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Abstract—A novel class of nonlinear, visco-elastic rheologies has recently been developed by

MÜHLHAUS et al. (2002a, b). The theory was originally developed for the simulation of large deformation

processes including folding and kinking in multi-layered visco-elastic rock . The orientation of the layer

surfaces or slip planes in the context of crystallographic slip is determined by the normal vector the

so-called director of these surfaces. Here the model (MÜHLHAUS et al., 2002a, b) is generalized to include

thermal effects; it is shown that in 2-D steady states the director is given by the gradient of the flow

potential. The model is applied to anisotropic simple shear where the directors are initially parallel to the

shear direction. The relative effects of textural hardening and thermal softening are demonstrated. We then

turn to natural convection and compare the time evolution and approximately steady states of isotropic

and anisotropic convection for a Rayleigh number Ra ¼ 5:64� 105 for aspect ratios of the experimental

domain of 1 and 2, respectively. The isotropic case has a simple steady-state solution, whereas in the

orthotropic convection model patterns evolve continuously in the core of the convection cell, which makes

only a near-steady condition possible. This near-steady state condition shows well aligned boundary layers,

and the number of convection cells which develop appears to be reduced in the orthotropic case. At the

moderate Rayleigh numbers explored here we found only minor influences in the change from aspect ratio

one to two in the model domain.

Introduction

During the past decade, geoscientists have come to appreciate the often-powerful

role played by computer simulations as a tool to enhance our understanding of

geological processes. While early simulations were often based on rheologies and

computer packages from the engineering world, there is an increasing awareness that

these methods are only suited for a limited number of geological problems. An

obvious example is the study of finite strain viscoelasticity with strongly history-

dependent material behavior, where most engineering codes are optimized to study

the modest strains which accumulate prior to failure. Computer models must be
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constrained by observational data. In the case of studies of the Earth’s interior,

analysis of seismic observations has provided the principal information. In

particular, seismic tomography is yielding ever improved estimates of seismic wave

velocities and anisotropy which can be interpreted as a filtered snapshot of density

and instantaneous flow patterns. There is, however, no time information on mantle

flow in the seismic data so the emergence of plate tectonics and material anisotropy

must be deduced from other means. Computer simulations of these phenomena can

in principle provide such a means. However a numerical simulation model for mantle

convection and the emergence of plate tectonics, which simulates the development of

anisotropic texture of the lithosphere and mantle, is a difficult modelling exercise,

requiring a sophisticated mix of developments of constitutive relationships and of

numerical methodology. In this context, the seismic tomography derived anisotropy

models of the earth (e.g., DEBAYLE and KENNETT, 2000) represent an important

constraint on present-day flow patterns. The emergent anisotropy predicted in

numerical simulations would improve interpretation of seismic tomography derived

anisotropy models in terms of flow patterns and their evolution.

The direct simulation of anisotropic mantle flow has been a very specialized area

with very few publications since the original paper of CHRISTENSEN (1987). In general

it has instead been assumed that the instantaneous flow patterns predicted by

convection simulations can be mapped immediately to seismic anisotropy. However,

the results of SIMONS et al., (2002) and many others show the observations to be far

more advanced than this simplistic modeling assumption. Recent work by Parmen-

tier and coworkers (FISCHER et al., 2000; FOUCH et al., 1997) is considerably more

sophisticated, but does not treat the director as a distinct internal material variable.

Advanced models should include feedback processes between large-scale flow,

director misalignment and the drive towards flow alignment. A step in this direction

in the context of folding was described by MÜHLHAUS et al., (2002a, b). The present

paper represents a continuation of this work; the rheology is refined to include

temperature-dependent parameters. The performance of the model is illustrated in

finite-element simulations of anisotropic simple shear and anisotropic natural

convection. Furthermore we present an outlook on a more appropriate anisotropy

model that will be implemented in the future models.

