
Statistical Detection and Characterization of a Deviation from

the Gutenberg-Richter Distribution above Magnitude 8

V. F. PISARENKO
1 and D. SORNETTE

2,3

Abstract—We present a quantitative statistical test for the presence of a crossover c0 in the

Gutenberg-Richter distribution of earthquake seismic moments, separating the usual power-law regime for

seismic moments less than c0 from another faster decaying regime beyond c0. Our method is based on the

transformation of the ordered sample of seismic moments into a series with uniform distribution under

condition of no crossover. A simulation method allows us to estimate the statistical significance of the null

hypothesis H0 of an absence of crossover (c0 ¼ infinity). When H0 is rejected, we estimate the crossover c0
using two different competing models for the second regime beyond c0 and the simulation method. For the

catalog obtained by aggregating 14 subduction zones of the Circum-Pacific Seismic Belt, our estimate of

the crossover point is log(c0) ¼ 28.14 ± 0.40 (c0 in dyne-cm), corresponding to a crossover magnitude

mW ¼ 8.1 ± 0.3. For separate subduction zones, the corresponding estimates are substantially more

uncertain, so that the null hypothesis of an identical crossover for all subduction zones cannot be rejected.

Such a large value of the crossover magnitude makes it difficult to associate it directly with a seismogenic

thickness as proposed by many different authors. Our measure of c0 may substantiate the concept that the

localization of strong shear deformation could propagate significantly in the lower crust and upper mantle,

thus increasing the effective size beyond which one should expect a change of regime.

Key words: Gutenberg-Richter law, cross-over magnitude.

1. Introduction

Earthquakes exhibit considerable complexity in their organization both in space

and time but have strong regularities also. The most famous and best-established one

is the Gutenberg-Richter (G-R) size-frequency relationship giving the number N(mW)

of earthquakes of magnitude larger than mW (in a large given geographic area over a

prolonged interval) (GUTENBERG and RICHTER, 1954). Translating the magnitude

mW ¼ ð2=3Þ log10 MW � 6 in seismic moment MW ¼ g d S expressed in N-m units

(where g is an average shear elastic coefficient of the crust, d is the average slip of the
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earthquake over a surface S of rupture), the Gutenberg-Richter law gives the number

N(MW) of earthquake of seismic moment larger than MW. The striking empirical

observation is that N(MW) can be modeled with a very good approximation by a

power law

NðMW Þ � M�l
W ; ð1Þ

where l ¼ (2/3)b and the b value is approximately 1 thus giving l » 2/3. The

Gutenberg-Richter law (1) is found to hold over a large interval of seismic moments

ranging from 1020 ‚ 1024(mW ¼ 2.6–4) to about 1026.5 dyne-cm (mW ¼ 7). Many

works have investigated possible variations of this law (1) from one seismic region to

another and as a function of magnitude and time. Two main deviations have been

reported and discussed repeatedly in the literature:

1) from general energy considerations, the power law (1) has to crossover at a

‘‘corner’’ magnitude to a faster decaying law. This would translate into a

downward bend in the linear frequency-magnitude log-log plot of (1). The corner

magnitude has been estimated to be 7.5 for subduction zones and 6.0 for mid-

ocean-ridge zones (PACHECO et al., 1992; OKAL and ROMANOWICZ, 1994) but this

is hotly debated (see below);

2) the exponent b is different in subduction and in mid-ocean-ridge zones; there is in

addition a controversy among seismologists about the homogeneity of b values in

different zones of the same tectonic type. Some seismologists believe that b values

are different at least in several zone groups; others find these differences

statistically insignificant.

With respect to the first point, a number of authors have argued for a change of

the frequency distribution from small to large events based on the idea that small

earthquakes and large earthquakes are not self-similar due to the existence of

characteristic scales, such as the thickness of the seismogenic crust. Roughly

speaking, the finite thickness of the seismogenic crust restricts the accumulation of

elastic energy in 3-D volumes, thus slightly discriminating large events, leading to the

so-called loss of one dimension by the earthquake source (see KANAMORI and

ANDERSON, 1975; MAIN and BURTON, 1984; RUNDLE, 1989; ROMANOWICZ, 1994;

PACHECO et al., 1992; ROMANOWICZ and RUNDLE, 1993; OKAL and ROMANOWICZ,

1994; SORNETTE et al., 1996; MOLCHAN et al., 1996, 1997; KAGAN, 1997, 1999;

SORNETTE and SORNETTE, 1999). Moreover, the power-law distribution that holds

for small earthquakes cannot be extended to infinite magnitudes because it would

require that an infinite amount of energy be released from the Earth’s interior. Thus,

it can be concluded with certainty from this energetic argument that the magnitude-

frequency law has to eventually bend down in its extreme tail. Therefore, the relevant

question is not whether this downward bend occurs but rather whether the

magnitude range over which the crossover occurs can be observed and estimated

reliably. For instance, there is nothing fundamental that prevents in principle the

corner magnitude to be, say, mW ¼ 10. Such a value would ensure the finiteness of
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the earthquake energy flow over long times, but would be unobservable in presently

available catalogs.

With respect to the second point, detailed studies of the spatial variability of

seismic parameters can be found in KRONROD (1984), CORNELL (1994), KAGAN

(1997, 1999), and MOLCHAN et al., 1996. The worldwide seismicity is usually studied

using the Flinn-Engdahl regionalization or some of its modifications (FLINN et al.,

1974; KRONROD, 1984; YOUNG et al., 1996). Using a more coarse-grained region-

alization and new statistical tests, PISARENKO and SORNETTE (2003) confirmed the

already documented observation that the slope b of the Gutenberg-Richter law for

shallow events is significantly smaller for subduction zones (SZ) compared to mid-

ocean-ridge zones (MORZ) (OKAL and ROMANOWICZ, 1994; KAGAN, 1997, 1999;

