993; ABDELRAHMAN and SHARAFELDIN, 1995a), Werner deconvolution (HARTMAN

et al., 1971; JAIN, 1976), KILTY (1983) extended the Werner deconvolution technique to the

analysis of gravity data, using both the residual anomaly and its first and second horizontal

derivatives. KU and SHARP (1983) further refined the method by using iteration for reducing

and eliminating the interference field and then applied Marquardt’s nonlinear least-squares

method to further refine automatically the first approximation provided by deconvolution.

However, only a few techniques have been treated for the determination of shape of

the buried structure. These techniques include, for example, Walsh transform (SHAW

and AGARWAL, 1990), least-squares methods (ABDELRAHMAN and SHARAFELDIN, 1995b;

ABDELRAHMAN et al., 2001a,b), constrained and penalized nonlinear optimization technique

(TLAS et al., 2005). Generally, the determination of the depth, shape factor, and amplitude

coefficient of the buried structure is performed by these methods from residual gravity

anomaly, where, the accuracy of the results obtained by them depends on the accuracy in

which the residual anomaly can be separated and isolated from the observed gravity anomaly.

In this paper, a simple and efficient interpretation method is proposed for the best

estimate of gravity parameters, e.g., depth and amplitude coefficient of simple shaped

bodies such as sphere, horizontal cylinder and vertical cylinder from residual gravity

anomaly. The method is basically based on the application of Werner deconvolution method

to a modified gravity formulas due to sphere and cylinders, and solving a system of algebraic

linear equations. It is mentionable that the proposed technique also could be applicable with

only some modifications to any anomaly described by a bell-shaped function.

The accuracy of such a method is demonstrated through theoretical gravity anomalies,

where simulated data are generated by using a known model with random errors and a

known statistical distribution. Being theoretically proven, the method is thereafter applied

to real field gravity anomalies taken from Cuba and Sweden. The agreement between the

results obtained by the proposed method and those obtained by other interpretation

methods is good and comparable. In addition, the depth obtained by applying this method

is found to be in very good agreement with that obtained from drilling information.

2. Gravity Problem Formulation due to a Sphere Model

The general expression of a gravity effect (V) for a sphere-like structure at any point

on the free surface along the principal profile in a Cartesian coordinate system (Fig. 1) is

given by GUPTA (1983) as:

VðxiÞ ¼ k
z

x2
i þ z2ð Þ3=2

i ¼ 1; 2; . . .;Nð Þ; ð1Þ

where, z is the depth from the surface to the center of the sphere body, xi (i = 1, . . .,

N ) is the horizontal position coordinate, and k is the amplitude coefficient given by
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k = 4/3 pGqR3, where q is the density contrast, G is the universal gravitational

constant, and R is the radius.

For simplification, Vi is used in the rest of this paper instead of V(xi) (i = 1, . . ., N).

Multiplying the two sides of equation (1) by the mathematical term (xi
2 + z2)3/2, it can

be found:

Vi x2
i þ z2

� �3=2¼ k z i ¼ 1; 2; . . .;Nð Þ: ð2Þ

Squaring both sides of equation (2), the following equation is obtained

V2
i x2

i þ z2
� �3¼ k2 z2 i ¼ 1; 2; . . .;Nð Þ: ð3Þ

Arranging equation (3), it can result:

V2
i x2

i þ V2
i z2

� �
x4

i þ z4 þ 2x2
i z2

� �
¼ k2 z2 i ¼ 1; 2; . . .;Nð Þ;

or
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Figure 1

The diagrams for simple geometrical structures (sphere, horizontal cylinder, and vertical cylinder).
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V2
i x6

i þ 3V2
i x2

i z4 þ 3V2
i x4

i z2 þ V2
i z6 ¼ k2 z2 i ¼ 1; 2; . . .;Nð Þ: ð4Þ

Equation (4) is not linear in the function of parameters z, and k. In order to avoid this non

linearity, new variables q1, q2, q3, q4 are introduced and defined as follows:

q1 ¼ z2; ð5Þ

q2 ¼ z4; ð6Þ

q3 ¼ z6; ð7Þ

q4 ¼ k2z2: ð8Þ

Introducing these new variables into equation (4), it can be found

V2
i x6

i þ 3V2
i x4

i q1 þ 3V2
i x2

i q2 þ V2
i q3 � q4 ¼ 0 i ¼ 1; 2; . . .;Nð Þ: ð9Þ

Equation (9) is now linear in function of variables q1, q2, q3, q4.