Specific viscous and visco-elastic constitutive relations

Layered material is not only ubiquitous in geological formations of the crust, but

seems to be likely even in deeper regions. The existence of a low viscosity zone

around the seismic low velocity zone had been proposed as a result of post glacial

rebound studies. This zone was suggested to consist of soft layers (Cathles, 1975). In

the late sixties laminated mantle models were proposed by different authors in order

to explain the discrepancies of Love and Rayleigh wave dispersion (AKI, 1968;
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TAKEUCHI et al., 1968). Recent post glacial rebound studies (SPADA et al. 1991)

suggest seismic observation data around deglaciated regions such as the passive

margins of Fennoscandia, may help to constrain lower mantle viscosity, and in fact

indicate a highly viscous lower mantle. On the other hand recent experimental studies

on garnet (KARATO et al., 1995) and on wadsleyite (YOUNG et al., 1993) have lead to

two different views on the viscosity of the transition zone. If garnet is the dominant

mineral in the transition zone, this zone then could be a layer of increased viscosity.

In the event that the transformation from hydrous olivine to wandsleyite during

subduction releases water into deeper zones, the viscosity in the transition zone

would decrease. It is obvious that the viscosity stratification is a wildly discussed and

not well understood detail, although at least a stratification is an accepted model.

We consider in both models (-in the simple shear and the convection study-) a

locally transverse-isotropic, viscous material. The transverse-isotropy may represent

an alternating sequence of hard and soft materials or a superposition of layers of one

material weakly bonded along their interfaces. Another possible contribution to

anisotropy is preferred orientation of crystallographic slip planes. Acoustic wave

anisotropy in seismology is consistent with the anisotropy of the constituent minerals

and especially their slip plane orientation.

Two classes of anisotropic structures are thought to cause seismic anisotropy in

the Earth’s mantle. One is the lattice preferred orientation of anisotropic minerals

and the other is the shape preferred orientation of secondary phases (KARATO 1998).

The orientation is characterized by a director which, in the case of a layered material

or a material with preferred crystallographic slip, is oriented normal to the layer or

slip surface, respectively. The term ‘‘director’’ is adopted from the physics of liquid

crystals (de Gennes and Prost [6]). Transverse-isotropic relations are characterized

by two effective viscosities. We designate the normal viscosity as g and the shear

viscosity as gS so that if the coordinate axes are chosen locally aligned with the axes

of anisotropy then r11 � r22 ¼ 4gD11, r12 ¼ 2gSD12 and D11 ¼ �D22 where rij

designate the Cartesian components of the stress tensor and Dij is the stretching.

In the following simple model for a layered viscous material we correct the

isotropic part 2gD0ij of the model by means of the Kijkl tensor (MÜHLHAUS et al.,

2002a, b) to consider the mechanical effect of the layering; thus

rij ¼ 2gD0ij � 2ðg� gSÞKijklD0kl � pdij; ð1Þ

where a prime designates the deviator of the respective quantity, p is the pressure, Dij

is the stretching, rij is the Cauchy or true stress and

Kijkl ¼
1

2
ðninkdlj þ njnkdil þ ninldkj þ njnldikÞ � 2ninjnknl: ð2Þ

In (1) and (2) the vector ni is the unit orientation vector of the director Ni. The

orientation of the normal vector or director changes with deformation. In order to

track the fabric development (e.g. LPO) with time, we have to derive a relation

Vol. 161, 2004 Emergent Anisotropy 2453



between the present deformation field and the orientation of the director. We must

obtain an evolution equation which enables us to understand the time history of the

slip planes.

In the present applications we assume that the director transforms as a material

surface element. In continuum mechanics theory the evolution of the director of the

layers is described by the Nanson relation (Belytschko et al., 2001):

NidA ¼ JN0
j ðF �1ij Þ

T dA0 with J ¼ detF and Fij �
@xi

@Xj
: ð3Þ

J is the Jacobian matrix and F is the deformation gradient. This relation relates the

current normal vector (the director) to the reference normal vector (Belytschko et al.,

2001).

