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Abstract—A new and simple method based on a nonlinearly mathematical optimization concept has

been proposed in this research to interpret magnetic anomalies due to vertical faults and thin dikes. This

proposed interpretative method consists of three main steps. The first step is to formulate nonlinearly

constrained optimization problems to describe the geophysical problems related to the studied structures.

The second step is to suggest an interior penalty function in order to convert these nonlinearly constrained

optimization problems into nonlinearly unconstrained optimization ones. The third step is to solve the

converted nonlinearly unconstrained optimization problems by using the famous Hooke and Jeeves’s

algorithm in order to estimate the geophysical parameters of the studied structures such as: depth,

amplitude coefficient, and index parameter. The Hooke and Jeeves’s algorithm is purposely chosen for

being robust and also its application to magnetic data converges rapidly towards the optimal estimation of

parameters. This method was first tested on theoretical models with different random noise, where a very

close agreement was obtained between the assumed and evaluated parameters.

The validity of this new method was also tested on practical field examples taken from Australia, India,

United States, and Brazil, where available magnetic data existed and was previously analyzed by different

interpretative methods. The agreement between the results obtained by our developed method and those

obtained by the other geophysical methods is good. The advantages of this newly proposed method,

compared with the other published interpretative methods, also have been discussed and demonstrated.

Key words: Magnetic anomalies, mathematical optimization, penalty function, geomagnetic interpre-

tation.

Introduction

Several methods have been developed for interpreting magnetic anomalies (total,

vertical, or horizontal) caused by vertical faults and thin dikes’ structures, in an

attempt to estimate the depth, index parameter, and the amplitude coefficient of

igneous rocks in the form of dikes and faults. An excellent review is given by

NETTLETON (1976) and BLAKELY (1994). The methods include, for example,

matching standardized curves (PARKAR, 1963), characteristic points and distance

approaches (GRANT and WEST, 1965; ABDELRAHMAN, 1994), monograms (PRAKASA

et al., 1986), Hilbert transforms (MOHAN et al., 1982), Fourier transform techniques

(BHATTACHARYA, 1965), correlation factors between successive least-squares residual
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anomalies (ABDELRAHMAN and SHARAFELDIN, 1996), and least-squares minimization

methods (SILVA, 1989).

In the present paper, a new technique based on a nonlinearly mathematical

concept is developed in order to interpret magnetic anomalies due to vertical faults

and thin dikes-like structures. This new method consists of three main steps:

1. The geophysical problem related to the studied structures is first described by

formulating a nonlinearly constrained minimization problem (NCMP).

2. This (NCMP) is secondly converted into nonlinearly unconstrained minimization

problem (UNCMP), by introducing an interior penalty function, which is

originally proposed in this research work.

3. The (UNCMP) is thirdly solved by the very famous Hook and Jeeves’s algorithm,

known for minimizing the numerical function of several real variables.

The obtained solution of the (UNCMP) includes the geophysical parameters of the

studied structures such as: depth, amplitude coefficient, and index parameter.

Two structural cases have been treated and interpreted by this newly proposed

method:

The first case is the interpretation of magnetic anomalies due to vertical faults.

The validity of this method is tested on synthetic examples with different random

noise of 2% and 4% and through practical field examples taken from Australia and

India.

The second case is the interpretation of magnetic anomalies due to thin dikes.

Our new method, in this case, is also tested on synthetic examples with different

random error of 2% and 4% and on practical field examples taken from the United

States and Brazil.

Hooke and Jeeves’s Algorithm

HOOKE and JEEVES’s algorithm (1961) is one of the most widely known methods

for minimizing a numerical function of several real variables on the real space Rn. We

will now illustrate in brief the algorithm for solving the following multi-variables

unconstrained problem:

Minimize f ðxÞ
Subject to x 2 Rn;

where the numerical function f ðxÞ is called the objective function of the problem and

the real variables x ¼ ðx1; . . . ; xnÞ 2 Rn are also called decision variables.

The method of Hooke and Jeeves is based on the idea of determining search

directions on the basis of information gained at successive points during the iteration.

