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Abstract—An intelligent ‘‘data-driven’’ method is used in the present study for investigating,

analyzing and quantifying the urban heat island phenomenon in the major Athens region where hourly

ambient air-temperature data are recorded at twenty-three stations. The heat island phenomenon has a

serious impact on the energy consumption of buildings, increases smog production, while contributing to

an increasing emission of pollutants from power plants, including sulfur dioxide, carbon monoxide, nitrous

oxides and suspended particulates.

The intelligent method is an artificial neural network approach in which the urban heat island intensity at

day and nighttime are estimated using as inputs several climatic parameters. Various neural network

architectures are designed and trained for the output estimation, which is the daytime and nighttime urban

heat island intensity at each station for a two-year time period. The results are tested with extensive sets of

non-training measurements and it is found that they correspond well with the actual values. Furthermore,

the influence of several input climatic parameters measured at each station, such as solar radiation,

daytime and nighttime air temperature, and maximum daily air temperature, on the urban heat island

intensity fluctuations is investigated and analyzed separately for the day and nighttime period. From this

investigation it is shown that heat island intensity is mainly influenced by urbanization factors. A

sensitivity investigation has been performed, based on neural network techniques, in order to adequately

quantify the impact of the above input parameters on the urban heat island phenomenon.
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1. Introduction

Air temperatures in densely built urban areas are higher than those of the

surrounding rural country. This phenomenon, which is widely known as ‘‘urban heat

island,’’ is regarded as the most representative and documented manifestation of

climatic modification. Heat island is present in every town and city and is the most

obvious climatic indication of urbanization (LANDSBERG, 1981).

Increased industrialization and urbanization in recent years have affected

dramatically the number of urban buildings with major effects on the energy

consumption of this sector. Urban areas without a high climatic quality use more
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energy for air conditioning in summer and even more electricity for lighting.

Moreover, discomfort and inconvenience to the urban population due to high

temperatures, wind tunnel effects in streets and unusual wind turbulence due to

wrongly designed high rise buildings is a very common phenomenon (SANTAMOURIS

et al., 2001).

Temperature distribution in urban areas is highly affected by the urban

radiation balance. Solar radiation incident on urban surfaces is absorbed and then

transformed to sensible heat. Most of the solar radiation impinges on roofs, and

the vertical walls of the buildings, and only a relatively small part reaches the

ground level. Walls, roofs and the ground emit long wave radiation to the sky. The

intensity of the emitted radiation depends on the view factor of the surface

regarding the sky. Under urban conditions most of the sky dome viewed by walls

and surfaces is blocked by other buildings, and thus the long wave radiant

exchange does not really result in significant losses. The net balance between the

solar gains and the heat loss by emitted long-wave radiation determines the thermal

balance of urban areas, which are less efficient at achieving the balance and hence

these areas require a higher temperature to achieve this balance. The urban heat

island phenomenon may occur during day or nighttime periods and its patterns are

strongly controlled by the unique characteristics of each urban area. It is usually

developed during clear, calm evenings and nights and is normally a result of

delayed cooling of the city compared to surrounding rural areas (BARRING et al.,

1985). Although the reasons for this phenomenon are rather complex, the major

causes are the differences in the thermal structures between the urban and rural

environments such as the polluted air of the city, the anthropogenic heat released

by the urban pollution, the thermal characteristics of the urban fabric and the

urban geometry (PARK, 1986; OKE et al., 1991).

The heat island phenomenon can be quantified by the maximum difference

between urban temperature and the background rural temperature, which is defined

as the urban heat island intensity (OKE, 1987). Heat island intensity depends on the

size, population and industrial development of the city, the topography and the

surface materials, the general climate of the region and the momentary meteorolog-

ical conditions.

The effect of meteorological parameters on urban heat island intensity, (UHI),

was the subject of considerable research (JOHNSON et al., 1991; MONTAVEZ et al.,

2000; MORRIS et al., 2000). Various studies revealed that wind speed and cloud

amount are very important factors that influence the development and intensity of

the UHI, suggesting that UHI intensifies under cloudless sky and light wind

conditions. The city of Athens is characterized by a strong heat island effect, mainly

caused by accelerated industrialization and urbanization during recent years. This

phenomenon is mainly influenced and affected by the atmospheric circulation which

is responsible for the formation and evolution of the meteorological elements that

can enforce or eliminate the phenomenon (MIHALAKAKOU et al., 2001).
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An intelligent method such as the neural network systems is designed in the

current research for estimating the urban heat island intensity in various locations of

a large urban area. Important climatological parameters such as solar radiation,

diurnal and nocturnal air temperature, and maximum air temperature are used as

inputs to the models. Artificial neural networks are computational systems which

can be regarded as an attempt to simulate in a simpler way the structure and

functions of the human brain (LI et al., 1990; CICHOCKI and UNBEHAUEN, 1993).