_Ni ¼ �LjiNj where Lij ¼ vi;j: ð4Þ

Inserting the definition of the material derivative on the left-hand side, (4) may be

written as:

Ni;t þ vjNi;j ¼ �vj;iNj; ð5Þ

where vi is the velocity vector. For steady states the partial time derivative vanishes

and (5) may be re-written as:

vjðNi;j � Nj;iÞ ¼ �ðvjNjÞ;i: ð6Þ

In 2-D it is plausible that the planes of anisotropy or slip planes are aligned with the

velocity vectors in steady states, which is equivalent to normality of the directors to

the velocity vectors. If normality holds then the right-hand side of (6) vanishes since

jvjjNj cosðp=2Þ. A perfectly flow-aligned steady-state solution exists if the left-hand

side vanishes as well. To show this we write the left-hand side in components and

remember that for the description of an incompressible flow the stream function W
can be introduced:

vi;i ¼ v1;1 þ v2;2 ¼ W;12 �W;21 ¼ 0: ð7Þ

The gradient of the potential is orthogonal to the velocity field, i.e., Ni ¼ W;i and

hence we can write the left-hand side:

v1ðN2;1 � N1;2Þ þ v2ðN1;2 � N2;1Þ ¼ W;2ðW;21 �W;12Þ þW;1ðW;12 �W;21Þ ¼ 0: ð8Þ

In this particular case the director orientation need not be included explicitly as an

independent variable, which simplifies the formulation considerably.

Crystallographic slip

In the convection simulations presented in next to last section of this paper we

restrict ourselves to constant viscosities for simplicity. This is of course a very coarse
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simplification if crystallographic slip is the main mechanism. Because of the

importance of this issue we briefly outline here how power-law behavior can be

incorporated into the present model without changing the tensor structure of the

constitutive relations.

In general the shear stress on the slip plane with unit normal n is defined as:

sN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rijKijklrkl

p

ð9Þ

where Kijkl is the 4th order tensor (2) in our anisotropic stress-stretching relationship;

we use the superscribed N instead of n to designate the shear stress on the N -slip

plane to avoid confusion with the power-law index as used below. In 2-D there is a

simpler way to calculate sN : The stress vector on the Nslip surface is:

ti ¼ rijnj: ð10Þ

Let m be a vector in the slip plane so that m � n ¼ 0. In 2-D the components of m read:

m ¼ n2

�n1

� �

: ð11Þ

The magnitude of the shear stress on the n-surface is then defined as:

sN ¼ jrijnjmij ¼ jn1n2ðr11 � r22Þ þ r12ðn2
2 � n2

1Þj: ð12Þ

We formulate our constitutive relationship with respect to the (m, n) coordinate

system for convenience. We have:

Dnm ¼ ½Dnm�Newt þ ½Dnm�pow: ð13Þ

The subscript Newt and pow in (13) stand for linear viscous and power law. For the

viscous term we have:

½Dnm�Newt ¼
1

2g
rnm; ð14Þ

where sN ¼ jrnmj where rnm ¼ n1n2ðr11 � r22Þ þ r12ðn2
2 � n2

1Þ. The power-law term is

defined as:

½Dnm�pow ¼
_cY

sN
Y

sN

sN
Y

� �n�1 !

rnm: ð15Þ

We define:

1

gpow
� _cY

sN
Y

sN

sN
Y

� �n�1 !

: ð16Þ

Note that the power-law contribution to the total shear strain rate Dnm is small if the

power-law exponent n� 1 and the yield shear stress sN
Y � sN . In equation (15) and
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(16) _cY is a reference strain rate. In the present context the shear viscosity gS is

obtained as:

1

2gS
¼ 1

2g
þ 1

2gpow
¼ 1

2g
þ 1

2

_cY

sN
Y

sN

sg
Y

� �n�1 !

