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Abstract—Ground Surface Temperature (GST) history in Poland was derived from the inversion of

temperature-depth profiles in over 20 wells. Temperature histories for the period 1500 A.D. through 1977

A.D. agree well with the instrumental record of the surface-air temperature available for the last two

centuries. A statistical correlation of the reconstructed histories (from the well temperature data) with the

instrumental record (air temperature) from the homogeneous Warsaw series is high (>0.8). Functional

space inversion (FSI) of the temperature data with depth shows that beginning in the early 19th century,

temperatures warmed by 0.9 ± 0.1�C following a long period of colder climate before. The last number

could be a minimal as higher warming was calculated using a simple model based on surface temperature

for the observational period (homogenized Warsaw surface temperature series, LORENC, 2000) and POM

(pre-observational mean; HARRIS and CHAPMAN, 1998) of )1.53oC below the 1951–1980 mean temperature

level.
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1. Introduction

The climatic history in Poland for the preinstrumental period (meteorological

observations in a form of time series) has been reconstructed mainly from proxy

data, derived from geological, pedological, botanical, zoological, archeological, and

historical data (MARUSZCZAK, 1988, 1991; RALSKA-JASIEWICZOWA and STARKEL,

1991; RALSKA-JASIEWICZOWA et al., 1998; NIEWIAROWSKI, 1999). During the last few

decades research has focused on the dendroclimatological data (FELIKSIK, 1972,

1990; BEDNARZ, 1976, 1984; FRITTS, 1976; ZIELSKI, 1997; BRIFFA, 2000; BRIFFA and

JONES, 2000; WóJCIK et al., 2000) which uses tree growth history.
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The first direct use of geothermal profiles in thermally stabilized wells to

reconstruct climatic histories was proposed by CERMÁK (1971) and LACHENBRUCH

and MARSHALL (1986). Further sophistication of the inversion techniques (SHEN and

BECK, 1991; SHEN et al., 1995) lead to many regional and worldwide reconstructions

of ground-surface temperature change (HUANG et al., 2000; POLLACK and HUANG,

2000).

Inversions of temperature profiles in wells allow reconstruction of the Ground

Surface Temperature (GST) history. While the time resolution of the method is less

than that of proxy methods like tree-ring measurements, direct temperature

inversions have the ability to determine the physical magnitude of the last warming

event and of the preceding long-term level. Comprehensive analysis of the Polish

temperature profiles and their interpretation in terms of climatic change reconstruc-

tions has been described in the Polish literature (MAJOROWICZ et al., 2001). Such

studies were previously done in neighboring countries of the Czech Republic, the

Slovak Republic and Belarus (ŠAFANDA et al., 1997; ZUI, 1999). Tree-ring data were

also taken into consideration in Poland; however these high resolution histories are

related to several factors besides the air temperature. These include precipitation and

pollution (WóJCIK et al., 1999, 2000; PRZYBYLAK et al., 2001). Therefore, other

methods like geothermal measurements are needed to determine the physical

magnitude of warming and preceding temperature levels.

In recent years long time series of mean Surface-Air Temperature (SAT) starting

in Poland as early as the late 18th century have been homogenized (e.g., changes in

station location, time of observation, thermometers or changes in formulas used for

calculation of daily, monthly, annual etc. mean values of surface temperature were

corrected for), (LORENC, 2000). These and geothermal logs in wells give us an

opportunity to compare over 200 years of time series and GST histories derived from

the inversions of the temperature logs.

2. Methodology

GST histories were obtained by applying the Functional Space Inversion (FSI)

technique (SHEN and BECK, 1991; SHEN et al., 1995). The FSI technique allows for

uncertainties for both the measured temperatures and the thermo-physical param-

eters to be incorporated into the model in the form of a priori standard deviations.

Due to the complexity of the problem, this technique, as well as all other available

techniques, assumes that heat transfer is by conduction alone through a one-

dimensional, possibly heterogeneous medium. This assumption excludes the advec-

tive component of heat transfer due to subsurface fluids or convective disturbances

within the fluid-filled borehole, as well as lateral heterogeneity in thermal conduc-

tivity and uneven surface relief (SHEN et al., 1995). The reconstruction of the GST

history for time interval [t0, t1] from the subsurface temperature profile T(z, t1)
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measured between the surface and depth zb at time t1 assumes that the perturbations

in T(z, t) caused by the GST variation before time t0 cannot be distinguished from the

steady-state field within the depth interval [0, zb] at time t1, when the subsurface

temperature is measured. This assumption can be met by considering t0 being

sufficiently distant from t1.