The main characteristic of neural network models is their capability of modeling

complex nonlinear processes. They belong to the class of ‘‘data-driven’’ approaches

instead of ‘‘model-driven’’ methods because the analysis and the results depend on

the available data (CHAKRABORTY et al., 1992). Relationships between variables,

models, laws and predictions are constructed after building a machine which

simulates the considered data. The process of constructing such a machine based on

available data is addressed by certain algorithms like ‘‘perceptron’’ (ROSENBLATT,

1961) or ‘‘backpropagation’’ (RUMELHART et al., 1986). Various researchers

proposed neural networks learning algorithms for time series predictions and

estimations as well as for several energy applications (HONDOU and SAWADA, 1994;

DASH et al., 1995; KALOGIROU et al., 1997; MIHALAKAKOU et al., 1998; SANTAMOU-

RIS et al., 1999a,b). Air temperature is a chaotic time series and certainly, it can be

predicted and estimated using linear methods. There are various studies in which

researchers present comparisons between the results of a neural network model and

those of a linear autoregressive one (MIHALAKAKOU et al., 1998). From the above-

mentioned studies it was concluded that the neural network makes significantly

better estimations than those of the autoregressive model. Linear models are

incapable of capturing the nonlinear nature of air temperature time series. The main

advantage of the neural network model is that it enables the user to approximate or

reconstruct any nonlinear activation function, and therefore such a model is

sufficiently flexible.

The objectives of the present study are primarily to examine in depth, using the

neural network techniques, the influence of the input climatic parameters on the heat

island fluctuations, thus providing a quantitative information on the dependence of

the urban heat island phenomenon on various climatic elements such as air

temperature and solar radiation. The second objective is to investigate the ability of

neural network systems for estimating the nighttime and daytime urban heat island

intensity at twenty-three experimental stations in Athens for a two-year time period,

using as inputs substantial climatic parameters.

The paper is organized as follows: The experimental investigation of the heat

island phenomenon in the major Athens region is presented in section 2. The neural

network models description and the urban heat island intensity as a function of the

main climatic parameters are presented in section 3 for the nighttime temperature

fluctuations and in section 4 for the daytime. Finally a summary and the conclusions

are given in section 5.
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2. The Urban Heat Island Experiment in Athens

2.1. Brief Description of the Area and the Prevailing Climatic Conditions

The Greater Athens Area, (GAA), is situated on a small peninsula located on the

southeastern edge of the Greek mainland (Fig 1). It is divided by high mountains in

three main parts, which are connected by small openings. The central part is the

Athens basin which covers an area of 450 km2, with a population density of 8000

inhabitants per square kilometer, with the main axis orientated from SSW to NNE.

Athens basin is surrounded by high mountains in the north (Parnitha, 1426 m), in the

west (Egaleo, 458 m) and in the east (Hymettus, 1026 m and Penteli, 1107 m), while

it is open to the sea from the south (Saronikos Gulf). The other parts of the Athens

area are the Thriassion plain west of the Athens basin and the Mesogia plain in the

east. There are only small openings through which the Athens basin communicates

with these plains as well as the rest of Greek mainland. These openings play an

important role in air mass exchange between the Athens basin and the Thriassion

and Mesogia plains (ASIMAKOPOULOS et al., 1992; HELMIS et al., 1997).

Figure 1

The locations of the 23 experimental stations.
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A manual scheme for classifying the day-by-day 850-hPa atmospheric circulation

over GAA was proposed and employed by KASSOMENOS et al. (1998). According to

this study, the synoptic categories, illustrated in Figure 2, are the following

(MIHALAKAKOU et al., 2001):

1. Long-wave trough, characterized by intense winds, especially during the cold

period of the year (Fig. 2a).

2. Southwesterly flow, characterized by a southwesterly flow which is usually very

strong (Fig. 2b).

Figure 2

Schematic presentation of the eight synoptic categories over GAA.
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3. Northwesterly flow, characterized by strong cold air advection from the north or

northwest (Fig. 2c).

4. Zonal flow, characterized by a westerly flow with considerably lower intensity in

the warm period of the year (Fig. 2d).

5. Closed low, characterized by the presence of a closed low accompanied by intense

winds, usually from the northern sector and rainfall (Fig. 2e).

6. High pressure ridge, characterized by a weak pressure gradient and weak, variable

winds or calm conditions (Fig. 2f).

7. Closed anticyclone, characterized by the presence of a closed anticyclone that

extends over the Greek area accompanied by weak winds from the southern or

northern sector (Fig. 2g).

8. Category high-low, characterized by strengthening of the pressure gradient and

strong northeasterlies that blow over the Aegean Sea and into the GAA (Fig. 2h).

The anticyclonic circulation prevails over the Athens area with maximum

occurrence in January and June. A significant meteorological feature of the area is

the predominance of high pressure systems combined with low pressure ones,

resulting in rather complicated flow regimes, especially during July and August.