MOLCHAN et al., 1996). Neither a statistical scatter nor a lower seismic flux of

MORZ can mask this difference. They propose that the large value b » 1.5 of MORZ

earthquakes (at least for the transform earthquakes constituting the most numerous

and powerful fraction of all oceanic events) with the largely extensional stress

configuration and the presence of abundant water, result from the fact that faults

remain weak and open. In contrast, the smaller value b » 1 found for subduction

zones could be interpreted as the signature of fast healing faults with a larger

compressional component of stress. In a recent analysis, BIRD et al. (2000) explain

the difference of b value found earlier (OKAL and ROMANOVICZ, 1994; KAGAN, 1997,

1999; MOLCHAN et al., 1996; PISARENKO and SORNETTE, 2003) from the fact that an

effective larger b-value will be found when mixing power-law distribution with

different ‘‘corner’’ magnitudes corresponding to two types of earthquake sources:

strike-slip and normal faults. However, as was shown by PISARENKO and SORNETTE

(2003), the separate analysis of MOR-events with different types of source (strike-slip

and normal fault) has confirmed the significantly larger b values for MOR zones.

The authors (KANAMORI and ANDERSON, 1975; MAIN and BURTON, 1984;

RUNDLE, 1989; ROMANOWICZ, 1994; Pacheco et al., 1992; PACHECO and SYKES, 1992;

ROMANOWICZ and RUNDLE, 1993; OKAL and ROMANOWICZ, 1994; SORNETTE et al.,

1996; MOLCHAN et al., 1996, 1997; KAGAN, 1997, 1999; SORNETTE and SORNETTE,

1999) propose that the large-magnitude branch of the distribution can be modeled

also by a power-like law and that the crossover moment or magnitude between these

two distributions can be connected with the thickness of the seismogenic zone.

PACHECO et al. (1992) claim to have identified a kink in the distribution of shallow

transform fault earthquakes in MOR around magnitude 5.9 to 6.0, which

corresponds to a characteristic dimension of about 10 km; a kink for subduction

zones is presumed to occur at a moment magnitude near 7.5, which corresponds to a

downdip dimension of the order of 60 km. However, SORNETTE et al. (1996) have

shown that this claim cannot be defended convincingly because the crossover

magnitude between the two regimes is ill-defined.

Since the largest earthquakes contribute a significant fraction of the total

deformation budget of the crust, determining their frequency is of paramount
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importance for seismic risk assessment. Also, from a physical point of view, the value

of the ‘‘corner’’ magnitude and the shape of the frequency-size distribution beyond it

may provide insight in the underlying mechanism and constraint the modeling. It is

however, fair to say that the status on the detection of a change of regime in the

Gutenberg-Richter law is still significantly open and controversial. Here, we attempt

to address the following questions.

(a) Is there indeed a detectable and statistically significant crossover of the

Gutenberg-Richter law to a faster decaying law for the very largest observed

earthquakes? Does the answer to this question depend on the size of the catalog

in question?

(b) What is the uncertainty of the estimation of the ‘‘corner’’ magnitude at which

this cross-over occurs, if it exists?

(c) What can be said about the form of the frequency-size distribution beyond the

‘‘corner’’ magnitude?

(d) What conclusions can be obtained about possible variations of b values?

To address these questions, PACHECO et al. (1992) relied on visual inspection,

SORNETTE et al. (1996) on Monte-Carlo simulations, KAGAN (1997, 1999) and

KAGAN and SCHOENBERG (2001) on maximum likelihood estimation of a postulated

Pareto distribution tapered by an exponential. Several parametric families, such as

Gamma distributions (MAIN and BURTON, 1984; MAIN, 1996; KAGAN, 1994, 1997),

modified Pareto distribution (KAGAN and SCHOENBERG, 2001), two power-law

distributions with a crossover point (SORNETTE et al. 1996) and Weibull distributions

(LAHERRERE and SORNETTE, 1998) were suggested for earthquake energy distribu-

tions including the tail range, but none of these models is universally accepted. A

detailed study of this problem leads us to a conservative conclusion (PISARENKO and

SORNETTE, 2003): none of the suggested laws is preferable because of a very small

number of observations in the extreme range. In other words, these different families

of distributions are practically undistinguishable, given the available data.

To our knowledge, there has been no systematic statistical approach which

addresses the questions (a)–(d) independently. In other words, previous attempts

have consisted of tests of the joined hypothesis that there is a crossover at some

‘‘corner’’ magnitude with some assumed functional form. We propose here a novel

statistical approach that addresses the questions (a)–(c) sequentially. In this way, we

obtain a novel and efficient statistical test of the possible deviations from a power-

like law, based on the properties of the order statistics of catalogs. The existence of

possible deviations and the value of the ‘‘corner’’ frequency can thus be discussed

independently of any assumption of the parametric form of the extreme tail of the

magnitude-frequency distribution. We feel that this is a very important step towards

resolving unambiguously the issues raised by previous works and the questions (a)–

(d).

The organization of this paper is as follows. In the next section, we describe the

data, the definition of the tectonic zones and the corresponding catalogs. Section 3
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introduces the Generalized Pareto Distribution introduced in the earthquake context

as an improvement over the Gutenberg-Richter law by DARGAHI-NOUBARY (1986),

see as well PISARENKO and SORNETTE (2003), DARGAHI-NOUBARY (2000), and

summarizes its main properties. Section 4 describes our novel statistical test for a

deviation from the power-law behavior (1) in the tail of earthquake size distributions.

Section 5 describes the determination of the corner magnitude for catalogs for which

the method of section 4 has concluded positively about the existence of a change of

regime. Section 6 presents a discussion of our results and concludes.

2. Data Sets

We used the Harvard catalog of seismic moments covering the period 01.01.1977

to 31.05.2000 (DZIEWONSKI et al., 1994). Since the distribution of earthquake energy

for deep events differs significantly from that of the shallow ones (KAGAN, 1997), we

restrict our analysis to shallow earthquakes with focal depth h < 70 km. Such events

constitute about 75% of the catalog. In order to illustrate our detailed analysis of

seismic moment distributions, we have chosen subduction zones of the Circum-

Pacific Seismic Belt (CPSB). The main part of the total world seismic energy is

radiated in this region.