This method uses a cycle with two components, an exploratory phase and a pattern

move. In the exploratory phase the algorithm starts at a point xðiÞ and it explores the

possibility of a better point for the objective function by moving a fixed step h along
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directions parallel to the coordinate axis. When a better point xðiþ1Þ is found in this

phase, a pattern move of the same fixed distance h is made along the direction

xðiþ1Þ � xðiÞ to the new point xðiþ2Þ and the cycle is repeated. The method uses for each

move a fixed step rather than a line search.

This algorithm, which can be easily coded, has a good robustness, and it also does

not require differentiation of the objective function with respect to the decision

variables. For more details about this algorithm, the reader is invited to see one of

the following excellent references: HOOKE and JEEVES (1961), NASH (1990), and

PHILLIPS et al. (1976). The appendix explains in more detail the steps of this

algorithm and provides the readers with sufficient information to allow implemen-

tation and coding of this algorithm.

Geophysical Problem Formulation Due to Vertical Faults Model

The general expression of the total, vertical and horizontal field components of

the magnetic anomaly due to a vertical fault is formulated using the following

notations: The edge of the vertical fault (Fig. 1) is at a depth of z units directly below

the origin (0) and extends to a depth of zb units (in the z direction). The fault extends

to infinity in the strike direction (along �y to þy axis) and along the positive x. The

strike f is the clock-wise angle from the magnetic north to the positive y axis. d is the

dip of the sides of the faulted block measured from the horizontal. k is the magnetic

susceptibility contrast between the faulted block and its surroundings. r1 and r2 are

the distances between the point of observation P(x) and the upper and lower edges of

the faulted block, respectively. w1 and w2 are the angles made by the vertical with the

lines joining the point of observation and the upper and lower edges of the faulted

block, respectively.
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Figure 1

Cross-sectional view of a two-dimensional vertical fault model with the notation used.
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The magnetic anomalies of the vertical (DZ) and horizontal (DH 0) intensity over a

vertical fault are given by ATCHUTA RAO and RAM BABU (1983) as follows:

DZ ¼ 2kT 00 cos d cosðI 00 � dÞLn sinw1

sinw2

þ sinðI 00 � dÞðw1 � w2Þ
� �

ð1Þ

and

DH 0 ¼ 2kT 00 cos d sinðI 00 � dÞLn sinw1

sinw2

� cosðI 00 � dÞðw1 � w2Þ
� �

: ð2Þ

T 00 and I 00 are the values of the effective total intensity and effective inclination,

respectively, in the vertical plane perpendicular to the strike of the vertical fault. T 00
and I 00 are related to T0 (true total intensity) and I0 (true inclination) as follows:

I 00 ¼ tan�1
tan I0
sin f

ð3Þ

and

T 00 ¼ T0
sin I0
sin I 00

; ð4Þ

DH , the commonly measured component of horizontal intensity in the direction of

the magnetic north is obtained using the relation:

DH ¼ DH 0 sin f: ð5Þ

The total intensity anomaly (DT ) in the direction of the undisturbed field is calculated

from DZ and DH using the relation:

DT ¼ DZ sin I0 þ DH cos I0: ð6Þ

Equation (6) may also be written as (GAY, 1965)

DT ¼ sin I0
sin I 00

½DZ sin I 00 þ DH 0 cos I 00�: ð7Þ

From equations (1), (2) and (7) the equation for the total field anomaly (DT ) may be

written as:

DT ¼ 2kT 00 cos d
sin I0
sin I 00

sinð2I 00 � dÞLn sinw1

sinw2

� cosð2I 00 � dÞðw1 � w2Þ
� �

: ð8Þ

Equations (1), (2) and (8) are similar in form and the expressions for DZ, DH and DT
may be rewritten in the following fashion:

DZ ¼ 2kT 00 cos d cosðI 00 � dÞLn sinw1

sinw2

þ sinðI 00 � dÞðw1 � w2Þ
� �

; ð9Þ
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DH ¼ 2kT 00 cos d sin f cosðI 00 � d� 90ÞLn sinw1

sinw2

þ sinðI 00 � d� 90Þðw1 � w2Þ
� �

: ð10Þ

and

DT ¼ 2kT 00 cos d
sin I0
sin I 00

cosð2I 00 � d� 90ÞLn sinw1

sinw2

þ sinð2I 00 � d� 90Þðw1 � w2Þ
� �

:

ð11Þ

Now we see that the above three equations are similar and can be presented as a

general equation of the form

DF ¼ CF cos hF
1

R
Ln

sinw1

sinw2

� �
þ sin hF

w1 � w2

R

� �� �
; ð12Þ

where DF is the anomaly in the corresponding component of the magnetic field, CF is

the amplitude coefficient which is a function of all variables except dip, hF is the index

parameter which is related to the effective inclination of polarization I 00 and the angle

of the dip d, and R is the thickness parameter defined as

R ¼ zb � z
z

: ð13Þ

Since the range of the angle d is from 00 to þ900 and the angle I 00 is from �90� to
þ90�, then the range of the angle hF is from �270� to 90� (ATCHUTA RAO and RAM

BABU, 1983).

The equivalents of CF and hF are given in Table 1 for the three components of

DF .
From equation (12) it may be observed that the shape of the magnetic anomaly

for a vertical fault depends only on hF , the index parameter, which is a function of

the strike and dip of the faulted block and the inclination of the inducing vector. The

amplitude of the anomaly depends on the coefficient CF , which is a function of all the

variables except dip.

Our proposed method depends mainly on equation (12), knowing that tgw1 ¼ x
z

and tgw2 ¼ x
zb
(Fig. 1), then the general equation describing the vertical faults model

becomes as follows:

Table 1

Characteristics amplitude coefficient of CF and index parameter in total DT , vertical DZ, and horizontal DH
magnetic anomalies due to faulted structure (ATCHUTA RAO and RAM BABU, 1983)

Anomaly in DF Amplitude coefficient CF Index parameter hF

DT Total field 2kT 00
t
z
sin I0
sin I 0

0
2I 00 � d� 90

DZ Vertical field 2kT 00
t
z I 00 � d

DH Horizontal field 2kT 00
t
z sin f I 00 � d� 90
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DF ðx; z; zb;CF ; hF Þ ¼ CF
z

zb � z
cos hF Ln sin arctg

x
z

��� ���� Ln sin arctg
x
zb

����
����

� ��

þ sin hF arctg
x
z
� arctg

x
zb

� ��
ð14Þ

The evaluation of the parameters ðz; zb;CF ; hF Þ could be obtained by solving the

following nonlinearly constrained minimization problem:

Minimize
Xi¼N

i¼1
½LðxiÞ � DF ðxi; z; zb;CF ; hF Þ�2

Subject to z � zb

� 270� � hF � 90�

z; zb � 0

�1 < CF < þ1; ðNCMP Þ

where LðxiÞði ¼ 1; . . . ;NÞ are the observed values of the magnetic anomaly at the

points xiði ¼ 1; . . . ;NÞ. This problem is very difficult to solve in the domain of convex

nonlinearly constrained programming because the feasible region of (NCMP)

X ¼ ðz; zb; hF ;CF Þ 2 R4=z � zb;�270� � hF � 90�; ðz; zbÞ � 0
�

;

and �1 < CF < þ1g

is not bounded in the real space R4. To avoid this mentioned difficulty the (NCMP) is

converted into an unconstrained nonlinearly minimization problem by introducing

the following interior penalty function, considering both the objective function and

constraints of the studied problem.

/ðxi;z;zb;hF ;CF Þ¼
Xi¼N

i¼1
½LðxiÞ�DF ðxi;z;zb;hF ;CF Þ�2� r�½Ln zþLn zbþLnðzb� zÞ

þLnð270þhF ÞþLnð90�hF Þ�;

where r is a positive real number chosen to be close to zero and not equal to zero, and

in this work r is taken as equal to 10�4 (in a practice case, r is normally taken as

r ¼ 1/N).

Using this penalty function, the problem (NCMP) becomes as follows:

Minimize /ðz; zb; hF ;CF Þ

ðz; zb; hF ;CF Þ 2 R4 ðUNCMPÞ

This (UNCMP) then will be solved by using Hooke and Jeeves’s algorithm, which

directly allows obtainment of the values of geophysical parameters ðz; zb; hF ;CF Þ.
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Field Examples

The main objective of the new technique proposed in this research is to estimate

the geophysical parameters of the vertical magnetic fault ðz; zb; hF ;CF Þ identified in

equation (14). This scheme is applied to both theoretical synthetic data and real field

data.