ð17Þ

and hence:

gs ¼
g

1þ g _cY sNð Þn�1
sYð Þn

: ð18Þ

It is obvious that in (18) the shear viscosity gS equals g for sN
Y � sN and n� 1, i.e.,

isotropy. The shear viscosity gS is expressed in terms of g and three new parameters:

the power law exponent n, and the reference or yield stress and strain rate sN
Y and _cY ,

respectively.

The values for gS range between 0 and g where the extreme values can only be

reached if the power-law exponent n is infinite (viscous/ideal-plastic behavior).

The situation in the mantle is certainly more complicated than the picture

presented to date. Global mantle tomography has revealed that the strength of

anisotropy is significantly smaller in the lower mantle region, below a depth of about

300 km. It has also been shown that in particular only the D00 layer and presumably

the topmost lower mantle region, the transition zone, have significant seismic

anisotropy (MONTAGNER and KENNETT, 1996). This is connected with the changing

creep processes and therefore also connected with grain sizes and stresses. Plastic

Figure 1

Stress, the normal component, and the stress tensor components acting on a slip surface of a material

prism.
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flow induces preferred orientations in rock-forming minerals and NICHOLAS and

CHRISTENSEN (1987) have shown that homogeneous deformation of a dominant slip

system and the orientation of slip directions tend to coincide with the flow direction.

Nevertheless grain rotation and also recrystallization in the presence of a thermal

gradient can cause preferred orientation and therefore seismic anisotropy. The key

requirement in introducing more complicated effects is to include an independent

director evolution equation which is possible in our formulation.

Simple Shear

We consider a semi-infinite layer parallel to x1 of thickness h. At x2 ¼ h we apply

the constant shear stress sN ; also at x2 ¼ h we assume that the temperature is kept

constant and v2 ¼ 0. At x2 ¼ 0 we assume that the velocities and the thermal gradient

vanishes. At time t ¼ 0 the directors are assumed parallel to x1, i.e., the layering is

initially orthogonal to the surface of the shear layer. We have considered two cases,

namely simple shear with and without temperature dependence ð� expQ=RT Þ of the
viscosity. In both calculations we assume that g=gS ¼ 10.

Analytical solutions for benchmarking isothermal, simple orthotropic shear are

easily derived from the relations in the appendix of Mülhaus et al. (2002a).

In Figure (2), Vmax is the shear velocity at x2 ¼ h and Tmax is the temperature at

x2 ¼ 0. The velocity Vmax drops from 10 to 1 at D ¼ 1 where the directors have rotated

by p=4, where D is the displacement of the top layer. For temperature-dependent

viscosity the textural hardening is counteracted by thermal softening; i.e., Vmax levels

out and subsequently increases again after a director rotation of approximately p=4.
The normal strain rates depend on the normal stress and the shear stress in

anisotropic simple shear; hence the coupling between the shear stress and the normal

stress r22=r12 in Figure (2).

Anisotropic vs. Isotropic Convection

We consider standard basally heated convection in a box with aspect ratios of

1� 1 and a 2� 1. On all boundaries we assume that the normal velocities are zero;

on the top and bottom boundaries the temperature is kept fixed and on the sides the

thermal gradient vanishes. We have a simple linear temperature gradient. In each

case we assume a Rayleigh-number of Ra ¼ 5:64� 105 and an anisotropy factor

g=gS ¼ 10. In the definition of the Rayleigh number for anisotropic viscous materials

we follow CHRISTENSEN (1987) and define:

Ra ¼ 2aq0gDTH 3

jðgþ gSÞ
; ð19Þ
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where q0 is the density of the cold boundary, a is the thermal expansion coefficient, j
is the thermal diffusivity and H is the thickness of the convecting layer. The global

characteristics represented in Figure (3) are the root-mean-square of the nodal point

velocities Vrms and the Nusselt number, which in 2-D for a box of aspect ratio L/H
with zero normal velocities across the box surfaces and fixed temperature differences

between the cold and the hot boundary is defined as:

Nu ¼ 1� H
L

Z L=2

�L=2

1

2
eT;2 x1;

1

2

� �

þ eT;2 x1;�
1

2

� �� �

dx1; ð20Þ

where eT is the convective temperature. Equation (20) is simply a convenient form of

the usual definintion of the steady state Nusselt number, i.e., the average total heat flux

across the convection box divided by the average flux by conduction only. It simply

follows from elementary transformations and application of the Gauss’ theorem.

Numerical method

Our particle-in-cell finite-element method is based closely on the standard finite

element method, and is a derivative of the material point method of SULSKY et al.

(1995). The standard mesh is used to discretize the domain into elements, and the

Figure 2

Simple shear of a layer of constant thickness h. The details of the boundary conditions are described in the

text above. Constant viscosity simulations: broken line; temperature-dependent viscosity: solid line.

Pe ¼ 8400 (i.e., thermal diffusion is unimportant) and Di ¼ 0:9. The dissipation numberDi is the coefficient

of the shear heating term in the dimensionless heat equation and Pe�1 is the dimensionless thermal

diffusion coefficient.

2458 H.-B. Mühlhaus et al. Pure appl. geophys.,



shape functions interpolate nodal point values in the mesh in the usual fashion. The

problem is formulated in a weak form to give an integral equation, and the shape

function expansion produces a discrete (matrix) equation. The stress balance

equation in weak form reads:
Z

X
Ni;jsijdX�

Z

X
N;ipdX ¼

Z

X
NifidX; ð21Þ

where the trial functions, N , are the shape functions defined by the mesh, and we

have assumed that no non-zero traction boundary conditions are present. For the

discretized problem, these integrals occur over subdomains (elements) and are

calculated by summation over a finite number of sample points within each element.

For example, in order to integrate a quantity, / over the element domain Xe we

replace the continuous integral by a summation
Z

Xe
/dX 

X

p

wp/ðxpÞ: ð22Þ

In standard finite elements, the positions of the sample points, xp, and the weighting,

wp are optimized in advance. In our scheme the xp’s correspond precisely to the

Lagrangian points embedded in the fluid, and wp must be recalculated at the end of a

timestep for the new configuration of particles. Constraints on the values of wp derive

from the need to integrate polynomials of a minimum degree related to the degree of

the shape function interpolation, and the order of the underlying differential

equation (e.g., HUGHES (1984)).

The Lagrangian points carry the history variables (in this case director

orientation) which are therefore directly available for the element integrals without

the need to interpolate from nodal points to fixed integration points.

Convection Patterns

We have conducted simulations in convection cells of aspect ratio 1 and 2. In the

square cell, anisotropic convection concentrates around the cell boundaries encircling

a more or less stagnant core. The simulations are based on 32� 32, 64� 64, 64� 48

and 80� 48 square meshes of bilinear quadrilateral elements in the first box of aspect

ratio 1 and in the second box of aspect ratio 2, respectively. The wavenumber of the

temperature disturbance is 1=p. The momentum, heat and director equations are

solved sequentially. Advection terms do not appear explicitly in the numerical

formulation because in the material point advection scheme (SULSKY et al. 1995)

used here, state and history variables depend on material (Lagrangian ) coordinates

rather than on spatial coordinates as in purely Eulerian formulations.