All zones of the CPSB constitute a group of relatively homogeneous zones from a

tectonic viewpoint, whose dynamics is governed by the subduction process. Modern

plate tectonics defines 32 subduction zones in the CPSB (see JARRARD, 1986). The

smallest zones contain 50 to 100 shallow events recorded by the Harvard catalog,

spanning the period 1977–2000. This number is too small for our detailed statistical

analysis. Therefore, we had to unite some small zones in order to provide samples of

size at least n @ 170, which is a minimum requirement for the statistical technique

that we introduce. As a result of this aggregation procedure, we have formed 12

larger subduction zones in the CPSB. Their parameters are given in Table 1. For our

analysis, we have added one subduction zone at the boundary of the Indian Ocean

(Sunda), that presents a high seismicity. For a collective analysis of all subduction

zones, we have also added one small zone: New Guinea (n ¼ 128, M ‡ 1024 dyne-

cm). We did not use it in the analysis of each zone performed separately. It was used

only in an aggregation of all 14 subduction zones (n ¼ 4609, M ‡ 1024 dyne-cm) into

a single catalog. Our subduction zones differ from one to another by several

geological/geophysical parameters (JARRARD, 1986): slab dip, convergence rate, age

of downgoing slab, length of the Benioff zone, etc. Thus, some difference in the

seismic regimes of these zones can be expected. However, we stress that they are all

similar with respect to the subduction process dynamics.

To contrast with subduction zones, we consider as well the Mid-Ocean

Ridges (MOR). In this case, we have several seismic regimes governed by

quite different dynamics that can be, in turn, split into two main classes: strike-
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slip events near transform zones, and normal faults (tension) near spreading

zones. In order to retrieve events with these two source mechanisms, we used the

diagram method elaborated in KAVERINA et al. (1996). As we shall see below,

the differences in characteristics of plate dynamics are reflected in differences in

the parameters of the distributions of event sizes corresponding to the different

seismic regimes. We stress that this regionalization was performed before the

statistical analysis and was fixed throughout the analysis, in order to avoid any

possible bias.

3. The Generalized Pareto Distribution

As explained in PISARENKO and SORNETTE (2003), we model the seismic moment-

frequency distribution by the so-called Generalized Pareto Distribution (GPD)

defined as (EMBRECHTS et al., 1997)

Gðyjn; sÞ ¼ 1� ð1þ ny=sÞ�1=n; ð2Þ

where the two parameters (n, s) are such that �1 < n < þ1 and s > 0. For n ‡ 0,

y ‡ 0 and for n < 0, 0 £ y £ )s/n. The GPD is a natural improvement of the power-

Table 1

Parameters of catalogs used in the analysis; taken out of the Harvard CMT catalog, 1977–2000

Region Reference Position

Lat., Long.

Number of events

M ‡ 1024 dyne-cm

max

M/1027

Alaska 60; )152 332 10.4

Japan 36; 140 199 4.9

Kamchatka 53; 162 173 5.3

Kuril Islands 45; 152 257 30.0

Mariana Islands 17; 148 261 5.2

Mexico 16; )100 276 11.5

New Guinea )6; 150 128 24.1

New Hebrides )17; 167 439 4.8

Solomon Isle )7; 155 474 4.6

South America )20; )70 363 16.9

South Sandwich Isle )58; )24 130 0.6

Sunda )2; 98 422 7.3

Taiwan 10; 125 524 4.1

Tonga )22; )174 631 13.9

Aggregation of all 14

subduction zones

4609 30.0

Mid-ocean ridges

Spreading segments

(normal fault, tension)

360 0.174

Transform segments

(strike-slip)

926 0.556
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law distribution (1) and recovers it asymptotically for large y with the correspon-

dence l ¼ 1/n.
Let us first recall some facts about GPD (for more details see, EMBRECHTS et al.,

1997; PISARENKO and SORNETTE, 2001). Let �F ðyÞ denote the tail of the DF

F ðxÞ : �F ðyÞ ¼ 1� F ðyÞ. Other names for �F (y) are the ‘‘complementary cumulative’’

distribution or ‘‘survivor’’ function. Let us denote by nu the number of those

observations y1…yn that exceed a threshold u and by x1; . . . ; xnu the observations

decreased by u : xi ¼ yi � u; yi > u: The Gnedenko-Pickands-Balkema-de Haan

theorem (EMBRECHTS et al., 1997) demonstrates the existence of a general approx-

imation to the tail �F ðxÞ by a GPD as a tail estimator given by

�F ðxþ uÞ ffi �Gðxjn̂; ŝÞ � ðnu=nÞ;

where

�Gðxjn; sÞ ¼ ð1þ nx=sÞ�1=n:

The estimates of the two parameters n̂, ŝ can be obtained through the Maximum

Likelihood estimation (ML) (EMBRECHTS et al., 1997; PISARENKO and SORNETTE,

2003). The log-likelihood l equals

l ¼ �nu ln s� ð1þ 1=nÞ
Xnu

1

lnð1þ nxi=sÞ: ð3Þ

Maximization of the log-likelihood l can be done numerically. The limit standard

deviations of ML-estimates as n fi ¥ can be easily obtained (EMBRECHTS et al., 1997):

rn ¼ ð1þ nÞ= ffiffiffiffiffi
nu
p

; rs ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ nÞnu

p
: ð4Þ

In practice, one usually replaces the unknown parameters in equations (3) by their

estimates. It should be noted that the scale parameter s = s(u) depends on the

threshold u, while the shape parameter n is in theory independent of u and solely

determined by the DF F(x) of the data points. Thus, one can hope to find a

reasonable GPD fit to the tail if it is possible to take a sufficiently high threshold u

and to keep a sufficiently large number of excesses over it. Of course, this is not

always possible.

