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Abstract — The Lattice Solid Model has been used successfully as a virtual laboratory to simulate

fracturing of rocks, the dynamics of faults, earthquakes and gouge processes. However, results from those

simulations show that in order to make the next step towards more realistic experiments it will be necessary

to use models containing a significantly larger number of particles than current models. Thus, those

simulations will require a greatly increased amount of computational resources. Whereas the computing

power provided by single processors can be expected to increase according to ‘‘Moore’s law,’’ i.e., to

double every 18–24 months, parallel computers can provide significantly larger computing power today. In

order to make this computing power available for the simulation of the microphysics of earthquakes, a

parallel version of the Lattice Solid Model has been implemented. Benchmarks using large models with

several millions of particles have shown that the parallel implementation of the Lattice Solid Model can

achieve a high parallel-efficiency of about 80% for large numbers of processors on different computer

architectures.
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Introduction

Most simulations based on particle dynamics models such as the Discrete

Element Model (CUNDALL and STRACK, 1979) and the Lattice Solid Model (MORA

and PLACE, 1994) have been performed using a relatively small number of particles.

Simulations of processes requiring a large number of time steps to be simulated such

as gouge shear have typically used between several hundreds and a few thousand

particles (MORGAN and BOETTCHER, 1999; PLACE and MORA, 2000) while in

simulations of processes which require a relatively small number of time steps such as

compression and fracturing of solids (PLACE et al., 2002) models containing a few

tens of thousands of particles have been used.

However, recent laboratory experiments have shown that the behavior of fault

gouge not only depends strongly on the particle shape and size distribution (MAIR

et al., 2002) but also that there is a significant difference in behavior between 2-D and

3-D models (FRYE and MARONE, 2002). It has also been suggested that those results
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explain the differences observed between laboratory experiment and current

numerical simulations. In order to perform realistic simulations which provide

results directly comparable to laboratory experiments, it will thus be necessary to use

3-D simulation models with particle shapes and size ranges comparable to those used

in the laboratory experiments. Considering the range of particle sizes between 1–

800lm used by MAIR et al., (2002) this would suggest simulation models containing

at least several million particles. This is currently not feasible using serial simulation

software on a single CPU, however it will be possible if the significantly larger

computational power of massively parallel computer systems can be used for the

simulations.

Overview over the Lattice Solid Model

The Lattice Solid Model (MORA and PLACE, 1994; PLACE and MORA, 1999) is a

particle based model similar to the Discrete Element Model (DEM) developed by

CUNDALL and STRACK, (1979). The model consists of spherical particles which are

characterized by their radius r, mass m, position x and velocity v. The particles

interact with their nearest neighbors, e.g. by elastic and frictional forces. The

particles can be linked together by elastic bonds or springs (Fig. 1), in which case the

elastic forces are attractive or repulsive, depending on whether the particles are closer

or more distant than the equilibrium distance.

Flinked
ij ¼ kijðrij � ðr0ÞijÞeij rij � ðrcutÞij

0 rij > ðrcutÞij ;

�
ð1Þ

where kij is the spring constant for the elastic interaction between the particles, rij is

the distance between the particles i and j, ðrcutÞij the breaking distance for the link

between the particles and e is a unit vector in the direction of the interaction.

Links are broken if the distance between the particles exceeds the threshold

breaking distance ðrcutÞij. If two particles are not linked together (Fig. 2) the elastic

force Ffree
ij between the particles i and j is purely repulsive

Figure 1

Attractive forces between linked particles. Fij is the force applied to particle i due to the interaction with

particle j whereas Fji is the force applied to particle j due to the interaction with particle i.
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Ffree
ij ¼

kijðrij � ðr0ÞijÞeij rij � ðr0Þij
0 rij > ðr0Þij

�
: ð2Þ

An intrinsic friction between particles has been incorporated in the model (PLACE

and MORA, 1999). Two unbonded interacting particles can be in static or dynamic

frictional contact. The force on particle i due to the dynamic frictional contact with

particle j is given by

FD
ij ¼ �lF n

ijeij
T ð3Þ

where l is the coefficient of friction between the particles, F n
ij is the magnitude of the

normal force and eij
T is a unit vector in the direction of the relative tangential velocity

between the particles (MORA and PLACE 1998).