Conditions of a cyclonic type seem to dominate in February and March while a

south-westerly flow prevails in November and April.

The prevailing anticyclonic circulation in the Athens area favors the strong

development of the heat island phenomenon.

2.2. Experimental Investigation

The Athens central region can be regarded as a special pilot study of the urban

heat island effect caused by the accelerated industrialization and urbanization of

recent years (SANTAMOURIS, 2001). The urban heat island phenomenon has been

investigated using measurements from twenty-three experimental stations installed in

the Athens urban and suburban region (Fig. 1). Hourly ambient air temperature and

humidity values were recorded at the 23 stations for a time period of two years (1996

and 1997). The instrumentation used in the experiment was selected to satisfy several

criteria such as acceptable cost, covering as many locations as possible, satisfactory

performance according to the international meteorological standards, low mainte-

nance, internal power supply and high data storage capacity. As the study had to

cover the Athens basin, measurement points were selected with the following criteria:

a) to acquire information pertaining to the boundary conditions around the basin,

b) to study densely built areas with heavy traffic,

c) to study densely built areas with less traffic,

d) to study the conditions in green areas of the city center,

e) to study medium density built areas.

Therefore an attempt was made to select areas according to these criteria, that

additionally are located on the north-south and east-west axes of the city. A brief
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description of each experimental station is presented in Table 1. Seven stations are

placed in the central area of Athens, fifteen stations are placed in urban areas and

in a radial configuration around Athens, while one station is placed in an almost

Table 1

Characteristics of the Experimental Stations

Station

Number

Station Characteristics

1 Placed on a green hill at the center of Athens (altitude = 107 m). The area is

characterized by low-building density and absence of traffic.

2 Placed in southeastern area of Athens near a mountain. The area is less populated with

low traffic and medium building density.

3 Placed in the eastern area of Athens center. The area is densely populated with

considerable traffic.

4 Placed in southwestern area of Athens. The area is less populated with low traffic while

its vegetation is nearly negligible.

5 Placed in the eastern area of Athens near a mountain. The area is highly populated with

considerable traffic.

6 Placed in the southern coastal area of Athens, very close to the airport. The area is

characterized by very low traffic and by very few buildings.

7 Placed in the center of Athens. The area is densely populated with heavy traffic.

8 Placed in the northeastern area of Athens between two mountains. The area is

characterized by increased building density and by heavy traffic.

9 Placed in the southern area of Athens center in a big avenue. The area is highly

populated with heavy traffic.

10 Placed in the southern side of the previous avenue very close to the sea. The area is

characterized by low building density and by heavy traffic.

11 Placed in the center of Athens in a pedestrian road. The area is very densely built and

populated.

12 Placed in the center of Athens. The area is characterized by heavy traffic and by very

dense population.

13 Placed in the center of Athens. Traffic and building density are very high.

14 Placed in the western area of Athens in a university campus characterized by a moderate

vegetation.

15 Placed in the center of Athens. The area is very densely populated with considerable

traffic.

16 Placed in the northern area of Athens. Traffic is very low and trees are scattered

throughout the area.

17 Placed in the western limits of Athens basin in a football ground at the edge of a planted

area. The area is characterized by very low traffic and building density.

18 Placed in the western area of Athens. Traffic is heavy while building density is very high.

19 Placed in the city center inside National Garden of Athens.

20 Placed in the Ancient Market of Athens. It is an area covered by bare soil and

surrounded by trees.

21 Placed in the northeastern area of Athens in a suburb with increased traffic and average

vegetation.

22 Placed in the center of Athens. The area is characterized by heavy traffic and large green

spaces which consist of gardens and trees.

23 Placed very near the center of Athens in a big avenue. The area is not very densely built

with an average street vegetation but its traffic is high.
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rural region, at the foot of a mountain, in order to be used as the reference

station.

The instruments measuring the air temperature values are installed in buildings at

a height approaching 5 m, while south orientation is selected for all thermometers.

Miniature temperature data loggers equipped with a thermistor as a sensing element

are used for measuring the hourly values of ambient air temperature at each

experimental location. The technical characteristics of the utilized instruments are the

following:

1. Data storage capacity: 7600 readings, for the measurement of hourly values, the

instrument can operate for approximately 300 days.

2. Temperature range: )40 to 125 �C.
3. Accuracy of the sensors: ±0.2 �C.
4. Logger resolution: 0.5 �C.

At each station, approximating the Stevenson screen, white wooden boxes with

lateral slots were constructed for the instruments’ protection from solar radiation

and rain. The boxes with the instruments were equipped with openings which offered

natural ventilation. The temperature sensors were calibrated using an accurate liquid

bath.

3. Fluctuations of the Nighttime Urban Heat Island Intensity

3.1. Modeling the Nighttime Heat Island Intensity

Artificial neural networks are computing systems which attempt to simulate the

structure and function of biological neurons. How the inter-neuron connections are

arranged and the nature of the connections determine the structure of a network

(PHAM and LIU, 1995).