A synthetic example has been treated in order to show the efficiency and the

stability of the proposed method. The assumed model parameters are: z ¼ 7 units,

zb ¼ 14 units, hF ¼ 40�, and CF ¼ 200 gammas. A theoretical curve is generated

using the assumed parameters in equation (14). A new random data is regenerated

depending on the theoretical curve where each point of this random data has random

error ‘‘generated by the uniform distribution’’ which does not exceed 2% of its value.

These random data have been treated by the suggested method where the computed

parameters are: z ¼ 7:001 units, zb ¼ 13:998 units, hF ¼ 40:05�, and CF ¼ 203:976

gammas for a random noise of 2% and are: z ¼ 7:004 units, zb ¼ 13:993 units,

hF ¼ 40:05�, and CF ¼ 207:862 gammas for a random noise of 4% (Table 2).

The results of this synthetic example show a valid and close agreement between

assumed and computed parameters, which consequently highly prove the efficiency

of the proposed method in this research.

The field magnetic anomalies from Australia and India have been analyzed and

interpreted by using this proposed method:

1. The first example presented in (Fig. 2) is the reinterpretation of the total field

magnetic anomaly on the western margin of Perth basin published by QURESHI and

NALAYE (1978).

The evaluated parameters of this anomaly obtained by our approach are:

z ¼ 7:52� 0:66 kms; zb ¼ 13:97� 1:11 kms; hF ¼ 39:78� 0:22�; and

CF ¼ 200:29� 19:22 gammas;

where the values of 0.66, 1.11, 0.220 and 19.22 are the maximum standard errors

committed in the estimation of the geophysical parameters z; zb; hF and CF ,

respectively. These values are estimated by using the inverse Hessian matrix of the

function /ðz; zb; hF ;CF Þ.

Table 2

Synthetic example with 2% and 4% random noise

Parameters Assumed

parameter

Computed parameters with

2% random error subjected

to DF

Computed parameters with

4% random error subjected

to DF

z in units 7 7.001 7.004

zb in units 14 13.998 13.993

hF in degrees 40 40.05 40.05

CF in gammas 200 203.976 207.862
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The theoretical magnetic anomaly has been computed according to these

evaluated parameters as shown in Figure 2. The comparison between observed and

theoretical computed anomalies indicates clearly the close agreement between them.

Table 3 shows a comparison between the results of our interpretation method and

those obtained by QURESHI and NALAYE (1978), and by ATCHUTA RAO and RAM

BABU (1983).

2. The second example (Fig. 3) is an aero-magnetic anomaly recorded at 2500 ft

over a suspected deep seated fault southwest of Dehri, Bihar, India. The area is

covered by Uindhyan and sediments in contact with Bijawar rocks. The magnetic

Figure 2

Interpretation of the total magnetic field anomaly (DT ) on the western margin of the Perth basin,

Australia.

Table 3

Interpretation of magnetic field anomaly on the western margin of the Perth basin, Australia

Parameters QURESHI and NALAYE

(1978)

ATCHUTA RAO and

RAM BABU (1983)

Present method

Depth ðzÞ to top in kms 5.80–6.85 6.26 7.52 ± 0.66

Depth ðzbÞ to bottom in kms 15.55–17.00 15.45 13.97 ± 1.11

Index parameter (hF )

in degrees

30 40 39.78 ± 0.22

CF in gammas – – 200.29 ± 19.22
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anomaly is assumed to be due to magnetization contrast, in the deeper layers of the

crust. The anomaly is analyzed and interpreted using our newly proposed method for

vertical fault model, and the evaluated parameters of this anomaly are:

z ¼ 10:16� 0:25 kms; zb ¼ 25:43� 0:63 kms; hF ¼ �141:73� 0:13�;

and CF ¼ 813:86� 24:21 gammas:

The theoretical magnetic anomaly has been computed according to these evaluated

parameters as shown in Figure 3. A close agreement is noticed between the observed

and computed anomaly, which proves the efficiency of the proposed method. The

anomaly is also analyzed using both the method of QURESHI and NALAYE (1978), and

the method of ATCHUTA RAO and RAM BABU (1983). The results of these methods

are comparable, Table 4.

