
Global and Local Multiscale Analysis of

Magnetic Susceptibility Data

MAURIZIO FEDI
1

Abstract—Geophysical well-logs often show a complex behavior which seems to suggest a

multifractal nature. Multifractals are highly intermittent signals, with distinct active bursts and passive

regions which cannot be satisfactorily characterized in terms of just second-order statistics. They need a

higher-order statistical analysis. In contrast with monofractals which have a homogeneous scaling,

multifractals may include singularities of many types. Here we describe how a multiscale analysis can be

used to describe the magnetic susceptibility data scaling properties for a deep well (KTB, Germany),

down to about 9000 m. A multiscale analysis describes the local and global singular behavior of

measures or distributions in a statistical fashion. The global analysis allows the estimation of the global

repartition of the various Holder exponents. As such, it leads to the definition of a spectrum, D(a), called
the singularity spectrum. The local analysis is related to the possibility of estimating the Lipschitz

regularity locally, i.e., at each point of the support of a multifractal signal. The application of both

approaches to the KTB magnetic susceptibility data shows a meaningful correlation between the

sequence of Holder exponents vs. depth and the lithological units. The Holder exponents reach the

highest values for gneiss units, intermediate ones for amphibolite units and the lowest values for

variegated units. Faults are found to correspond to changes for H also when they are of intra-

lithological type.
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Introduction

This paper deals with the multiscale analysis of potential fields and of their

related physical quantity distributions, i.e., density and susceptibility, derived from

well log measurements. As such it will be centered on two main themes: the first

one is that of self-similar and/or self-affine fractals and the second is the multiscale

wavelet analysis. The two theories are strictly interlaced since both help to unravel

the scale-related complexity of geophysical signals, such as gravimetric, seismic or

magnetometric ones.

Self-similarity, either exact or approximate, has entered ex abrupto to the

common scientific language since the celebrated work of MANDELBROT (1982). The
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wavelet transform analysis was initially introduced by GOUPILLAUD et al. (1985)

for the analysis of seismic signals and one of the more utilized wavelets is called

‘‘Morlet wavelet’’ after one of the authors of that paper. Morlet actually gave the

first broad definition of a wavelet (GROSSMANN and MORLET, 1984). Some

applications to potential fields are those by FEDI and QUARTA (1998), HORNBY

et al. (1999), FEDI et al. (2000), SAILHAC et al. (2000), GUYODO et al. (2000).

The scaling properties of potential fields were extensively studied in the 1990s.

These studies have opened new frontiers to the description of the potential field

data structure and to the statistical description of the susceptibility and density

distributions within the earth. In fact, the more common assumptions used in

interpretation were those of homogeneous sources, in contrast to the evidence

from well logs which show a complex behavior. The statistical distribution of the

susceptibility and density was related to the observed field in a series of basic

papers, such as NAIDU (1968) and SPECTOR and GRANT (1970). Naidu’s model

deals with randomly distributed sources and it is appropriate for describing a

highly variable source distribution. Relatively large and homogeneous bodies may

be instead better represented by the Spector and Grant statistical model, assuming

ensembles of blocks of various sizes, depths and magnetisation/density.

GREGOTSKI et al. (1991), PILKINGTON and TODOESCHUCK (1993) and MAUS and

DIMRI (1995) used fractal geometry to point out how the complexity of

susceptibility and density logs could be interpreted in terms of scaling sources.

The related magnetic and gravity fields also should be considered as scaling

quantities, whose scaling exponent is related in a very simple fashion to the fractal

dimension of the source parameters.

Such kind of analyzing power spectra is however ambiguous. In fact, as shown

later by FEDI et al. (1997), the Spector and Grant model can also lead to a scaling

power spectrum with a fixed scaling exponent of about 3. This is in agreement

with the exponents estimated for fields relative to several regions on the Earth.

BANSAL and DIMRI (1999) interpreted gravity data assessing the depth to the

source by this approach.

Although the relative validity of any of these approaches can only be

demonstrated by direct exploration results, the history of exploration geophysics

shows that simple homogeneous sources may, to a first approximation, be enough

to understand the physical properties of the sources. In this sense, QUARTA et al.