The global optimal solution of the linear system of equations (9) is found by

minimizing the following mathematical objective function onto the real space R
4: In

mathematical form, it can be written

q ¼ arg min uðqÞ ¼
XN

i¼1

V2
i x6

i þ 3V2
i x4

i q1 þ 3V2
i x2

i q2 þ V2
i q3 � q4

� �2
:

subject to q 2 R
4

This mathematical nonlinear program is simply solved by finding the unique solution of

the following system of linear equations: ouðqÞ=oqi ¼ 0 ði ¼ 1; . . .; 4Þ: This system of

linear equations could be written in matrix form as:

Aq ¼ b; ð10Þ

where A is a squared matrix of 4 9 4 dimensions given as follows

A ¼

3�
PN

i¼1

x8
i V4

i 3�
PN

i¼1

x6
i V4

i

PN

i¼1

x4
i V4

i �
PN

i¼1

x4
i V2

i

3�
PN

i¼1

x6
i V4

i 3�
PN

i¼1

x4
i V4

i

PN

i¼1

x2
i V4

i �
PN

i¼1

x2
i V2

i

3�
PN

i¼1

x4
i V4

i 3�
PN

i¼1

x2
i V4

i

PN

i¼1

V4
i �

PN

i¼1

V2
i

3�
PN

i¼1

x4
i V2

i 3�
PN

i¼1

x2
i V2

i

PN

i¼1

V2
i �N

2

66666666666664

3

77777777777775

q and b are vectors of four dimensions given as:
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q ¼

q1

q2

q3

q4

2

66664

3

77775
and b ¼

�
PN

i¼1

x10
i V4

i

�
PN

i¼1

x8
i V4

i

�
PN

i¼1

x6
i V4

i

�
PN

i¼1

x6
i V2

i

2

66666666666664

3

77777777777775

:

The linear system of algebraic equations (10) could be easily solved by one of the direct

methods (Gauss, Cholesky, Householder) or by one of the iterative methods (Jacobi,

Gauss-Seidel, Jacobi and Gauss-Seidel).

The system (10) has a unique solution q, and the causative body of the anomaly V(x)

can probably be represented by a spherical model.

The parameters related to the causative sphere body are computed as follows.

From equations (5), (6) and (7), it can be easily found that the depth (z) from the

surface to the sphere center is given by:

z ¼ q1j j
1
2þ q2j j

1
4þ q3j j

1
6

3
: ð11Þ

Using equations (8) and (11), the amplitude coefficient (k) can be given by:

k ¼ �
ffiffiffiffiffiffiffi
q4j j

p

z
: ð12Þ

The sign of k can be assigned by using the accordance between the field data anomaly and

the computed one.

3. Gravity Problem Formulation due to a Vertical Cylinder Model

The gravity effect (V) of a vertical cylinder-like structure at any point on the free

surface along the principal profile in a Cartesian coordinate system (Fig. 1) is given also

by GUPTA (1983) as:

VðxiÞ ¼ k
1

x2
i þ z2ð Þ

1
2

i ¼ 1; 2; . . .;Nð Þ; ð13Þ

where z is the depth from the surface to the top of the body, and k is the amplitude

coefficient given by k = pGqR2.

Multiplying the two sides of equation (13) by the term x2
i þ z2

� �1
2 and squaring the

two sides, it can be found:
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V2
i x2

i þ z2
� �

¼ k2 i ¼ 1; 2; . . .;Nð Þ: ð14Þ

Arranging equation (14), it can be concluded:

V2
i x2

i þ V2
i z2 � k2 ¼ 0 i ¼ 1; 2; . . .;Nð Þ: ð15Þ

The nonlinearity of equation (15) in function of parameters z and k is avoided by

introducing new variables q1, q2, defined as follows

q1 ¼ z2; ð16Þ

q2 ¼ k2: ð17Þ

Introducing these new variables into equation (15), it can result:

V2
i x2

i þ V2
i q1 � q2 ¼ 0 i ¼ 1; 2; . . .;Nð Þ: ð18Þ

The global optimal solution of the system of linear equations (18) is reached by

minimizing the following objective function onto the real space R
2: Mathematically, it

can be written

q ¼ arg min /ðqÞ ¼
XN

i¼1

V2
i x2

i þ V2
i q1 � q2

� �2

subject to q 2 R
2:

This nonlinear program is solved in order to find the unique solution of the following

system of linear equations: o/ðqÞ=oqi ¼ 0 ði ¼ 1; 2Þ: This system of linear equations

could be written in matrix form as:

Aq ¼ b; ð19Þ

where A is a squared matrix of 2 9 2 dimensions given as follows:

A ¼
�
PN

i¼1

V4
i

PN

i¼1

V2
i

�
PN

i¼1

V2
i N

2

664

3

775

q and b are vectors of two dimensions given as:

q ¼ q1

q2

� �
; b ¼

PN

i¼1

x2
i V4

i

PN

i¼1

x2
i V2

i

2

664

3

775:

The solved linear system of algebraic equations (19) has a unique solution q, and the

causative body of the anomaly V(x) can probably be represented by a vertical cylinder

model.

986 J. Asfahani and M. Tlas Pure appl. geophys.,



The unique solution q could be analytically given as follows

q1 ¼
1

Q
� N

XN

i¼1

x2
i V4

i

 !

�
XN

i¼1

V2
i

 !
XN

i¼1

x2
i V2

i

 !( )

q2 ¼
1

Q
�

XN

i¼1

V2
i

 !
XN

i¼1

x2
i V4

i

 !

�
XN

i¼1

V4
i

 !
XN

i¼1

x2
i V2

i

 !( )

where,

Q ¼ �N
XN

i¼1

V4
i þ

XN

i¼1

V2
i

 !2

:

The parameters related to the causative vertical cylinder will be computed as follows:

From equation (16), the depth to the top of the body is found and given by:

z ¼
ffiffiffiffiffiffiffi
q1j j

p
: ð20Þ

From equations (16) and (17) the amplitude coefficient can be given by

k ¼ �
ffiffiffiffiffiffiffi
q2j j

p
: ð21Þ

The sign of k also can be assigned by using the accordance between the field data

anomaly and the evaluated one.

It is noted that equation (13) is an approximation valid for Z > R, and the complete

and exact formulation is given by NABIGHIAN (1962), and NAGY (1965).

4. Gravity Problem Formulation due to a Horizontal Cylinder Model

The gravity effect (V) of a horizontal cylinder-like structure at any point on the free

surface along the principal profile in a Cartesian coordinate system (Fig. 1) is given also

by GUPTA (1983) as:

VðxiÞ ¼ k
z

x2
i þ z2ð Þ i ¼ 1; 2; . . .;Nð Þ; ð22Þ

where, z is the depth from the surface to the center of the body, and k is the amplitude

coefficient given by k = 2pGq R2.

Multiplying the two sides of equation (22) by the term (xi
2 + z2) and by arranging

them, it can be found:

Vix
2
i þ Viz

2 � k z ¼ 0 i ¼ 1; 2; . . .;Nð Þ: ð23Þ

The nonlinearity of equation (23) is avoided by introducing new variables q1, q2 defined

as follows:
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q1 ¼ z2; ð24Þ

q2 ¼ kz: ð25Þ

Introducing these new variables into equation (23), it can be concluded:

Vix
2
i þ Viq1 � q2 ¼ 0 i ¼ 1; 2; . . .;N:ð Þ ð26Þ

Equation (26) is now linear in function of variables q1, q2.

The global optimal solution of the linear system of equations (26) is obtained by

minimizing the following objective function on the real space R
2: Mathematically, it can

be written:

q ¼ arg min wðqÞ ¼
XN

i¼1

Vix
2
i þ Viq1 � q2

� �2

subject to q 2 R
2:

Solving this nonlinear program is equivalent to solving the following system of linear

equations: owðqÞ=oqi ¼ 0 ði ¼ 1; 2Þ: This system of linear equations can be described

in matrix form as:

Aq ¼ b; ð27Þ

where A is a squared matrix of 2 9 2 dimensions given as follows:

A ¼
�
PN

i¼1

V2
i

PN

i¼1

Vi

�
PN

i¼1

Vi N

2

664

3

775

q and b are vectors of two dimensions given as:

q ¼ q1

q2

� �
; b ¼

PN

i¼1

x2
i V2

i

PN

i¼1

x2
i Vi

2

664

3

775:

The linear system of algebraic equations (27) has a unique solution q, and the causative

body of the anomaly V(x) can be represented by a horizontal cylinder model.