The estimation problem using neural network models can be separated into three

successive steps or subproblems:

� Model building or neural network architecture.

� The learning or training procedure.

� The testing or diagnostic checking.

In the present research a multiple-layered network, based on backpropagation

learning algorithm, is designed for the urban heat island intensity estimation at

nighttime for every location. For this reason, a neural network model is built

separately for each of the experimental stations. The selected neural network

architecture consists of one hidden layer of 16 to 27 log-sigmoid neurons followed by

an output layer of one linear neuron (MIHALAKAKOU et al., 1998). Learning is

achieved using the backpropagation algorithm of RUMELHART et al. (1986) to train

the network.

The network is trained over a certain part of the climatic data and once training is

completed, the network is tested over the remaining data.
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The neural models are designed and trained for the estimation of the stations

nighttime heat island intensity, (DTmax,n in �C), which is considered to be the

maximum difference between the ambient air temperature measured at an urban

station and the one measured at a reference, during the nighttime and for a two-year

time period (1996 and 1997).

DTmax;n ¼ ðTurban � TreferenceÞmax;n for nighttime ð1Þ

Station numbered 2 is considered to be the reference station because it is nearly

free from urban climate modifying effects, located at a less built-up area with low

traffic and medium population.

The input parameters of the neural network models are the following:

� Maximum daily values of the ambient air temperature (Tmax in �C), measured at

each urban station: Maximum diurnal air temperature depends on various climatic

factors such as the short-wave solar radiation, sunshine duration, vegetation and

grounds’ thermal properties, altitude and precipitation. Maximum diurnal air

temperature values are significantly different in the urban environments because of

the following reasons:

a. The reflectivity of a surface decreases as the surface irregularity increases.

b. Maximum air temperatures are higher in urban environments as a result of a

smaller surface availability for evaporation. The release of anthropogenic heat

from buildings and cars effects the significant increase of maximum diurnal air

temperature.

c. Urban areas’ geometry contributes to the trap of short-wave radiation in the

urban canyons, thus increasing the energy absorption and resulting in higher

maximum diurnal air temperatures.

d. Urban areas experience increased long-wave radiation because of higher

temperature values, which are partly caused by the pollution that enhances the

greenhouse effect.

Maximum daily air temperature is regarded as the representative urban

parameter to the model, taking into account that it is the result of various major

physical processes produced in the urban environment.

� Nighttime values of the ambient air temperature (Tref in �C), measured at the

reference station, at the time when DTmax,n is observed: Nighttime air temperature

at the reference station is an important parameter contributing significantly to the

heat island intensity estimation. The reference temperature is usually lower than

the corresponding urban temperature, especially during calm and clear nights.

This is mainly caused by the stronger rural cooling rates if compared with those of

the urban environments. That means that the city air cools at a slower rate. This

difference can be explained by the following factors :

a. Building materials are characterized by relatively high thermal conductivity and

volumetric heat capacity. Because of the high values of building materials’
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thermal properties, daytime heat is able to both penetrate and be stored easily.

At nighttime, as the surface temperature drops, the heat flux is directed

upwards, thus helping to maintain relatively higher temperatures in the urban

areas while the cooling rate is retarded.

b. Ground cooling is significantly delayed during clear and calm evenings in

urban areas because of the surface geometry, which contributes to the

obstruction of the cold night-sky in the canyons, thus decreasing the loss of

the outgoing long-wave radiation. Moreover, the surface geometry aids

decreasing wind velocity and turbulence in deep ‘‘city canyons,’’ thus

reducing the loss of sensible and latent heat.

c. The urban temperatures at night are higher than those of the surrounding

environment due to the added heat of combustion.

These two input parameters are able to express the urban/surrounding country-

side energy balance differences. The daily maximum air temperature is the result of

the climatic conditions and the energy budget alterations at the urban environment

while Tref characterizes the surrounding countryside energy balance at nighttime,

dominated mainly by the increased cooling rates.

The outputs of the neural network model are the nighttime heat island intensity

values for each of the remaining twenty-two stations. Heat island intensity can be

regarded as a measure of the numerous physical processes that produce the difference

between rural and urban areas.

Training is performed using nighttime values of the input parameters for the heat

island estimation of the heat island intensity for 550 days during 1996 and 1997 (one

and a half years). As learning occurs, the mean square error decreases. The training

results are compared with the measured heat island intensity values at each station.

The comparison showed a good agreement between estimated and measured values

for the entire set of experimental stations. Figure 3 displays the comparison of the

measured heat island intensity values with the neural network estimated values for a

set of six stations (numbers 3, 4, 12, 14, 15, 20), which are randomly selected for the

presentation of results. In this figure x axis represents the measured urban heat island

values, (�C), while y axis represents the estimated values in �C. As shown, there is a

good agreement between measured and estimated values. The same good agreement

is observed for the entire set of twenty-two stations. The correlation coefficients

varied between 0.85 to 0.96, while the mean square errors fluctuated between 0.1 �C
to 0.3 �C.