Rotational dynamics can be simulated in the Lattice Solid Model both by per-

particle rotation (WINTER et al., 1997; SAKAGUCHI and MÜHLHAUS, 2000) where

each single particle has angular velocity x and momentum I or by collective rotation

of groups of irrotational particles (PLACE, 1999).

Parallel Implementation

There are two fundamentally different approaches to the design of parallel

programs: a purely data parallel approach which keeps a single thread of control

within the program and the explicitly distributed approach which also distributes the

thread of control. While the data-parallel approach has been successful using a

relatively small number of CPUs (PLACE and MORA, 1997; PLACE, 1999), it is not well

suited for the parallelization of the Lattice Solid Model on computer systems with a

high number of CPUs. The results of performance and scalability tests performed by

PLACE, (1999) show that a purely data-parallel implementation of the lattice solid is

likely to lead to a program which still contains significant serial overhead and will not

scale well on a high number of CPUs. Thus the second, explicitly distributed

approach has been taken for the parallel implementation of the lattice solid model.

Figure 2

Repulsive forces between particles which are not linked together.
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Explicit message passing using MPI1 as an underlying communication library has

been used to implement the inter-process communication because MPI is a well-

defined, open standard, thus supporting the portability of the program to a wide

range of computer architectures and also because most vendors of current parallel

computer systems provide optimized implementations of MPI, thus ensuring good

performance on those systems.

The parallel process structure follows a modified master-worker model. A master

process provides high-level control and external communication such as a user

interface or I/O facility. The worker processes perform the computational work. In

order to minimize the computation performed by and the communication with the

master process, thus reducing the serial part of the program. Thus, the master

process handles only the global high level control flow and each worker processes

then takes control of the local computations. In contrast to a pure master-slave

approach, direct communication between worker processes is used instead of

communication involving the master process whenever possible (Fig. 3).

For molecular dynamics algorithms, which are closely related to the lattice solid

model, three main approaches for the distribution of the work between the parallel

processes have been suggested (RAPAPORT, 1995). The first approach would be to

partition only the computation and share all data between the processors, i.e., each

processor as direct access to all data. An efficient implementation of this approach,

at least in its pure form, is restricted to shared memory computers. On distributed

memory systems it would require the duplication of the entire data set on each node,

Worker
Worker

Worker

FRONTEND

Master
MPI

MPI

BACKEND

Sockets (TCP/IP)

Worker

Figure 3

Process structure of the parallel Lattice Solid model. The communication between the parallel processes is

implemented using MPI.

1MPI: Message Passing Interface–an open standard for message passing.
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thus being inefficient in terms of memory use. A second possibility is a partitioning

scheme based on the particles, assigning each particle to a particular processor for

the entire run time of the simulation, irrespective of the position of the particle. This

leads to the efficient use of memory, however the handling of interactions between

particles assigned to different processors requires considerable communication. The

third choice is to partition the problem spatially and assign a subregion to each

processor. This processor will then perform the computations for all the particles

which are located within the subregion at the current time step. The amount of

communication required by this approach is potentially much smaller then in the

second approach because interaction between particles assigned to different

processors can only occur along the boundaries of the subregions, consequently

restricting the number of particles involved in such interaction. However, this

approach makes it necessary to move particles between processors. In classic

molecular dynamics simulations these relatively infrequent movements of particles

between processors have no significant impact on the performance of the compu-

tation. However, unlike in molecular dynamics simulations, the Lattice Solid Model

contains persistent bonds between particles. Thus there is additional connectivity

information associated with each particle which would have to be moved between

processors if a particle moves from one subregion into another, making the third

approach in its pure form less attractive for the Lattice Solid Model. For this reason,

a hybrid method containing elements from all three approaches has been used in the

current parallel implementation of the Lattice Solid Model.