The unique solution q could be analytically given as follows:

q1 ¼
1

Q
� N

XN

i¼1

x2
i V2

i

 !

�
XN

i¼1

Vi

 !
XN

i¼1

x2
i Vi

 !( )

q2 ¼
1

Q
�

XN

i¼1

Vi

 !
XN

i¼1

x2
i V2

i

 !

�
XN

i¼1

V2
i

 !
XN

i¼1

x2
i Vi

 !( )
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where,

Q ¼ �N
XN

i¼1

V2
i þ

XN

i¼1

Vi

 !2

:

The parameters related to the causative body, in this case, are computed as follows:

The depth (z) to the center of the body is obtained by using equation (24) as follows:

z ¼
ffiffiffiffiffiffiffi
q1j j

p
: ð28Þ

Equations (24) and (25) are used to compute the amplitude coefficient as follows:

k ¼ q2

z
: ð29Þ

5. Interpretation of a Synthetic Gravity Anomaly due to a Sphere Model with Adding

Different Random Errors

A synthetic gravity anomaly V(xi) (i = 1, . . ., N) due to a sphere-like structure is

generated from equation (1), using the following assumed gravity parameters: the depth

from the surface to the center of the body z = 25 unit length, and the amplitude

coefficient k = 100 mGal.

Two new synthetic gravity anomalies are randomly regenerated from the synthetic

gravity anomaly V(xi) (i = 1, . . ., N), by using the continuous uniform distribution with

maximum random errors of 5% and 10%, respectively. The continuously uniform

distribution is purposely used in order to regenerate randomly two gravity anomalies,

which resemble well the real observed field measurements.

Both regenerated synthetic gravity anomalies are thereafter interpreted by the

proposed method, where the evaluated gravity parameters are presented in Table 1.

The results of Table 1 show good agreement between assumed and evaluated gravity

parameters, which obviously indicates the high efficiency of the newly proposed method.

Being theoretically tested and proven, however, this method has limitations, which

could be summarized as follows:

Table 1

Interpretation of a synthetic gravity anomaly due to a sphere model with an additional 5% and 10% random

errors

Gravity

parameters

Assumed gravity

parameters

Evaluated gravity parameters

with an additional 5%

random error

Evaluated gravity parameters

with an additional

10% random error

z (unit length) 25 25.7 26.5

k (mGal) 100 104.4 111.9
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1. The geometric shape factor of the body should be known a priori (a horizontal

cylinder, a vertical cylinder, or a sphere).

2. The method requires field data no more contaminated by gross errors because it is

based on a least-squares minimization technique which is very sensible to gross errors

in a general case.

6. Interpretation of Gravity Field Anomalies

The proposed method has been adapted for interpreting residual gravity anomalies

related to three different types of structures, e.g., a sphere, a vertical cylinder, and a

horizontal cylinder.

The standard error (r) is used in this paper as a statistical preference criteria in order

to compare the observed and evaluated values. This r is given by the following

mathematical relationship:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ViðobservedÞ � ViðevaluatedÞð Þ2

N

s

; ð30Þ

where Vi(observed) and Vi(evaluated) (i = 1, . . ., N) are the observed and the evaluated

values at the points xi (i = 1, . . ., N), respectively.

Two residual gravity field anomalies taken from Cuba and Sweden have been

reinterpreted in order to examine the applicability and stability of the proposed method.

The geometric shaped model is assumed to be known a priori such as sphere, horizontal

cylinder or vertical cylinder.

6.1. The Chromites Gravity Anomaly

A normalized residual gravity anomaly measured over a chromites deposit in

Camaguey province, Cuba (ROBINSON and CORUH, 1988) is shown in Figure 2. Several

researchers have used a spherical model to interpret this anomaly (ROBINSON and CORUH,

1988; SALEM et al., 2003). The results showed that a sphere model located at a depth of

21 m probably approximates the source of this anomaly. The application of the proposed

method to these field data by using a sphere model, a vertical cylinder, and a horizontal

Table 2

Interpretation of gravity field anomaly over a chromites deposit in Camaguey province, Cuba

Gravity parameters Horizontal cylinder

model

Vertical cylinder

model

Sphere model

z (m) 17.71 7.14 18.91

k (mGal) 18.24 8.71 157.34

r (mGal) 0.02 0.6 0.3
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model respectively, yields to the estimation of the amplitude coefficient and the depth

from the surface to the body as shown in Table 2.