Geophysical Problem Formulation Due to Thin Dikes Model

The general expression DF , for the magnetic anomaly in total, vertical, or

horizontal field at a point p(x) along the x axis (Fig. 4) of an arbitrary magnetized

thin dike (2-D) is given as ATCHUTA RAO et al., (1980), and ABDELRAHMAN and

SHARAFELDIN (1996):

Figure 3

Interpretation of the aeromagnetic anomaly (DT ), southwest of Dehri, Bihar, India.

Vol. 161, 2004 Nonlinearly Constrained Optimization Theory 211



DF ðx; z;CF ; hF Þ ¼ CF z
x sin hF þ z cos hF

x2 þ z2
;

where z: is the depth to the top of the body, CF : is the amplitude coefficient, and hF : is

the index parameters.

By the same manner as presented in the case of vertical fault model, the

evaluation of the parameters ðz; hF ;CF Þ could be obtained by solving the following

nonlinearly constrained minimization problem. Knowing that the range of the angle

hF is from �90� to þ90� (ABDELRAHMAN and SHARAFELDIN, 1996):

Table 4

Interpretation of magnetic field anomaly on the south west of Dehri, Bihar, India

Parameters QURESHI and NALAYE

(1978)

ATCHUTA RAO and RAM

BABU (1983)

Present method

Depth ðzÞ to top in kms 7.50 8.00 10.16 ± 0.25

Depth ðzbÞ to bottom in kms 30.00 32.00 25.43 ± 0.63

Index parameter ðhF Þ in
degrees

)133 )130 )141.73 ± 0.13

CF in gammas – – 813.86 ± 24.21

Figure 4

The thin dike model (2-D).
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Minimize
Xi¼N

i¼1
½LðxiÞ � DF ðxi; z;CF ; hF Þ�2

Subject to 0 � z

� 90� � hF � 90�

�1 < CF < þ1: ðNCMP Þ

The ðNCMPÞ is converted to an unconstrained nonlinearly minimization problem by

introducing the following interior penalty function:

/ðxi; z; hF ;CF Þ ¼
Xi¼N

i¼1
½LðxiÞ � DF ðxi; z; hF ;CF Þ�2 � r � ½Ln zþ Lnð90þ hF Þ

þ Lnð90� hF Þ�:

Using the penalty function, the problem ðNCMP Þ could be written as follows:

Minimize /ðxi; z; hF ;CF Þ
ðz; hF ;CF Þ 2 R3: ðUNCMPÞ

Hooke and Jeeves’s algorithm is then used to solve this ðUNCMPÞ, in order to obtain

directly the geophysical parameters of the dike model ðz; hF ;CF Þ.

Field Examples

The efficiency of the proposed method for interpreting the magnetic anomalies

related to thin dikes (2-D) has been tested on both theoretical, synthetic and real field

data.

A synthetic example has been treated with 2% and 4% random noise respectively,

where the assumed model parameters are: z ¼ 70 units, hF ¼ �60�, and CF ¼ 600 nT.

A theoretical curve is generated using the assumed parameters in the general

expression DF of thin dikes. A new random data is regenerated depending on the

theoretical curve where each point of this random data has a random error

‘‘generated by the uniform distribution’’ which does not exceed 2% of its value.

These random data have been treated by the suggested method where the computed

parameters are: z ¼ 70:001 units, hF ¼ �59:997�, and CF ¼ 612:001 nT for a random

noise of 2% and are: z ¼ 70:005 units, hF ¼ �59:995�, and CF ¼ 624:003 nT for a

random noise of 4% (Table 5).

Table 5 shows the assumed and computed parameters of this theoretically studied

model, where very close agreement between them is noticed, which attests and clearly

proves the validity of such a method.