The assumption of heat transfer by conduction is only well justified in areas with

negligible vertical movement of the underground water. The key issue in

interpretation of the GST histories in terms of long-term climatic variability is the

long-term relationship between the ground surface and SATs. The general belief is

that, at long time scales, mean annual GSTs track the mean annual SATs taken at

screen height (1.5–2.0 m above the surface of the ground). However, at the inter-

annual scale, the magnitude of the difference between the mean annual GSTs and

SATs at a given site varies according to the number of days with snow cover or the

content of soil moisture at the beginning of the freezing season.

The extraction of a signal from the measured T-z profile is impeded by the

presence of noise. As shown by SHEN et al. (1995), the noise in this system derives

from errors in the measurements of temperatures, depths and thermophysical

properties of the earth’s materials, as well as ‘‘representational’’ errors, such as

departures of the mathematical representation of the problem (one-dimensional heat

conduction) from the real world. Numerical experiments (SHEN et al., 1995) with

synthetic T-z profiles containing both the climatic signals over the last millennium,

based on tree-ring data, and the types of noise mentioned above showed that the

inverted GST history is most sensitive to two parameters of the inversion, namely to

constraints (standard deviation-SD) on a priori thermal conductivity model and

measured temperature data. The final choice of these two parameters must be a

compromise between the suppression of the artifacts of noise, which can be achieved

by choosing large SDs, and the recovery of the details of the GST history, which

requires small a priori SDs.

Estimates of average conductivity based on lithology and measured rock samples

were used because of the lack of rock chip samples and therefore a lack of direct

conductivity data. Average conductivity values for the main rock types were based

on hundreds of measurements on available cores from other deep wells in Poland

(MAJOROWICZ and PLEWA, 1979). The temperature profiles were subjected to a

‘‘loose’’ inversion, in which the desired GST signal is attenuated, to ensure that the

noise is not amplified. This suppression of noise was achieved by increasing the SD of

the a priori thermal conductivity model and the SD of the measured temperatures.

For this study, a priori conductivity and temperature SD are 0.5 WÆm)1 K)1 and 0.1–

0.2�C, respectively. These values are close to those suggested by SHEN et al. (1995) as

a reasonable compromise in inverting realistic synthetic profiles.

The null hypothesis for the inversion was conservatively framed, and assumes no

climate changes prior to data acquisition. The statistical properties of the GST

variations were constrained by a priori SDs, which increase linearly from 0.5�C at
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year 1000 to 2.0�C at year 1990, and by the characteristic time of correlation

decreasing linearly from 500 years to 100 years since the year 1000 to the year 1990

(SHEN et al., 1995). The a priori model assumes that the estimated thermal

conductivity of most clastics varies between 1.8–2.3 WÆm)1 K)1 (±0.5W/m K),

diffusivity is 1.0 *10)6m2s)1 which is typical of diffusivity values assumed for rocks of

Canada (JESSOP, 1990), Scandinavia (KUKKONEN et al., 1998) and Bohemia (Šafanda

et al., 1997).

SHEN et al. (1995) and MAJOROWICZ and ŠAFANDA (1998) have shown that there

is a risk of misinterpreting the GST history by inversion of single logs with tight

constraints on the borehole data. Large a priori SDs for conductivity and

temperature in a simultaneous inversion were therefore used as an attempt to

reasonably characterize GST history for such a large region.

3. Temperature Logs

There are two sources of temperature logs in wells in Poland (well location is

shown in Fig 1). Temperature logs from the 12 wells in southwestern Poland were

measured using portable logging equipment with a thermistor probe calibrated to

approximately 0.01�C (relative change) and 0.03�C absolute accuracy. The wells were

drilled between 1970 and the 1980s and have been left undisturbed by any drilling
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Figure 1

Location map of the boreholes with temperature logs in Poland used in this study (triangles) and of the

meteorological station in Warsaw (square).
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operations since that time. Measurements were made in 1996 in the upper few

hundred meters in vertical wells. The tendency for the wells to slant relative to the

vertical is common for deep wells but was not a problem in the data used. Some of

the temperature profiles show evidence of abrupt changes in temperature gradient

such as in wells Waliszów, Długopole, top part of Pełczyn, Wołczyn, Wybłyszczów,

Ptakowice, Olesnica, and Janików (Fig 2). These can be a result of water flow or

thermal conductivity change. Logs with evidence of water disturbance are readily

apparent and were rejected from further analysis. Abrupt changes in the geothermal
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Figure 2