The importance of the GPD lies in the fact that, according to the Gnedenko-

Pickands-Balkema-de Haan theorem, the limit distribution of excesses over threshold

u obeys the GPD (2), independently of the specific form of the DF of the original

observations y1…yn. Our use of the GPD for the description of excesses stresses the

tail of distributions. This fact is important for two reasons:

• generally speaking, the distribution of excesses can be fitted more efficiently than

the distribution over a large range;

• the distribution of excesses puts the emphasis mainly on the seismic risk and the

energy balance of earthquakes.
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The shape parameter n is of great interest in the analysis of the tails. When x becomes

large and n > 0, the tail of the DF in equation ( 2 ) approaches a power function

�Gðxjn; sÞ ffi ðnx=sÞ�1=n:

1/n is therefore the exponent of the survivor distribution function. It corresponds

asymptotically to the exponent l for the Pareto law (1). Thus, the GPD is

asymptotically scale invariant for n > 0. The parameterization of the tails of

distributions by 1/n is more appropriate from a statistical point of view.

In the sequel, we apply this GPD approach to the distribution of seismic

moments M characterizing the energy release of earthquakes. In this case, the slope b

of the Gutenberg-Richter magnitude-frequency law is approximately proportional to

the exponent 1/n, with a coefficient of proportionality 2/3 : b = 3/(2n) .
As an illustration of the application of the GPD approach to real catalogs, we

fitted it to the aggregated sample of 14 subduction zones described above (n = 4609,

M ‡ 1024 dyne-cm), as well as to MOR events (n = 926, M ‡ 1024, strike-slip; n =

360, normal fault). The tail histograms of these samples are shown on Figure 1

together with the fitted GPD and the fitted G-R. Note first the considerable

difference in the slopes for these three tails, which is reflected by very different values

of the exponent and parameters of the GPD reported in the caption of Figure 1.

Figure 1

Empirical tail histogram with corresponding fitted Generalized Pareto Distribution (GPD) and fitted

Gutenberg-Richter (G-R) distribution for (1) the aggregated sample of 14 subduction zones (n = 4609, M

‡ 1024 dyne-cm), (2) the MOR events (n = 926, M ‡ 1024, strike-slip) and (3) the MOR events (n = 360,

normal fault). The parameters of the GPD and G-R fits are, respectively: n ¼ 1:517�
0:033; s ¼ 20:95� 0:57; l ¼ 0:582� 0:009ð1Þ; n ¼ 0:937� 0:056; s ¼ 29:82� 1:64; l ¼ 0:622� 0:021ð2Þ;

n ¼ 0:659� 0:075; s ¼ 10:64� 0:41; l ¼ 1:156� 0:061ð3Þ:

846 V. F. Pisarenko and D. Sornette Pure appl. geophys.,



It is visually apparent from Figure 1 that the tail of the distribution of moments

in the subduction zones contains about 20 extreme observations that deviate

(visually) from the GPD curve. A ‘‘change point’’ occurs apparently somewhere near

M = 5 · 1027 dyne-cm (magnitude m w @ 7.8). A similar ‘‘change point’’ is seen in the

tail of strike-slip MOR events, somewhere near M = 1.2 · 1026 . In contrast, there is

no visible ‘‘change point’’ in the tail of normal fault MOR events. Of course, a strict

statistical test is needed to check the significance of these deviations and to

characterize the ‘‘corner’’ magnitude. The development of such a test is the purpose

of this paper and is now presented.

4. Test of the Deviation from the GPD

Our method is based on the bootstrap approach (EFRON and TIBSHIRANI, 1986).

The problem is divided into two parts. The first one consists in the statistical testing

of the null hypothesis H0 that the GPD is valid in the semi-infinite interval (u; ¥) for

some u. The second part presented in section 5 includes the estimation of the ‘‘change

point’’ if H0 is rejected.

The statistical test of the hypothesis H0 is constructed as described in details

below. The steps of our approach are the following:

(i) We first rank order the seismic moments exceeding a lower threshold u: y1 �…�
ym � u.

(ii) We perform a transformation from the values y1 �…� ym into the variables t1 =
�F (y1) �….� tm = �F (ym), where �F (y) denotes the complementary cumulative

GPD, i.e., the probability that a seismic moment is larger than y. This

transformation converts variables y which vary extremely wildly into variables t

with considerably more manageable fluctuations which are distributed approx-

imately as m ordered random values with a uniform distribution in the interval

(0,1). The existence of an approximation stems from the fact that we have to use

the GPD with parameters (n̂, ŝ) obtained from a statistical estimation procedure

rather than use the absolutely exact DF. The mean value and the variance of tj
for the exact DF are well known (HAJEK and SIDAK, 1967):

E tj ¼ j=ðN þ 1Þ; Var tj ¼ jðN � jþ 1Þ=ðN þ 1Þ2ðN þ 2Þ:

In order to construct a statistical test, we normalize the deviations tj :

qj ¼ ðtj � E tjÞ=ðVar tjÞ1=2:

These normalized deviations qj of the tail values tj for subduction zones and strike-

slip MOR zones shown on Figure 1 are presented on Figures 2a and 2b. One can

observe that 15 subduction events and 9 MOR events exceed one standard deviation.

Comparing these graphs with the non-normalized ones shown in Figure 1, it is clear
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that the proposed normalization considerably enhanced the significance of the

deviations.

One can also observe positive deviations for subduction events for small ranks (R

@ 100 ‚ 500) which exceed two standard deviations. This means that the GPD does

not approximate the empirical distribution very well in this range. Perhaps the lower

threshold u should be increased.

Figures 2c and 2d present similar graphs for the case in which the G-R

distribution is used in the definition of tj and qj. It is clear that this DF is less

appropriate for normalization than the GPD: most normalized deviations exceed one

standard deviation. Besides, a steady negative trend is present, which testifies to a

poor approximation of the sample by the G-R law. Nevertheless, it is still clear that

there is a change of behavior of the largest ranks, whose deviations are the strongest.

The results of the application of the normalization using the GPD for each

separate zone taken individually are shown on Figures 3a–3l. We see that there is a

suspicion for a bent down in graphs of Alaska, Mexico, New Hebrides, Solomon

Islands and Taiwan. In section 5, we shall check their significance.