The initial overshoot and the subsequent drop of the parameters in figure 3 occur

because the simulation was initiated from a perturbation of the non-convecting
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ground state which is far from the final equilibrium state. The system passes through

a variety of configurations of hot plumes rising and cold plumes descending, until it

finally settles to the steady states shown in figure 3. In the anisotropic case, this is a

near-steady state in Vrms velocity and Nusselt number, however the alignment

A B C

D E F

Figure 3

Time dependent convection. Ra ¼ 5:6� 105. Time series plots of velocity and the Nusselt number isotropic

convection (top left) and anisotropic convection, g=gS (top right). Dashed lines are the results of the

32� 32 element simulations. The isotropic steady-state stream function (A) and temperature field (B) are

compared with the anisotropic quasi-steady state (C,D, respectively). E, F show stream function and flow

alignment for the anisotropic case at times 0 (E) and 0.0009 (F). Alignment is computed by j~n�~vj=j~vj with
misalignment indicated by dark regions.
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patterns in the core of the convection cell continue to evolve slowly, producing small

fluctuations. In this final state, the boundary layers are well aligned with the flow, but

strain-rate gradients towards the stagnant core of the cell ‘‘freeze-in’’ a highly

complicated pattern of orientation which is nearly isotropic at the resolution of the

mesh. Note the additional resolution needed in the orthotropic case—although the

pattern of evolution of the Nusselt number and Vrms velocity is qualitatively similar,

only the final state is quantitatively comparable.

Conclusion and Discussion

We have presented a formulation for convection of anisotropic materials which

incorporates time-dependent flow alignment. Alignment is modeled by introducting a

Lagrangian evolution equation for the director. Lagrangian integration point finite

element methods allow a simple and accurate implementation of this evolution

Figure 4

Time dependent convection in a 2 � 1 box. Ra ¼ 5:6� 105. Time series plots of velocity and the Nusselt

number isotropic convection (top left) and anisotropic convection, g=gS (top right). Dashed lines are the

results of the coarse simulations, as in Figure 3. The initial state of alignment is shown in (a) and the initial

thermal structure in (b), and after 4000 timesteps (t ¼ 0:04) in (c) and (d).
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equation for arbitrarily large strain. The time-dependent aspect of flow alignment is

important in interpreting the frozen-in flow directions which have been observed in

the Australian lithosphere by DEBAYLE (1999) and DEBAYLE KENNETT (2000).

In the simple shear benchmarking against analytical solutions, we demonstrated

the accuracy of this continuum approach for modeling emergent anisotropy. We then

presented two case studies of convection in which anisotropy evolves with the flow to

generate complex patterns of director alignment.

The convection simulations suggest that the anisotropic rheology produces a

stabilizing effect on the convection pattern, and suppresses the tendency for the

convection cells to break down during the early evolution of the system. An isotropic

model of aspect ratio one passes through various stages of evolution before one

dominant convection cell emerges. During this evolution, for a variety of initial

perturbations, a long-lived pattern appears with small aspect ratio cells which

generally break down to a single unit-aspect ratio cell to reach steady state. The

orthotropic convection simulations in both box-sizes exhibit similar convective

behavior but with a tendency for the orthotropic case to lock onto a longer

wavelength pattern early. This tentative observation requires significantly more

experiments to be done in wide aspect ratio boxes for clarification.

The thermal boundary layers are similar for orthotropic and isotropic cases. In

the orthotropic simulation the director evolution follows the induced shear, and

director alignment in rising plumes as well as director alignment in the boundary

layers is visible in steady state. The well-aligned regions encircle a core of broadly

disordered director orientation. As a consequence, we would expect that seismic

anisotropy would be observed in boundary layers and other regions of high strain

rate which persists.

This fits the observational evidence that deep mantle anisotropy is significantly

smaller than in the shallow lithosphere (upper boundary layer), the 660 km

discontinuity and the D00 layer (MONTAGNER and KENNETT (1996).

Considering the fact that we only use simple rheological models, there seems to be

considerable promise in using this approach for more sophisticated modeling work

which attempts to match and explain the observational evidence of seismic anisotropy.

The results presented represent research in progress. Future simulations will

include the crystallographic slip model of section 3, include three-dimensionality and

will focus on a comparison with the seismic observations of anisotropy in the

lithosphere.
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