High precision temperature log for south-western Poland. a. Lubrza,17o38’40’’E,50o20’30’’N; Wolczyn,

18o02’57’’E,51o01’36’’N;Wyblyszczów,17o53’00’’E,50o33’40’’N., b. Dlugopole,16o38’45’’E,50o15’43’’N;

Pelczyn, 16o41’05’’E,51o23’52’’N; Waliszów,16o42’35’’E,50o18’25’’N., c. Grodziec,17o41’22’’E,

50o38’’14’’N; Janików, 17o22’45’’E,50o58’20’’; Ptakowice,17o33’00’’E,50o44’40’’N; d. Oleśnica,

17o22’33’’, 51o12’56’’
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gradient usually result from input of water behind the casing. Water seepage (either

upward or downward) can cause heat flow disturbance in porous and permeable

strata. The effect upon the vertical component of heat flow is only significant in the

case of large differences in topography and related hydraulic head changes. Such

examples are well recognized and described by JESSOP (1990). Water velocities along

the bedding of the formations are commonly less than 10)2 m/year. The vertical

component of such flow is usually 10–100 times lower. We therefore estimate that the

change in heat flow is smaller than the errors due to temperature gradient accuracy

and that changes in conductivity are the main reason for changes in thermal gradient.

Many cases of heat flow variation with depth cannot be explained due to the lack of

core samples and inferior knowledge of the conductivity. Wells from sedimentary

basins of the Polish Lowland are located mostly in the flat areas. Wells in the higher

topographic relief regions of the Sudetian region are therefore more vulnerable than

wells from flatlands of the Polish Lowland. The small diameter of the wells relative to

their length disallows any convection in the well bore significant enough to disturb

the thermal regime (JESSOP, 1990).

The other temperature logs are continuous logs in a depth range from the static

water level to the bottom of the well. These were selected from numerous wells across

Poland. The lack of thermal equilibrium of the well was the main problem in depicted

well logs. Temperature was measured with resistor thermometers calibrated to an

accuracy of 0.1oC and some noise due to this factor can be seen in some of our data

(Fig 3). We have rejected temperature logs for which predicted near-surface

temperature is significantly different from the observational long-term mean ground

temperature. In many wells in Poland temperature profiles show much higher

temperature in the upper parts of the profiles than expected due to disequilibrium

conditions — remaining from drilling process. Such temperature logs were rejected.

We found only 11 wells which appeared to be in thermal equilibrium (Fig 3).

4. Geothermal Anomalies and Inversion

The majority of the Polish wells show significant positive anomalies of

temperature with depth. These anomalies are interpreted as a result of ground

warming over the last two centuries. An example of such anomalies with depth is

shown in Figs 4 and 5. Figure 4 also shows evidence of an abrupt change in

temperature anomaly over a short depth interval and is likely a result of water flow

disturbance.

An earlier GST history (MAJOROWICZ et al., 2001) was based on the upper

parts of the profiles above the abrupt thermal gradient changes. The upper 95 m

in Długopole, 115 m in Janików, 189 m in Lubrza, 115 m in Pełczyn, 200 m in

Ptakowice, 115 m in Oleśnica, 290 m in Waliszów, 75 m in Wołczyn, and 135 m in

Wybłyszczów (Fig 2) were used and showed 1oC warming in the 20th century
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Figure 3

Selected geothermal profiles in the Polish boreholes effected with a continuous well logging technique

which indicate: (a) Large climatic warming signal in the boreholes: 1—Lubawka (50o41’47’’N,

16o01’17’’E), 2—Marianka (54o04’36’’N, 19o38’32’’E, 3—Narejki (53o07’10’’N, 23o50’50’’E), 4—Rajsk

(52o50’40’’N, 23o08’52’’E), 5—Boguszyn (50o27’58’’N, 16o42’15’’E). (b) Small climatic warming signals in

the boreholes: 1—Laka (50�00’00’’N,18�30’’00’’E), 2—Narol (50�23’06’’N, 23o15’51’’E), 3—Ptaszkowo

(54o26’45’’N,19o 37’23’’E), 4—Grabowiec 2 (50o52’54’’N, 23o36’05’’E), 5—Grabowiec 4 (50o47’42’’N,

23o40’43’’E), 6—Dêbowiec (49o 49’30’’N, 18o46’23’’E).
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(Fig 6b). The misfit of these GST histories with the homogeneous surface

temperature time series is shown in Fig 6b and it can be due to too short sections

of the high precision profiles used in the inversion.