(iii) We now suggest a method for estimating the significance level of the observed

deviations. In this aim, we keep the r first largest values of y and thus obtain

variables q1, ..., qr with approximately zero mean and unit variance. We take the

sum of their squares Sr = q1
2+ ...+qr

2 as a measure of the deviation of the

sample from the GPD.

(iv) We transform Sr into a dimensionless statistic êr:

êr ¼ Cðr=2; Sr=2Þ;

where G(a, x) is the incomplete Gamma function:

Cða; xÞ ¼
Z1

x

e�tta�1 dt:

This transformation makes it possible to compare the significance of the deviations

for different values of r, and then to choose an optimal value of r for each catalog. If

the normalized variables qi were standard independent Gaussian random values,

then êr would give the probability of exceeding the value Sr under the hypothesis H0

(v2-square distribution with r degrees of freedom). The smaller is êr, the less probable

is the hypothesis H0 because a small êr means that the deviation of the sample from

Figure 2

Normalized deviations qj of the tail values for (a) 14 subduction zones, (b) strike-slip MOR events. The

right panels are magnifications of the left panels. The parameters of the GPD fit are the same as on

Figure 1. (c–d) Same as (a–b) for the case in which the GR distribution is used in the definition of tj and qj.

The parameters of the GR fit are l = 0.582 ± 0.009 (14 subduction zones); l = 0.622 ± 0.021 (MOR,

strike-slip).

b
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the GPD quantified by Sr is so large that it cannot be accounted for by normal

statistical fluctuations.

(v) For non-Gaussian variables with finite variance (as is the case here with the

statistics of the variables �F ), we estimate with any desired accuracy the statistical

significance using the simulation method (see below).

(vi) We optimize the choice of r by minimizing the value (̂er) over r = 1…R, where R

is some a priori chosen number (usually, we take R = 20). Thus, the final

decision statistic is

d̂min ¼ min
r
ðêrÞ: ð6Þ

The distribution of the statistic d̂min is estimated by a simulation method based on the

bootstrap idea described below. We used in this estimating procedure 1,000–10,000

random trials with the parameters of the GPD fixed at their maximum likelihood

estimates. Thus, we estimate the probability e of the random statistic d̂min under the

hypothesis H0 to be less than the observed sample value of min
r
ð̂erÞ. As we noted

already, the smaller the probability e, the less probable is the hypothesis H0. Note

that, in our simulation procedure, we reproduce the whole algorithm of calculating

the decision statistic d̂min: we generate a random GPD sample with MLE estimates (n̂,
ŝ); then we estimate the GPD parameters by MLE and determine one value of d̂min in

accordance with the method described above. Then we repeat this procedure 1,000 to

10,000 times and estimate the probability that the observed value of d̂min would not

be exceeded. This estimate characterizes the significance level of the hypothesis H0.

The results of the application of the proposed technique to seismic zones are shown

in Table 2. The decision statistic d̂min is significantly small (less than 5%) only for four

regions: the aggregation of all 14 subduction zones, MOR stick-slip events, Solomon

Islands, and Taiwan. For three zones, the deviations are on the borderline of signifi-

cance:Alaska,Mexico, andNewHebrides.Averydistinctpositivedeviation isobtained

for the sample including all 14 subduction zones. However, even in the most favorable

case of the subduction zones, the total number of clearly deviating extreme events

ranges in the interval 12–15, whereas in the other cases, this number is even smaller.

5. Determination of the ‘‘Corner’’ Magnitude

When the hypothesis H0 is rejected, it is desirable to estimate the ‘‘corner seismic

moment,’’ or the ‘‘crossover point’’ c0 defined as the value of seismic moment where

the GPD becomes invalid, and a steeper decay starts to hold.

Figure 3

Normalized deviations qj of the tail values for each separate zone taken individually. GPD was used in the

normalization procedure described in the text using the MLE estimates of (n, s)-parameters. (a) Alaska; (b)

Japan; (c) Kamchatka; (d) Kurils; (e) Marianas; (f) Mexico; (g) New Hebrides; (h) Solomon Islands; (i)

South America; (j) Sunda; (k) Taiwan; (l) Tonga.

b
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Any statistical estimation of the crossover point c0 is necessarily very uncertain

since it must be based on a very small number of deviating events. This was justly

noted already in SORNETTE et al. (1996). We describe below one of the most efficient

statistical methods for the estimation of c0—the method of maximum likelihood.

Unfortunately, even this powerful method cannot provide a reliable estimate of c0 in

most practical cases as it requires samples of sizes n = 1000 and more, which are not

available. We now are going to quantify the amount of information that can be

extracted from the data on the crossover point c0.

We assume that the probability density f(x) is represented by two different

dependencies on the intervals (u, c0) and (c0, ¥). In the first interval, we assume a

GPD density whereas, in the second one, we assume some density u(x) decreasing
faster than the GPD. Thus, the PDF f(x) has the following form:

f ðxÞ ¼ a1ð1þ n=sðx� uÞÞ�1�1=n; u � x � c0;
a2uðxÞ; x � c0

�
: ð7Þ

The constants a1, a2 are chosen so that the density f(x) is continuous at the point c0
and its integral over (u, ¥) equals unity. Modeling the second part of the tail is

necessarily rather uncertain. In all practical situations, one has a very low number of

observations supporting the estimation of the second branch and, as it was noted in