The initial distribution of the particles is based on a partitioning of the problem

space, however additionally to the particles located in a particular subregion, the

data set assigned to each processor also contains all particles interacting with any

particle in the subregion. The forces due to interactions which are assigned to more

then one processor are computed by each processor, which leads to a small increase

in computations, but reduces communication. When particles move between

subregions, they remain assigned to the same process although the generation of

new particle interactions caused by the particle movement makes it necessary to

update the set of particles shared between different processes, leading to an increase

in communication cost over time. Subsequently a redistribution of the particles

between the processes will be necessary to restore the purely space-based partitioning

of the work between the processes and to minimize inter-process communication.

However, as such a redistribution will be performed only infrequently for most

simulations it will have an insignificant impact on performance.

Verification Tests

In order to verify that the algorithm works correctly, a verification test was

performed. A displacement source was located in the center of the lattice and the

propagation of the resulting waves was observed. The source was similar to the one
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used by PLACE, (2001) to test the propagation of seismic waves in the serial

implementation of the lattice solid model. The displacement d in x and y-direction is

given by

dx ¼ axe
ðt�t0;xÞ2

bx ð4Þ

dy ¼ aye
ðt�t0;y Þ2

by : ð5Þ

The constants chosen for the test are ax ¼ ay ¼ 0:1, bx ¼ by ¼ 3:0, t0;x ¼ 3:0 and

t0;y ¼ 4:0. All values are given in model units. Those parameters lead to a

characteristic wavelength of the source wavelet of lp � 12r0 for the P-wave and

ls � 7r0 for the S-wave. The lattice used for the test was a regular triangular 2-D

lattice of 64�64 particles with radius r0 ¼ 1:0 and mass m0 ¼ 1:0.

A snapshot of the simulation at t ¼ 29 (Fig. 4) shows the radial propagation of P

and S waves from the source in the center of the lattice. The wave speeds measured

from those tests are

vp ¼1:04� 0:02 ð6Þ
vs ¼0:59� 0:02: ð7Þ

The theoretical values of the wave speeds in a 2-D regular triangular lattice can be

calculated from the particle masses m0, the particle radii r0 and the spring constant of

the inter-particle bonds k (MORA et al. 2000) by the equations

Figure 4

Snapshot of the displacement field generated by P and S waves propagating in a regular lattice of 96 � 96

particles. The waves are generated by a source described by Equation (4). The simulation was run on 9

nodes, the colors show which part of the lattice was assigned to each node.
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vP ¼
ffiffiffi
9

8

r
r0

ffiffiffiffiffiffi
k

m0

s
ð8Þ

vS ¼
ffiffiffi
3

8

r
r0

ffiffiffiffiffiffi
k

m0

s
¼ 1ffiffiffi

3
p vP : ð9Þ

Using the values of

m0 ¼1:0; ð10Þ
r0 ¼1:0; ð11Þ
k ¼1:0; ð12Þ

the theoretical wave speeds derived from Equation (8) are vp ¼ 1:061 and vs ¼ 0:612

which are in good agreement with the measured values (6), (7).

The correctness of the neighbor search algorithm was verified using small

examples and comparing the neighbor lists produced by the algorithm with the

theoretically expected neighbor lists.

Performance Evaluation

The main goal of the evaluation of the performance of the parallel implemen-

tation of the Lattice Solid Model on different parallel computer systems was to

investigate the suitability of the implemented algorithms for large-scale parallel

simulations. There are a number of commonly used performance measures. The

parallel runtime, the time elapsed between the moment computation is started and

the moment the last processor finishes is denoted Tp. The performance gain achieved

by parallelizing the program can be described by the speedup S, defined as the ratio

between the parallel runtime on a given number of CPUs and the serial runtime

(KUMAR et al., 1994), i.e.,

S ¼ Tp

Ts
; ð13Þ

where Ts is the runtime of the best serial algorithm for the same problem. Another

important performance measure is the efficiency E, giving the ratio between speedup

S at a given number of CPUs n and the number of CPUs, i.e., describing how well the

additional CPUs are used for actual performance gain.