Table 2 shows that the highest value of standard error r = 0.6 mGal is obtained for

the vertical cylinder, meaning that, the residual gravity anomaly cannot be modeled as a

vertical cylinder. The second highest value of standard error r = 0.3 mGal is obtained

for the sphere, which means the residual gravity anomaly is also not preferably to be

modeled as a sphere. The smallest value of standard error r = 0.02 mGal is obtained for

the horizontal cylinder, meaning that the gravity anomaly is preferably to be modeled as a

horizontal cylinder.

The depth obtained in this case (z = 17.71 m) is found to be in very good agreement

with the information obtained from drill-hole information (z = 21 m).

6.2. The Karrbo Gravity Anomaly

A residual gravity anomaly measured over the two-dimensional pyrrhotite ore,

Karrbo, Vastmanland, Sweden (SHAW and AGARWAL, 1990) is shown in Figure 3. This

anomaly is interpreted by applying the proposed method and assuming a priori a

spherical model, a vertical cylinder model, and a horizontal cylinder model, respectively.

The interpretation yields to the estimation of the amplitude coefficient and the depth from

the surface to the body as shown in Table 3.

0

0.2

0.4

0.6

0.8

1

1.2

-40 -30 -20 -10 0 10 20 30 40
m

m
G

al Normalized observed anomaly

Normalized evaluated anomaly

Figure 2

Normalized residual gravity field anomaly over a chromites deposit, Camaguey province, Cuba. The evaluated

curve by the proposed method is shown for a horizontal cylinder model.

Table 3

Interpretation of gravity field anomaly over the two-dimensional pyrrhotite ore, Karrbo, Vastmanland, Sweden

Gravity parameters Horizontal cylinder

model

Vertical cylinder

model

Sphere model

z (m) 4.7 1.57 5.8

k (mGal) 4.79 2.14 13.20

r (mGal) 0.03 0.44 0.34
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It is noteworthy that the highest value of standard error r = 0.44 mGal is obtained

for the vertical cylinder, meaning that, the residual gravity anomaly cannot be modeled as

a vertical cylinder. The second highest value of standard error r = 0.34 mGal is obtained

for the sphere, meaning that the gravity anomaly also cannot be modeled as a sphere. The

smallest value of standard error r = 0.03 mGal is obtained for the horizontal cylinder,

which means that the gravity anomaly is preferably to be modeled as a horizontal

cylinder.

The depth obtained (z = 4.7 m) in this case is found to be in very good agreement

with that obtained by TLAS et al. (2005) (z = 4.82 m).

7. Conclusion

A new original and accurate method is proposed to interpret real field gravity

anomalies and to estimate gravity parameters related to simple shaped bodies such as

sphere, horizontal cylinder and vertical cylinder. The proposed approach is basically

based on the application of Werner deconvolution technique to a modified gravity

formula due to spheres and cylinders, and on solving a set of algebraic linear equations in

order to estimate the two gravity model parameters (depth, and amplitude coefficient).

The efficiency of such a proposed method is demonstrated through synthetic anomalies,

by using simulated data generated from a known model with different random errors of

5% and 10%, and a known statistical distribution. After being theoretically proven, the

method was thereafter applied to two real field gravity anomalies taken from Cuba and

Sweden. The agreement between the results obtained by the proposed method and those

obtained by other interpretation methods is good and comparable. Moreover, the depth of

0
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Figure 3

Residual gravity field anomaly over the two-dimensional pyrrhotite ore, Karrbo, Vastmanland, Sweden. The

evaluated curve by the proposed method is shown for a horizontal model.
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the studied structures obtained by the developed method is found to be in a very good

agreement with that obtained from drilling information. The algorithm developed in this

paper is designed to treat methodologically with an integral manner the three mentioned

structures (sphere, vertical and horizontal cylinders). A decision based on the standard

error (r) is taken at the end of the mathematical process in the algorithm, in order to

select the preferable structure that can represent well the studied gravity field anomaly.

This interpretation method can be easily put in a code, robust, and furthermore, the

convergence towards the optimal estimation of the parameters is assured and rapidly

reached.

This method is therefore recommended for routine analysis of gravity anomalies in an

attempt to determine the parameters related to the studied structures, and could also

extended to be applicable to interpret any gravity anomaly if it is described by a bell-

shaped function.
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