PISARENKO and SORNETTE (2003), most possible models of the second branch are

equally efficient, or, rather, equally inefficient. We shall try two variants of u(x) with
quite different behavior in the tail, power-like and exponential:

u1ðxÞ ¼ bcb
0=x1þb; u2ðxÞ ¼ 1=a expð�ðx� c0Þ=aÞ; x > c0: ð8Þ

The parameter b (or a) is estimated together with the parameter c0. We shall show

that both these models result in essentially the same estimation accuracy of the

crossover point c0. In order to make the estimation problem more manageable, we

assume that the parameters of the first branch are known (or can be estimated in a

preliminary procedure with good accuracy). Otherwise, we would have four

unknown parameters whose estimation would be an almost insurmountable

Table 2

Significance levels of the hypothesis H0 : unbounded GPD

Region d̂min Pfdmin � d̂ming

Aggregation of 14

subduction zones

d̂min= e7 = 10)15 0

MOR, strike-slip d̂min = e2 = 0.0020 2.3%

Alaska d̂min = e6 = 0.0793 7.7%

Mexico d̂min = e1 = 0.0877 7.2%

New Hebrides d̂min = e1 = 0.0572 7.9%

Solomon Islands d̂min = e1 = 4.6 · 10)4 1.2%

Taiwan d̂min = e6 = 1.9 · 10)5 0.67%
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statistical problem, given the scarcity of the data. Thus, only two parameters are

assumed to be unknown: c0, b (or c0, a). They are estimated by the Likelihood

Method. Note that both normalizing factors a1, a2 depend on the unknown

parameters c0, b (or c0, a). It is necessary to note that the likelihood function with the

PDF (7) is not differentiable, although it is continuous, so that its maximum can be

easily found numerically. However, because of non-differentiability, it is impossible

to use well-known formulae for limit variances/covariances of parameter estimates

based on the Fisher’s information matrix or the Hessian matrix. The only way to

estimate these variances/covariances is provided by the simulation method (see

below).

An illustration of the crossover point c0 and the corresponding model is shown on

Figure 4 along with 10 realizations of random samples whose PDF satisfies eq. (7)

with u(x) = u1(x). For comparison, we display the GPD branch of eq. (7) extended

to infinity (without any crossover point). Note that the tail �F (y) on Figure 4 is

continuously differentiable since f(x) is continuous. A striking observation should be

stressed: the deviation of the theoretical DF corresponding to eq. (7) and of the 10

random samples satisfying eq. (7) from the GPD without change of regime (c0 =

infinity) starts much earlier than the true crossover point c0. On figure 4, one can see

a divergence between these curves starting approximately at M = 1027 whereas the

true crossover is c0 = 1.4 · 1028. The reason for this paradoxical result lies in the

values of the coefficients a1 and a2, which are determined from the normalization of

Figure 4

Illustration of the crossover point c0 in model (7) with u(x) = u1(x) (power-like second branch, noted 2),

along with 10 realizations of random samples whose PDF satisfies eq. (7). For comparison, the GPD

branch of eq. (7) extended to infinity (without any crossover point) is also shown as the thick straight line

noted 1.
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the global distribution (7). This condition of global normalization makes a1 < 1 and

thus explains the deviations of the model (7) from the pure GPD for values of the

seismic moment smaller than the crossover c0. This rather subtle fact should be kept

in mind when the crossover is estimated ‘‘visually’’: such largely reported values for

the crossover point log c0 @ 27.37 (mw =7.5) for subduction zones and log c0 @ 25.10

(mw = 6.0) for MOR (PACHECO et al., 1992; OKAL and ROMANOWICZ 1994)

(moments in dyne-cm) might be significantly underestimated (if one believes the

visual estimations).

The likelihood function for the PDF (7) with the presence of the second branch

(8) equals to product of densities (7) with one of two versions (8). We used a

numerical procedure maximizing the likelihood function with respect to parameters

c0, b (or c0, a). Thus, we obtained maximum likelihood estimates of these parameters.

In accordance with the graphs on Figures 2a–d and 3a–l, one can expect the existence

of a crossover point in the following zones: aggregation of all 14 subduction zones;

strike-slip events in MOR; Alaska, Mexico, New Hebrides, Solomon Islands,

Taiwan. For all the other zones, there is no sign of the existence of a crossover point,

and the application of the maximum likelihood estimation is hopeless in such

situations. One can only state that, if a crossover point exists, it should be much

larger than the observed maximum of the corresponding sample. For the 7 zones

mentioned above, we have applied our model (7) with the two variants (8) in the tail.

The resulting Maximum Likelihood estimates of the corresponding parameters are

shown in Table 3. We see that the MLE of c0 obtained using the two models coincide

for 5 zones and somewhat differ for only 2 zones (aggregation of 14 subduction

zones, Solomon Islands). Such an agreement of the estimates derived from the two

models confirms our opinion mentioned above that all models of the second branch

of the PDF are almost equally efficient for the estimation of the crossover value c0.

The estimates of the parameter b (or a) shown in Table 3 are extremely uncertain.

Sometimes, the estimate of b takes extremely large values (correspondingly, the

Table 3

The MLE estimates of log c0 provided by two models (the cross-over moment c0 is expressed in dyne-cm)

Region Pareto model Exponential model

MLE of log c0 MLE of b MLE of log c0 MLE of a

Aggregation of 14

subduction zones

28.14 ± 0.40 2.27 28.38 ± 0.63 5.2 · 104

MOR, strike-slip 26.47 ± 0.20 2.73 26.61 ± 0.37 931

Alaska 28.02 ± 0.47 6.3 · 108 28.02 ± 0.50 1.3 · 10)8

Mexico 28.06 ± 0.43 8.3 · 1013 28.06 ± 0.42 9.3 · 10)9

New Hebrides 27.68 ± 0.35 6.2 · 1012 27.68 ± 0.34 4.0 · 10)8

Solomon Islands 27.66 ± 0.36 1.3 · 104 27.40 ± 0.31 1.2 · 104

Taiwan 27.61 ± 0.42 6.2 · 1012 27.61 ± 0.41 3.0 · 10)9
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estimates of a take very small values close to zero). Thus, the parameter b (or a) is
such that the second branch of PDF in (7) practically shrunk to zero just after x =

max (X), where max(X) is the observed maximum of the sample. In these cases, our

estimate of c0 coincides with the MLE of the crossover value obtained using the

truncated GPD (KIJKO and SELLEVOL 1989, 1992; PISARENKO et al., 1996; KIJKO,

2001), whereas the estimate of b (or a) becomes meaningless. Figure 5 shows a typical