The temporal variation of the estimated and measured nighttime heat island

intensity for four cases consisting of fifteen continual days of the training period (July

1996), and for four randomly selected stations (numbers 7, 9, 11, 18) is shown in

Figure 4. In this figure the x axis represents time and its units are days, while the

y axis represents heat island intensity and its units are �C. The solid line indicates the

measured heat island values, while the plus symbols indicate the model estimations.

As can be observed, there is a very good agreement between the estimated and the
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measured data. For these days, the 90% of the relative error (%RE) values fall

between )15% and 10%.

ð%REÞ ¼ ½ðDTmax;n;meas � DTmax;n;estÞ=DTmax;n;meas� � 100

where, DTmax,n,meas and DTmax,n,est are the measured and estimated nighttime heat

island intensities, respectively.

From Figure 4 it can also be seen that the nighttime heat island intensity is

higher, (reaching 5.4 �C), at the central densely populated and built station

numbered 7, while at the other three stations it fluctuated between 0.5 and 3.5 �C.
Similar performance is observed for the whole set of training data.

The accuracy of the neural network estimations is tested by comparing the

measurements of the testing set of data, which consists of the nightly heat island

intensity values for the remaining 180 days of 1997 (half a year), with the estimated

results of the neural network approach. Figure 5 shows the comparison between the

estimated heat island intensity values and the measured values for the testing set of

data and for six randomly selected stations (numbers 4, 5, 8, 12, 13, 15). The results

are quite encouraging for the complete set of twenty-two stations. The mean square

errors varied between 0.2 �C to 0.3 �C while the correlation coefficients fluctuated

between 0.80 to 0.92.

The temporal variation of the estimated nighttime heat island intensity values and

of the testing set of measurements for fifteen continual days of the testing period

(November 1997), and for four randomly selected stations (numbers 3, 12, 13, 17) is

presented in Figure 6. The synoptic categories influencing the weather in the greater

Athens area during this period are a high pressure ridge which enforces the

Figure 3

Comparison of the measured with the neural network estimated maximum nighttime heat island intensity

values, for the training set of data and for six randomly selected experimental stations.
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development of the heat island effect and furthermore a southwesterly flow,

characterized by strong winds which decrease the intensity of the phenomenon. From

this figure one can observe a variation of the heat island intensity from night to night,

which can be explained by the fact that November in the Athens area is a month

predominated by a southwesterly flow circulation usually correlated with surface

cyclonic patterns and baroclinic instability. The main characteristic of this flow

pattern is that the winds blowing from the southern sector sustain medium to strong

intensity (more than 6 m/sec), influencing in this way the urban climatic conditions

and enhancing the large fluctuations of the heat island intensity. From this figure it

can also be seen that the neural network estimations perform well on the testing set of

measurements. Similar performance is observed for the entire testing set.

3.2. Results and Discussion

Neural network models are used to investigate and analyze the impact of the two

input climatic parameters on the fluctuation of the heat island intensity during

Figure 4

Temporal variation of the estimated and measured maximum nighttime heat island intensity values for

fifteen continual days of the training period and for four randomly selected experimental stations.
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nighttime. For this investigation, neural networks are designed and trained for the

nighttime heat island estimation using only one parameter as input each time, for ten

randomly selected stations and for the same time period. The models’ results are

summarized in Table 2 where one can see the correlation coefficients between the

measured and estimated maximum heat island intensity values for the following three

cases:

� When both parameters, (Tmax, and Tref), are used as inputs to the neural network

models. In this case the correlation coefficient is represented by k1.
�When daily maximum ambient air temperature, (Tmax), is the only input parameter.

In this case the correlation coefficient is represented by k2.
�When Tref is the only input parameter. In this final case the correlation coefficient is

represented by k3.
All correlation coefficients are calculated on the training set of data. Table 2 shows

that the use of one parameter as input to the models results in a remarkable

reduction of the correlation coefficient which can be described as follows:

� For the use of maximum air temperature as input parameter representing the

prevailing climatic conditions at each urban station, the correlation coefficient

decrease varied between 18 and 27%.

� For the use ofTref as input parameter representing the energy balance at the reference

station, the correlation coefficient reduction fluctuated between 24 and 35%.

The above results demonstrate that the agreement between estimated and

measured values of the nighttime heat island intensity is slightly better when the daily

maximum air temperature is used as the unique input to neural models. This can be

explained by the fact that the daily maximum air temperature is more representative

Figure 5

Comparison of the measured with the neural network estimated maximum nighttime heat island intensity

values, for the testing set of data and for six randomly selected experimental stations.
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of the urban environment physical processes producing the heat island phenomenon

as it is measured at all urban stations. Conversely, nighttime reference temperature is

the result of only the surrounding countryside climatic conditions.