E ¼ S
n
¼ Tp

Tsn
: ð14Þ

Vol. 161, 2004 Implementation of the Lattice Solid Model 2271



The speedup S can theoretically never exceed the number of CPUs used. A

speedup of more than n on n CPUs could only be achieved if each CPU spends less

than Ts
n time running the program. Although then a single CPU could emulate the n

CPUs and run the program in a shorter time than Ts which would contradict the

definition that Ts is the run time for the best serial implementation (KUMAR et al.,

1994). Thus the efficiency E cannot exceed 1.

0 � E � 1: ð15Þ

Despite this, speedups larger than the number of processors (E > 1), so-called

‘‘super-linear’’ speedups, are sometimes observed in real parallel applications. This is

due to the fact that because of the multi-level memory access architecture of modern

computers, including one or more levels of high-speed cache, the speed of memory

access depends on the problem size, i.e., smaller problems, which fit better into the

cache result in faster memory access. Thus, if a large problem which would not fit

into the cache on a given system is partitioned into smaller problems which fit into

the cache, the result may be an improvement of the per-CPU performance, leading to

an apparent ‘‘super-linear’’ speedup.

In order to test the scaling of the force computation algorithm a test was run

simulating the propagation of elastic waves in a regular two-dimensional lattice

solid. In the tests, the problem size was scaled with the number of processors used,

i.e., the amount of computation per processor was constant. This was done in

order to avoid variations of the single CPU performance with problem size to

influence the results, in particular to avoid apparent super-linear scaling due to

cache related effects. A problem size of 65536 particles per processor was used for

all tests. The lattice is partitioned so that an area of 256 � 256 particles is assigned

to each processor.

Thus a constant runtime independent of the number of processors would be

expected for ideal scaling of the algorithm. However, the amount of communica-

tion for each process is dependent on the number of neighbors it has, i.e., how

many of the subregions generated by partitioning the problem space share a

common boundary with the subregion which is assigned to this process. The

communication necessary for each processor is not only dependent on the process

topology but it also depends on where in the process structure it is located.

However, because the parallel runtime of the program is determined by the runtime

of the slowest subprocess, the maximum per processor communication overhead

will determine the total runtime of the program. In order to estimate how the

communication overhead depends on the number of processors used, two cases

have to be considered. First, on computer architectures where the global bandwidth

is at least as large as the sum of the bandwidths available to each processor, the

communication overhead and thus the parallel runtime, is entirely determined by

the maximum per-processor runtime, independently of the total communication by

all processors. Assuming the amount of communication between two processors is
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the same for all pairs of neighbor processors, the theoretical parallel runtime tr can

than be calculated as

tr ¼ tcalc þ nmaxtcomm ð16Þ

where tcalc is the computation time, nmax is the maximum number of neighbors of a

subprocess and tcomm is the communication time between a pair of processors. If a

partitioning scheme splitting the problem into rectangular 2-D regions is used, this

results in an increase of the communication overhead with the number of processors

for small numbers of processors due to changes in the process topology and thus the

amount of communication per processor. For large numbers of processors (� 12)

however, the process topology remains the same and thus the communication

overhead and the parallel runtime also should be unchanged (Fig. 5) .