example of such an estimation. Here only 15 1/b-estimates from m = 100 bootstrap

samples have intermediate values close to the true value 1/b = 2/3, whereas 85 1/b-
estimates are practically zero. Note that nevertheless log(c0) estimates do not exhibit

such a ‘‘jump’’ in distribution for both sets of 1/b-estimates, although log(c0)

estimates for the former set are biased to the left with respect to the latter set. As we

said above, any estimate of c0 is rather uncertain. It is thus very important to

characterize the statistical uncertainty of the estimate of c0. For this purpose, we use

again a simulation method based on the bootstrap approach. The details of this

method are exposed in the APPENDIX. We have used this method in order to

estimate the bias and standard deviations for all four combinations of model/tail

with parameters and sample sizes that were exactly equal to the MLE estimates

obtained on the 7 samples tested for the possible existence of a crossover point (see

section 4). The resulting Mean-Square Errors are shown in Table 4. Comparing the

two models (8) used for the estimation of c0, we can conclude that the first one (the

Pareto density) is preferable since it provides the smaller MSE. Therefore, we used c0

Figure 5

ML-estimates of parameters (log c0, 1/b) in model (7) with u(x) = u1(x) (power-like second branch) for

100 bootstrap samples with true parameters: log c0 = 27.7; 1/b =0.667. GPD parameters of the first

branch in eq. (7) were fixed at n = 1.5; s = 20; sample size n = 200.
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estimate provided by this model. As final estimates of the uncertainties in real

samples we have taken the most conservative version (maximum value) of the

uncertainty of the Pareto model for two versions of the ‘‘true’’ tail (Pareto and

exponential). We were thus able to estimate the uncertainty of the MLE of log(c0),

see Table 4. Except for MOR events, whose crossover point c0 differs significantly

from all subduction crossovers, we cannot affirm that crossovers differ significantly in

various subduction zones, although their estimates vary within some limits. The

relatively small sample sizes in separate zones do not allow us to obtain such a

definite conclusion. However, it is not impossible that, say, in the Solomon Islands

and Taiwan, the crossovers can be less than in other subduction zones such as

Alaska, Kurils, Mexico, South America, New Guinea, and Tonga. At least, the MLE

estimation of c0 of the former are less than the MLE estimations of c0 of the latter. In

order to obtain a more definite answer concerning distinct subduction zones, it would

be necessary to double (or even to triple) the size of the existing catalogs. As to the

global catalog of all subduction zones taken together, an estimate log(c0) = 28.14 ±

0.40 (mW = 8.1 ± 0.3) can be accepted as reliable since it is based on a large sample

of size n = 4609.

If, for some zone, the hypothesis of validity of the GPD (or the G-R) on the semi-

infinite interval (u; ¥) is rejected, and the MLE estimate of the crossover point c0 has

been derived, then it is natural to re-estimate the GPD form parameter n (or the G-R

slope parameter l) using only the data from the interval (u; c0) rather than from the

interval (u; ¥). On the interval (u; c0), the likelihood function is used for the

corresponding distribution truncated from both sides: this results in a new

normalizing constant depending on the unknown parameters. We have carried out

such a re-estimation for the 7 zones whose deviation from the unlimited GPD was

found significant (see Table 3). The results of this re-estimation are compared in

Table 5 with the estimates obtained on the semi-infinite interval (u; ¥). We observe

Table 5

Comparison of ML-estimates obtained on the interval (u0 ; ¥) with ML estimate obtained on the interval

(u0; c0) for the GPD and the GR form parameters; c0 –values are taken from Table 3; lower threshold u = 1024

dyne-cm

Region GPD Gutenberg-Richter

MLE of n on

(u ; ¥)

MLE of n on

(u ; c0)

MLE of l on

(u ; ¥)

MLE of l on

(u ; c0)

14 subduction zones 1.517 ± 0.033 1.559 ± 0.037 0.582 ± 0.009 0.570 ± 0.009

MOR, strike-slip 0.933 ± 0.055 1.045 ± 0.077 0.622 ± 0.021 0.531 ± 0.025

ALASKA 1.557 ± 0.129 1.637 ± 0.148 0.581 ± 0.032 0.564 ± 0.034

MEXICO 1.894 ± 0.159 2.084 ± 0.208 0.493 ± 0.030 0.465 ± 0.032

NEW HEBRIDES 1.488 ± 0.108 1.571 ± 0.131 0.522 ± 0.025 0.492 ± 0.028

SOLOMON ISLANDS 1.480 ± 0.104 1.635 ± 0.140 0.511 ± 0.024 0.464 ± 0.027

TAIWAN 1.548 ± 0.102 1.690 ± 0.129 0.568 ± 0.025 0.539 ± 0.027
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that the corresponding differences of the estimates are not always negligible.

Sometimes, they reach 10%. Thus, in the case when a finite crossover point c0 has

been derived with a reasonable reliability, it is safer to re-estimate the form

parameters of the GPD (or the G-R) using DF truncated from both sides.

6. Discussion and Conclusions

We have started our analysis from the observation that the Generalized Pareto

Distribution (2) (GPD) provides a satisfactory approximation of the tails of the

distributions of the seismic energy released by earthquakes (PISARENKO and

SORNETTE, 2003). The justification for the use of the GPD is that it offers an

improvement over the simple Pareto power law (1) as it is rigorously based on the

Gnedenko-Pickands-Balkema-de Haan theorem, which shows that the GPD is the

universal distribution of sizes conditioned to exceed a threshold, in the limit where

this threshold becomes large, independently of the specific distribution of the

unconditional values. The GPD with positive parameter n also has a power-law tail

and thus recovers exactly a power law, asymptotically.

Even if the GPD works well in the intermediate range of seismic catalogs, there is

always the possibility that, at the extreme end of the range of sizes, some deviation

from the GPD may occur. Since, as we said, the use of the GPD is warranted

asymptotically by the Gnedenko-Pickands-Balkema-de Haan theorem, such a

deviation would signal a possible change of physics and the existence of new

mechanisms that could control the GDP parameters.