However, the use of both climatic parameters improves drastically the results as

they complement the urbanization process description, offering a more integral and

representative illustration of the difference between urban/surrounding countryside.

The maximum daily air temperature contributes to the presentation of the urban

environmental conditions while the Tref is responsible for the surrounding country-

side thermal balance. Therefore, the two parameters as inputs to the neural models

are able to produce the urban/surrounding countryside energy balance differences,

which result in the urban heat island effect.

Figure 6

Temporal variation of the estimated maximum nighttime heat island intensity values and of the testing set

of measurements for fifteen continual days of the testing period and for four randomly selected

experimental stations.
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4. Fluctuations of the Daytime Heat Island Intensity

4.1. Modeling the Daytime Heat Island Intensity

The fluctuations of daytime heat island intensity are also estimated using neural

network models.

In this case, multiple feed-forward networks based also on a backpropagation

method are designed to learn and then estimate the daytime heat island intensity.

Neural network models are built separately for each one of the experimental stations.

The architecture of the network, which is selected after trying several networks,

includes one hidden layer of 18 to 22 log-sigmoid neurons followed by an output

layer of one linear neuron.

Again, the network is trained over a certain part of the climatic data and

furthermore, the network’s ability is tested using the remaining data. The training

and testing data are the measurements taken from the experimental stations

presented and described in section 2. The neural models are designed and trained for

the estimation of the stations heat island intensity, (DTmax,d in �C) during the

daytime and for the same time period.

DTmax;d ¼ ðTurban � TreferenceÞmax;d for daytime ð2Þ

The neural networks output is the heat island intensity at daytime and for the

twenty-two stations. At this case, the selected input parameters of the models are:

� Daytime values of ambient air temperature, (Tair, in �C), measured at each urban

station at the time when the DTmax,d is observed: The daytime temperature

Table 2

Correlation coefficients between the measured and neural networks estimated nighttime heat island intensity

values for the three considered cases of Tmax, and Tref as inputs to the neural network (k1), of Tmax, as the only

input parameter (k2), and of Tref as the only input parameter (k3)

Station k1 k2 (%)

Reduction

k3 (%)

Reduction

1 0.89 0.65 27.0 0.58 34.8

4 0.91 0.67 26.4 0.63 30.8

6 0.93 0.69 25.8 0.66 29.0

7 0.93 0.68 26.9 0.65 30.1

11 0.94 0.69 26.6 0.66 29.8

12 0.95 0.78 17.9 0.72 24.2

13 0.94 0.69 26.6 0.67 28.7

15 0.90 0.66 26.6 0.64 28.9

16 0.86 0.70 18.6 0.63 26.7

17 0.90 0.66 26.7 0.61 32.2

19 0.91 0.66 27.5 0.64 29.7

20 0.94 0.69 26.6 0.67 28.7
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values at the urban stations can be regarded as the result of all natural

processes produced by the urbanization during the day as analyzed in section 3.

� Maximum daily values of global solar radiation, (Ig, in MJ/m2), measured at the

radiometric station of the National Observatory of Athens (NOA, station

numbered 1): The measured values of global solar radiation at station 1 are used

as representative of short-wave solar radiation and sunshine.

� Daytime values of reference air temperature, (Tref, in �C), measured at the reference

station at the time when the DTmax,d is observed: The daytime reference

temperatures represent the energy balance at the reference station, which is

regarded as representative of the surrounding countryside climatic conditions.

Training is performed using daily values of the input parameters for the same

time period as in section 3. The estimated results are compared with the measured

daytime heat island intensity values at each station. From the comparison it is

observed that the estimated values perform well with the measured ones. Twelve

randomly selected stations (numbers 1, 5, 7, 8, 9, 10, 11, 12, 14, 15, 18, 20), are used

for the presentation of the training results (Fig. 7). As shown, there is a good

agreement between the measured and estimated values. Similar agreement is

observed for the whole set of the twenty-two stations. The correlation coefficients

fluctuated between 0.85 to 0.97 while the mean square errors varied 0.1 �C to 0.3 �C.
The urban stations, which are characterized by heavy traffic, increased air pollution,

and buildings’ density, present the better estimations. In these stations (numbers 3, 7,

9, 11, 12, 13, 15, 18, 20, 21, 23) the correlation coefficient fluctuated between 0.90 to

0.97. For the remaining stations, which are influenced by several topographic and

synoptic conditions such as local flows like the sea breeze of Saronikos gulf (numbers

6, and 10), katabatic flows from the mountains (numbers 1, 5 and 8), high vegetation

(numbers 14, 16, 19 and 22), low traffic and building density (numbers 4 and 17), the

correlation coefficients varied between 0.83 to 0.92.