Two field magnetic anomalies from the USA and Brazil have been interpreted by

our proposed method.
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1. The first anomaly shown in Figure 5 is a vertical magnetic anomaly from the

Pima Copper mine, Arizona, USA (PARKAR GAY, 1963). A magnetic profile

750 meters long was digitized at an interval of 25 meters. This magnetic anomaly was

subjected to the interpretation by the method developed in this research. The

evaluated parameters obtained for this anomaly are: z ¼ 71:50� 1:78 m,

hF ¼ �50:46� 0:68�, and CF ¼ 577:61� 9:23 nT. Figure 5 also shows the theoret-

ically computed field anomaly obtained according to the mentioned evaluated

parameters, which obviously indicates the close agreement between observed and

computed anomalies. ABDELRAHMAN and SHARAFELDIN (1996) interpreted the same

anomaly and estimated the depth of the magnetic dike responsible for it to be

66 meters, while GAY (1963) has estimated this depth to be 70 m (Table 6).

Table 5

Synthetic example with 2% and 4% random noise

Parameters Assumed

parameter

Computed parameters with 2%

random error subjected to DF
Computed parameters with 4%

random error subjected to DF

z in units 70 70.001 70.005

hF in degrees )60 )59.997 )59.995
CF in nT 600 612.001 624.003

Figure 5

Vertical magnetic anomaly (DZ) over Pima Copper mine in Arizona, USA.
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2. The second anomaly shown in Figure 6 is a total magnetic anomaly above a

Mesozoic diabase dike intruded into Paleozoic sediments in the Parnaiba basin,

Brazil (SILVA, 1989). This anomaly profile 24.64 meters in length was digitized at

an interval of 1.54 meters. The interpretation of this anomaly gives the follow-

ing evaluated parameters: z ¼ 2:26� 0:09 m, hF ¼ 47:11� 1:13�, and CF ¼
�59:81� 1:54 nT. Figure 6 also shows an acceptable agreement between observed

and computed anomalies. According to ABDELRAHMAN and HASSANEIN’s (2000)

results, the depth of the magnetic dike causing this anomaly is 2.1 meters, while this

depth is estimated to be 3.5 meters, according to ABDELRAHMAN and SHARAFELDIN

(1996) and SILVA (1989) where this result is considered as an overestimate of the real

depth, (Table 7).

Table 6

Interpretation of magnetic field anomaly on Pima Copper mine, Arizona, USA

Parameters ABDELRAHMAN

(1997)

ABDELRAHMAN and

SHARAFELDIN (1996)

GAY

(1963)

Present method

z in meters 62.1 66 70 71.50 ± 1.78

hF in degrees – )53 )50 )50.46 ± 0.68

CF in nT – 596.5 – 577.61 ± 9.23

Figure 6

Total magnetic anomaly (DT ) over an outcropping dike in the Parnaiba basin, Brazil.
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Conclusion

In this paper, the effectiveness of the newly proposed nonlinearly constrained

optimization technique to interpret magnetic anomalies due to vertical faults and

thin dikes models has been demonstrated. The geophysical problems related to the

studied structures are described by firstly formulating nonlinearly constrained

minimization problems (NCMP). This (NCMP) is converted into nonlinearly

unconstrained minimization ones (UNCMP) by suggesting an interior penalty

function. The geophysical parameters of the studied structures such as: depth,

amplitude coefficient, and index parameter have been directly obtained by solving

(UNCMP), and applying Hooke and Jeeves’s algorithm. The well-known Hooke and

Jeeves’s algorithm is, easily converted to code, and is also chosen for being robust,

and the convergence towards the optimal estimation of parameters is rapidly

reached. This interpretative method is very well validated with theoretical synthetic

data with random noise, in which very close agreement has been found between

assumed and computed parameters. The application of this method on four examples

taken from Australia, India, USA, and Brazil resulted in good agreement between

observed anomalies and optimal solutions. This easy and accurate method can

therefore be used for routine analysis of magnetic anomalies to determine the

geophysical parameters, and may be extended to gravity and self-potential anomalies

related to sphere and cylinder-like structures. The advantages of this new

interpretative method over previous geophysical techniques which use characteristics

points and distances, standard curves, and monograms are: 1) the method is not

subjected to human errors in computing the model parameters. 2) the model

parameters in both cases treated in this paper ðz; zb; hF ;CF Þ for faults and ðz; hF ;CF Þ
for dikes are determined in the same time through the finding of an optimal

estimation (multi-parameters determination).
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Appendix