The very important question of the possible existence of crossover point c0 in the

magnitude frequency law has thus been studied in this paper. Initially, a quantitative

statistical test for the presence of a crossover c0 has been introduced, based on the

transformation of the ordered sample of seismic moments into a series with uniform

distribution under condition of no crossover. The subsequent use of the bootstrap

method has allowed us to estimate the statistical significance of the null hypothesis

H0 (absence of crossover). If H0 is rejected, we have shown how to address the next

question, which is to estimate the crossover c0 . We found that, for a reliable

estimation of log(c0), a rather high minimum sample size is necessary that can be

evaluated approximately as n @ 1000: such sample size would provide Mean-Square

Errors (MSE) of the estimate of log(c0) no more than 0.4–0.5; for sample size n =

500 and less, the MSE can reach 0.5 to 1.1. Therefore, the estimation of the crossover

c0 is possible only for very large geographical areas with numerous events.

For the catalog obtained by aggregating 14 subduction zones of the Circum

Pacific Seismic Belt, our estimate of the crossover point is log(c0) =28.14 ± 0.40 (c0
in dyne-cm), corresponding to a crossover magnitude mW = 8.1 ± 0.3. For separate

subduction zones, the corresponding estimates are much more uncertain (see

Table 4), so that the null hypothesis of an identical crossover for all subduction zones
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cannot be rejected. However, it is possible that this conclusion is due only to the

insufficient sample sizes in the separate zones. Our conclusion does not exclude a

spatial variation of the crossover value c0 . For the 14 subduction zones, the four

largest earthquakes turned out to be beyond the ML estimate log(c0) = 28.14. Thus,

they can be considered as deviating significantly from the GPD tail:

M = 3.00 · 1028 , 04.10.1994, k = 43.71; u = 147.33; Kurils;

M = 2.41 · 1028 , 17.02.1996, k = ).95; u = 17.03; New Guinea;

M = 1.69 · 1028 , 12.12.1979, k = 1.62; u = )79.34; South America;

M = 1.39 · 1028 , 22.06.1977, k = )22.91; u = )175.74; Tonga.

Here k and u are the latitude and the longitude, correspondingly. The evidence

demonstrated here of deviations from the Pareto or GPD is usually related to the

finite thickness of the seismogenic layers (although no direct evidence of this

statement is demonstrated in the existing literature; SORNETTE et al., 1996; MAIN,

2000). With our new statistical approach, we find that the crossover magnitude is mW

= 8.1 ± 0.3 for subduction zones. Such a large value makes it difficult to associate it

directly with a seismogenic thickness as proposed by many different authors. It may

point to the concept that the nonradiating part of the lower crust may participate

significantly in the mechanical localization and stress relaxation processes associated

with an earthquake, according to their visco-elasto-plastic rheological behavior

(REGENAUER-LIEB and YUEN, 2002). In other words, the localization of strong shear

could propagate significantly in the lower crust and upper mantle, thus increasing the

effective size beyond which one should expect a change of regime. While this idea is

not new, our statistical tests leading to such a large value of the crossover magnitude

may be one of its clearest signatures.

The strong statistical significance of the deviations that we have demonstrated

above c0 justifies the quest for a parametric representation of the second branch of

the PDF describing these deviations (KAGAN and SCHOENBERG, 2001). However, the

number (of the order of 15) of events in the new regime is not sufficient to establish

any functional form of this PDF. As we already mentioned, there have been many

attempts to fit the tail of the magnitude-frequency law by several parametric families.

However, the ‘‘visual’’ as well as statistical quality of the fits with these families are

similar. The situation is even more uncertain for separate regional catalogs because

of the smaller number of observations.

What statistical recommendations can be suggested concerning the seismic

hazard (seismic risk) assessment and on related problems? Of course, when the

sample size is small, no statistical method can help in a definitive way, however,

some cautionary measures can be recommended. First of all, it is desirable to use

several competing models of the second branch of the tail and to compare them. By

inserting the extreme parameter values of the confidence domain into a fitted tail

function, one can compare the resulting difference of probabilities. The bootstrap

approach can be very useful in this situation. Statistical estimation or hypothesis
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testing are easily modeled by the simulation method even for small samples.

Sometimes, generating artificial samples and simple visual inspection can facilitate

drawing conclusions.
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Appendix

Characterization of Uncertainty of Crossover Parameter c0

We generate bootstrap samples X(1)…X(m) of needed size n corresponding to the

models (7), (8) with parameters fixed at their maximum likelihood estimate values ĉ0,
b̂ (or ĉ0, â). For the j-th bootstrap sample X(j), we determine c0

(j), b(j) (or c0
(j), a(j)) by

MLE. Then, we estimate the bias and standard deviations of log(c0
(j)), b(j) (or

log(c0
(j)), a(j)) from the ‘‘true’’ values ĉ0, b̂ (or ĉ0, â). We generate bootstrap samples

for the two PDF corresponding to u1 and u2, respectively. We then apply these two

models to each of these bootstrap populations. We thus have four possible

combinations: (power-like tail, power-like model), (power-like tail, exponential

model), (exponential tail, power-like model), (exponential tail, exponential model).

We have tried all these four cases. The corresponding biases and standard deviations

are shown in Table 4 for a number of sample sizes and ‘‘true’’ parameter values. For

these estimations, we used m = 100 bootstrap samples for each variant. As could be

expected, the uncertainty of the estimation of c0 (bias and standard deviation of

log(c0
(j))) is similar for both models. For the sample size n = 100, the bias and

standard deviation are very large, in particular for larger log(c0): the Mean-Square

Error = sqrt (bias2 + std2) is more than unity for all variants with c0 > 4 · 1027. For

n= 250 and n= 500, the Mean-Square Error of log(c0) is still high, and only for n>

1000 does the Mean-Square Error become less than 0.4–0.5.
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