On computer architectures where the global bandwidth is smaller than the sum of

the per-processor bandwidths however, the total amount of communication

performed by all processors will influence the parallel runtime. If the partitioning

scheme described splitting the problem into rectangular 2-D regions is used, the total

communication Ctotal necessary in a simulation using n� m processors can be

calculated as

Ctotal ¼ Cproc nðm� 1Þ þ ðn� 1Þm½ �; ð17Þ

where Cproc is the per-processor communication. If, for a given number of processors,

the ratio between the total communication and the global bandwidth is smaller than
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Figure 5

Theoretical parallel runtime for different ratios between the global bandwidth Bglobal and the per-processor

bandwidth Bproc. The theoretical runtimes are calculated from Equation (18), assuming that tcomm ¼ 0:1tcalc
and are thus only a qualitative example.

Vol. 161, 2004 Implementation of the Lattice Solid Model 2273



the ratio between communication and bandwidth at each processor, i.e., the per-

processor bandwidth is saturated before the global bandwidth, the same calculations

as for the first case apply (Equation (16)). If however the global bandwidth is

saturated before the per-processor bandwidth, the ratio between the total commu-

nication and the global bandwidth will determine the communication overhead.

Therefore, the theoretical parallel runtime can be calculated as

tr ¼ tcalc þmax
Ctotal

Bglobal
;
Cproc

Bproc

� �
ð18Þ

where Bproc is the per-processor bandwidth and Bglobal is the global bandwidth. A

qualitative comparison of theoretical parallel runtimes (Fig. 5) for different ratios

between the global and per-processor bandwidth shows that while for small numbers

of processors the influence of the per-processor communication dominates, and thus

there is only slight difference in parallel runtime depending on the ratio between the

global and per-processor bandwidth, for larger numbers of processors used there is a

significant difference. In particular, the large increase of the runtime calculated in the

case of identical global and per-processor bandwidth indicates that the algorithm is

not suitable for architectures exhibiting this behavior. Such architectures would

include bus-based SMP2 systems and clusters using a bus-structured network such as

Ethernet3 or FDDI as interconnect. However, the algorithm appears to be well suited
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Figure 6

Runtimes for the wave propagation benchmark with a constant per-processor problem size of 256� 256

particles on a SGI Origin and a Compaq Alphaserver.

2Symmetrical MultiProcessor.

3This does not apply to switched Ethernet where each node of the network has acess to the full

bandwidth independent of other nodes.
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to computer architectures where the communication is not limited by global

bandwidth restrictions.

The Benchmarks performed on up to 30 CPUs on a SGI Origin 3800 (400 MHz

MIPS R12000 CPUs) and on up to 25 CPUs on a Compaq Alphaserver SC40

(833 MHz Alpha EV68 CPUs) both show a scaling behavior close to that

theoretically predicted for a system without a global communication bottleneck

(Fig. 5). The runtimes (Fig. 6) show an increase for small numbers of CPUs N � 12

but for larger numbers of CPUs 12 < N < 30 the runtimes remain nearly constant

(Compaq AlphaServer) or show only a small increase (SGI Origin). The parallel

efficiency (Fig. 7) remains at about 75–80% for these numbers of CPUs.

In order to test the performance of the algorithms on a very large number of

CPUs, additional benchmarks have been performed by Bill Ryder at SGI on an SGI

Origin 3800 using a problem size 128� 128 particles and a partitioning of the

problem in a 1� n grid. The results have shown that for a constant process topology

the runtime remains constant within the resolution of the measurement for � 30 up

to the maximum tested 108 CPUs (Fig. 8).

Conclusion

The parallel implementation of the Lattice Solid Model shows good scaling for

up to 30 CPUs on two different computer architectures (SGI Origin and Compaq

Alphaserver), achieving parallel efficiencies > 75% on � 30 CPUs. Furthermore,
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Parallel efficiency for the wave propagation benchmark with a constant per-processor problem size of

256� 256 particles on a SGI Origin and a Compaq Alphaserver.
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benchmarks show near perfect scaling between 30 and 108 CPUs on the SGI Origin

3800, thus suggesting that the program will run efficiently on very large systems with

more than 100 CPUs at least on this architecture, enabling the simulation of large,

realistic models.
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