New GST histories shown here are based on the FSI simultaneous inversions of

deep (>450 m) temperature profiles obtained from continuous logs (Fig 6b) and

inversion of the deepest high precision temperature well in Grodziec (Fig 6a). GST

histories from a group of wells showing a high warming signal (Fig 3a) and from well

Grodziec (Fig 2) show very good (>0.8) statistical correlation with the homogenized

SAT time series (Figs. 6a,b). The magnitude of warming for the 19–20th century is

0.9 ± 0.1oC. This warming period is preceded by a colder period. The last number

could be a minimal warming as higher warming magnitude was calculated using a

simple model based on surface temperature for the observational period (homog-

enized Warsaw series, LORENC, 2000) and POM (pre-observational mean; HARRIS

and CHAPMAN, 1998) of )1.53oC below the 1951–1980 mean temperature level

(Fig 5).
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Example of the residual temperature anomaly due to surface warming and possible water movement (at a

depth of 120 m).
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5. Discussion

The relatively high noise levels of GST histories that are common from inversions

of temperature logs can be due to many reasons, including poor knowledge of the

conductivity variations, limited accuracy of the temperature logs, possible water

percolation influence, variations in moisture, snow cover and the anthropogenic

changes to the land surface between sites. Changes due to land surface changes are

important factors which are supported by the results of monthly and yearly averages

of the ground temperature time series in the 1–50 cm subsurface depth range done in

Rezerwat Piwnicki in central Poland. Measurements made in old forest (200 years

old), in the open grass area and in the area with depleted vegetation show large

differences in the long-term temperature averages. Mean annual temperatures in the

forest were found to be some 0.5oC lower than in the grass areas and some 1.2oC

lower than in the area with depleted vegetation (MAJOROWICZ et al., 2001). The effect

of deforestation as well as the effect of vegetation depletion (from grass to bare land)

influences (step-like) GST history. We can see such effects from the interpretation of
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Figure 5

Calculated residual temperature for each log shown in Figure 3 based on fits to the temperature profiles

below a depth of 250 m. Average residual is shown (1). Curve 2 is based on the model of surface

temperature for the observational period (homogenized Warsaw series, LORENC, 2000) and POM (pre-

observational mean; HARRIS and CHAPMAN, 1998) of )1.53oC below the 1951–1980 mean temperature

level. RMS misfit between curves of 72 mK is lower than the measuring error of the continuous

temperature log used.
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Figure 6

Reconstruction of ground surface temperature history. a. Derived from the continuous temperature

profiles from wells deeper than 450 m. Curve 1 — reconstruction from the continuous temperature logs

which indicate high ground surface temperature warming (shown in Fig 3a) , curve 2 — average based on

all wells shown in Figs 3 a,b, curve 3 — homogeneous air temperature series from Warsaw (11–year

running average) (LORENC, 2000). b. Curves 1 and 2 — reconstructions based on the upper portions of

precision temperature profiles above the region of abrupt thermal gradient changes for the high and low

assumed error of the a priori conductivity model, curve 3 — reconstruction based on the entire depth of

temperature profile in well Grodziec , curve 4 — homogeneous air temperature series from Warsaw

(11–year running average) (LORENC, 2000).
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geothermal profiles from wells in Canada (MAJOROWICZ, 1996; MAJOROWICZ and

ŠAFANDA, 2001). These show considerably higher GST warming magnitudes than the

instrumental and proxy histories (OVERPECK et al., 1997). GST histories from Poland

signify a remarkable correlation between GST histories derived from well temper-

atures and the homogenized time series of SAT (Fig 6). Variations of GST are equal

to or less than SAT variations which means that land surface changes are not a factor

in Polish wells unlike some areas in North America (SKINNER and MAJOROWICZ,

1999). It is likely related to a difference in time of deforestation which in Poland was

much older (starting in the mid-ages) than for example in western Canada

(MAJOROWICZ, 1996).
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