The temporal variation of the estimated and measured daytime heat island

intensity for four cases of fifteen continual days of the training period (August 1996),

and for four randomly selected stations (numbers 8, 10, 12, 23) is shown in Figure 8.

The summer period over the Athens area is dominated by anticyclonic circulation in

the lower troposphere, consistent with the increase of the anticyclonic tracks and the

corresponding decrease of cyclonic tracks over the central and eastern Mediterranean

(MAKROGIANNIS and GILES, 1980). This weather situation favors strongly the

increase of diurnal heat island intensity, which as shown in Figure 8 is significantly

high especially for station 12, where it rises to 15.4 �C. Station 12 is regarded as the

most representative of strong urban conditions. Moreover, from this figure, it can be

seen that the estimated values perform well on the measured data. Similar

performance is observed for the whole set of training data.

Furthermore, and in order to check the accuracy of the neural network

estimations, the measurements of the testing set of data, which remain the same as in

section 3, are compared with the neural estimations. Figure 9 illustrates the
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comparison between the estimated and measured values of the testing set of data for

six randomly selected stations (numbers 7, 8, 12, 15, 18, 20). The results validate the

good agreement for the entire set of the twenty-two stations. The correlation

coefficients fluctuated between 0.80 to 0.94 while the mean square errors varied in the

range of 0.2 �C to 0.4 �C.

4.2. Results and Discussion

The heat island intensity is not a constant condition. It shows both periodic and

non-periodic fluctuations depending on weather conditions as well as on topographic

and topoclimatic complexities and synoptic flow patterns. Table 3 shows the mean

seasonal heat island intensity at daytime for the twenty-two stations and for a two-

year time period (1996–1997), using station 2 as reference station. As shown, the

mean seasonal daytime heat island intensity values for the seven central stations are

reported as follows: 7.5 �C for summer, 5.1 �C for autumn, 3.7 �C for winter, and

Figure 7

Comparison of the measured with the neural network estimated maximum daytime heat island intensity

values for the training set of data and for twelve randomly selected experimental stations.
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4.6 �C for spring. Accordingly, the mean seasonal values for the fifteen urban

stations around Athens are: 5.4 �C for summer, 3.2 �C for autumn, 2.1 �C for winter,

and 3.1 �C for spring.

The impact of the three main input climatic parameters on the fluctuation of the

heat island intensity during daytime is further investigated. Therefore, one parameter

is used as input to the neural models at each time for ten randomly selected stations

and for the same time period. The models’ results are presented in Table 4, which

presents the correlation coefficients between the measured and estimated daytime

heat island intensity values. The results are analyzed as follows:

� The correlation coefficient, (k4), is used for the presentation of results when the

three parameters, (Tair, Ig, and Tref), are used as inputs to the neural network

models.

� The correlation coefficient, (k5), is used for the presentation of results when the

daytime values of ambient air temperature, (Tair), are the only input parameter.

Figure 8

Temporal variation of the estimated and measured maximum daytime heat island intensity values for

fifteen continual days of the training period and for four randomly selected experimental stations.
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Figure 9

Comparison of the measured with the neural network estimated maximum daytime heat island intensity

values for the testing set of data and for six randomly selected experimental stations.

Table 3

Mean seasonal heat island intensity at daytime for the twenty-two stations and for two-year time period

(1996–1997), using station 2 as rural station.

Station DDTmax for

Summer (�C)
DDTmax for

Autumn (�C)
DDTmax for

Winter (�C)
DDTmax for

Spring (�C)

1 5.2 3.4 2.6 3.6

3 6.3 4.2 2.9 4.7

4 5.9 3.4 1.9 3.1

5 6.6 3.7 2.2 2.8

6 3.2 2.4 1.1 2.0

7 8.2 5.1 4.9 5.7

8 5.2 2.8 1.6 3.3

9 7.9 3.8 2.8 4.3

10 8.3 4.4 2.8 5.2

11 5.2 3.5 3.1 3.0

12 9.7 7.2 5.9 6.1

13 8.6 6.1 5.2 5.9

14 7.1 5.3 3.9 4.9

15 8.2 5.9 1.9 5.0

16 2.6 1.1 0.8 1.7

17 6.6 4.2 2.7 3.1

18 5.6 3.8 2.2 3.4

19 1.5 0.7 0.4 0.8

20 7.2 4.8 3.1 4.3

21 3.9 2.7 1.8 2.5

22 5.2 3.3 2.1 2.2

23 4.8 2.6 1.9 2.5
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� The correlation coefficient, (k6), is used for the presentation of results when global

solar radiation, (Ig), is the only input parameter.

� The correlation coefficient, (k7), is used for the presentation of results when

reference temperature (Tref) is the only input parameter.

All correlation coefficients are calculated on the training set of data. As can be

seen from Table 4, the use of the three input parameters improves significantly the

correlation between the measured and estimated values. This can be explained by the

fact that the neural model is enriched by a multitude of input parameters describing

both urban and rural climatic conditions and representing the most significant energy

balance processes which govern the creation of the heat island phenomenon.