The Hooke and Jeeves algorithm consists of two distinct phases. The first is an

exploratory search phase, which serves to establish a direction of improvement, and

the second is a pattern move, which extracts the current solution vector to another

point in the solution space. Using function minimization for illustrative purposes, the

algorithm proceeds as follows: First, an initial solution vector is chosen

xð0Þ ¼ ðxð0Þ1 ; xð0Þ2 ; . . . ; xð0Þn Þ. The initial value of the objective function is given by

f ðxð0ÞÞ. Label this point Set 1. An initial exploratory search is now conducted about

this point in order to find a direction of objective function improvement. Define a

perturbation vector P ¼ ðDx1;Dx2; . . . ;DxnÞ, which will be used to systematically

change the current solution vector. Choosing each variable in turn, an objective

evaluation is made at xð0Þk � Dxk; k ¼ 1; 2; . . . ; n. In particular, suppose that f ðxÞ is
evaluated at xð0Þ1 ¼ ðx

ð0Þ
1 þ Dx1; x

ð0Þ
2 ; . . . ; xð0Þn Þ. If an improvement is found in f ðxÞ at

f ðxð0Þ1 Þ namely f ðxð0Þ1 Þ < f ðxð0ÞÞ, then the current value of the objective function is

updated to f ðxð0Þ1 Þ. If this move fails to improve the objective function then the vector

xð0Þ1 ¼ ðx
ð0Þ
1 � Dx1; x

ð0Þ
2 ; . . . ; xð0Þn Þ is tried. This procedure is followed for each decision

variable in turn, until the last decision variable has been changed. The final solution

vector is accepted as a point in space, which indicates a direction of objective

function improvement. Call this point xð1Þ and label it as Base 1. The pattern move

phase is now implemented and consists of moving from xð0Þ through xð1Þ to a new

point xð2Þ defined by: xð2Þ ¼ xð0Þ þ 2ðxð1Þ � xð0ÞÞ. Call this point Base 2.

The point xð2Þ is not immediately accepted. Before a decision is made to change

the current accepted solution to Base 2, another exploratory search is conducted

pertaining to Base 2. Performing this search as was done previously, a new point xð3Þ

will be established. At this time a comparison is made between f ðxð3ÞÞ and the Base 1

solution vector. If f ðxð3ÞÞ < f ðxð1ÞÞ, then xð3Þ is accepted as the new solution and

labelled Base 1. The point from which additional moves will now be made is updated

to xð1Þ. Hence, xð1Þ is now labelled Set 1. We are now ready to make another pattern

move from point xð1Þ (Set 1) through point xð3Þ (Base 1) to a point xð4Þ (Base 2).

Exploratory searches will now be conducted regarding Base 2 to determine if the

pattern move was a success. This sequence of moves is repeated until an exploratory

search about the point Base 2 fails to yield objective function improvement. If this

occurs, the pattern search is said to be a failure. When this occurs, the solution vector

at Base 1 is returned to the original status of Set 1, and the procedure begins anew

around the point Set 1 as if it were the initial solution vector. If an exploratory search

about Set 1 fails to yield an improved solution vector, then the change vector
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P ¼ ðDx1;Dx2; . . . ;DxnÞ should be reduced to P ¼ ðDx1=2;Dx2=2; . . . ;Dxn=2Þ and

another exploratory search conducted. When every component of P becomes less

than a predetermined increment, the process terminates and Set 1 is accepted as the

optimal solution.

In general, after the initial exploratory search, a point xðkÞ is labelled Set 1. A

point xðkþ2Þ is labelled Base 1. A projection is made from xðkÞ through xðkþ2Þ to a point

xðkþ3Þ, labelled Base 2. If an exploratory search about point xðkþ3Þ is successful, then
point xðkþ1Þ is accepted as Set 1, point xðkþ3Þ is accepted as Base 1, and the process

repeated. If an exploratory search concerning Base 2 results in failure, then Base 1 is

treated as if it were the initial solution vector, relabelled Set 1, and the entire

procedure started anew.
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