However, the use of one parameter as input to the models results in a remarkable

reduction of the correlation coefficient which can be described as follows:

� For the use of daytime ambient air temperature as a single input parameter

representing the prevailing climatic conditions at each urban station, the reduction

of correlation coefficient varied between 24 and 31%.

� For the use of global solar radiation as a single input parameter representing the

highest part of the incoming energy at daytime, the reduction of correlation

coefficient varied between 37 and 42%.

� For the use of reference temperature as a single input parameter, which is the result

of the prevailing climatic conditions at the reference station, the correlation

coefficient decrease fluctuated between 33 and 39%.

The above results demonstrate that the agreement between estimated and

measured values of the daytime heat island intensity is significantly better when the

daytime air temperature at each urban station is used as the unique input to neural

models. This can be explained by the fact that heat island intensity at each urban

station is mainly dominated by the thermal balance processes developed at each

Table 4

Correlation coefficients between the measured and neural networks estimated daytime heat island intensity

values for the four considered cases of the three parameters, (Tair, Ig, and Tref), used as inputs to the neural

network models (k4), of Tair as the only input parameter (k5), of global solar radiation, (Ig), as the only input

parameter (k6) and of Tref as the only input parameter (k7)

Station k4 k5 (%)

Reduction

k6 (%)

Reduction

k7 (%)

Reduction

1 0.89 0.61 31.5 0.52 41.6 0.55 38.2

7 0.96 0.69 28.1 0.60 37.5 0.63 34.4

8 0.94 0.69 26.6 0.59 37.2 0.57 39.4

10 0.88 0.65 26.1 0.53 39.8 0.59 33.0

11 0.90 0.68 24.4 0.54 40.0 0.60 33.3

12 0.95 0.68 28.4 0.56 41.1 0.59 37.9

14 0.95 0.70 26.3 0.55 42.1 0.62 34.7

15 0.92 0.66 28.3 0.55 40.2 0.61 33.7

18 0.89 0.64 28.1 0.52 41.6 0.56 37.1

23 0.85 0.61 28.2 0.49 42.4 0.53 37.6
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station. The daytime temperature measured at the urban locations is the result of

various candidate causes, analytically described in the previous section, considered

responsible for the relative warmth of the air of cities. For this reason Tair is the

most crucial input parameter. Tref expresses the thermal balance status at the

reference station and has a significant impact on the heat island estimation as it is

the result of a number of energy and climatic factors prevailing at the reference

station area. Finally, global solar radiation is shown from the present research as

the less powerful from the three input parameters. This can be expected as Tair and

Tref are the results of all climatic factors including the short-wave solar radiation

which partly causes the heat island phenomenon. Moreover, the values of global

solar radiation are those measured at the station numbered 1 surface and are used

for all stations. This is not thoroughly accurate as the amount of the arriving short-

wave radiation at the surface of each station depends on urban atmospheric

conditions (pollution).

5. Conclusions

The nighttime and daytime values of urban heat island intensity in twenty-three

stations located in the Athens’ major area and for a two-year time period, were

estimated using neural network systems.

For the nighttime estimations, two climatic parameters were used as inputs to the

models: the maximum daily air temperature measured at each urban station and a

reference temperature measured at the considered surrounding countryside station.

The simulated results can be outlined as follows:

1. The use of daily maximum air temperature measured at each urban station as a

single input parameter to the neural models produced a decrease of the correlation

coefficient which fluctuated between 18 and 27%.

2. The use of reference temperature as the only input to the neural models resulted in

a higher reduction of correlation coefficient between measured and estimated

values which varied between 24 and 35%.

3. The observed agreement between estimated nighttime heat island intensity and

measured ones is quite good for both training and testing sets of measurement.

As regards the daytime estimations, the three climatic parameters used as inputs

to the models were: The daytime air temperature measured at each urban station, the

global solar radiation and the reference temperature measured at the reference

station. The results can be summarized as follows:

1. The daytime air temperature as a single input parameter caused a reduction of

correlation coefficient with varied between 24 and 31%.

2. The global solar radiation, as the only input parameter, created a significant

decrease of the correlation coefficient between measured and estimated values

which have risen up to 42%.
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3. The reference temperature as a single input parameter produced a reduction of the

correlation coefficient which fluctuated between 33 and 39%.

4. The estimated diurnal heat island intensity values perform well with the measured

ones for both training and testing sets of measurement.

Therefore, for the nighttime and daytime estimations, the urban air temperature,

representing the energy balance processes at each station, is the predominant input

parameter, thus emphasizing the importance of the urban climatic conditions on the

heat island phenomenon. The heat island intensity is a meteorological element

dependent on the background climate and the prevailing synoptic scale meteorolog-

ical conditions, the effects of the local landscape and the effects of local urbanization.
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