(2000) suggested that an approach using both of these points of view is probably

the more appropriate. For instance, let us consider the case of a sedimentary

basin. The very simple modelling approach of homogeneous sources is strongly

suggested by the fact that the anomaly that it generates is well correlated with its

overall geometrical shape; nevertheless, well logs show unequivocally that the

distribution of density is very different from a homogeneous one. Subsequently,

both aspects should be considered in interpreting the fields.
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Scaling Source Properties

In order to relate source properties to field properties, an approach explicitly

based on the concept of scale is necessary. Consider again the Naidu and the Spector

and Grant models. As regards the first, some authors (PILKINGTON and TODOES-

CHUCK, 1993; PILKINGTON et al., 1994) considered a semi-infinite medium of depth to

the top h and a magnetization power spectrum Es(q) = q�bs , where q indicates radial

frequencies, with the scaling exponent bs in the fractal range, 3 < bs < 5. In this

case, the zero-level (h ¼ 0) field radial power spectrum is given by:

E0ðqÞ � q�b; ð1Þ

where b ¼ bS � 1 (Fig. 1a).

Figure 1

Red radial power spectra of a synthetic magnetic field (c, b = 3) may originate from different source

distributions. The first case (a, horizontal section) is that of Gaussian random noise, with a specific scaling

exponent, b
S
= 4; a second case (b, horizontal section) occurs when the distribution of the susceptibility is

piecewise correlated, corresponding to the presence of several homogeneous blocks.
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FEDI et al. (1997) showed that the Spector and Grant model also leads to a scaling

relationship, with a scaling exponent in the fractal range, b ¼ 2.95. At zero-level we

have:

E0ðqÞ ¼
l0

2

� �2
�kk2Cðq; l;mÞT ðq;�ttÞ � q�b; ð2Þ

where l0 is the permeability of free space (4p� 10�7 S I), Cðq; l;mÞ and T ðq;�ttÞ are
spectral factors related to the average sizes l;m and t of the block ensemble and �kk is

the ensemble average susceptibility. All the source parameters are assumed to be

uniformly random distributed. At first sight one might not understand how an

uncorrelated block susceptibility distribution produces a red field power spectrum. In

fact, some papers (e.g., PILKINGTON and TODOESCHUCK, 1993; MAUS and DIMRI,

1994) refer to the Spector and Grant source spectrum as a white one. The simple

explanation is that one has to consider not the block ensemble susceptibility

distribution, which is white, but the effective and continuous susceptibility distribu-

tion within the whole source-space. The latter is no longer uncorrelated, but piecewise

correlated because of the homogeneity within each block of the ensemble (Fig. 1b)

But the difference between the two models is just a question of scale: if the

smallest scale represented in the measurement set is less than three-four times the size

of a dense set of homogeneous prisms (QUARTA et al., 2000) the Spector and Grant

spectrum reduces to a layered Naidu scheme, with b
S = 0. In fact, since the block

ensemble susceptibilities are uniformly random distributed, the distribution of the

magnetization tends to become random overall instead of partially homogeneous.

We conclude that any analysis of a given phenomenon and its complexity

depends strongly on the scale at which it is actually observed.

General Fractal Noises as Multifractals

Fractal models arise often in many scientific disciplines, such as physics,

chemistry, astronomy and biology. They are geometrical objects exhibiting an

irregular structure at any scale. Self-similar fractals show a structure that is similar at

any scale. The structure of deterministic fractals usually may be constructed through a

few simple steps. Real world phenomena may, however, be rarely described using such

simple models. Nevertheless similarity can hold on all scales in a statistical sense,

leading to the notion of random fractals. Fractional Brownian motions (fBm) have

played a central role in many fields. fBm is the unique Gaussian process with

stationary increments and has the following scaling property for all scales a > 0

BðatÞ � aH BðtÞ; ð3Þ

where ” denotes an equality of finite-dimensional distributions.
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It follows from (3) that B(0) ¼ 0 and that B and its increments are zero-mean.

The parameter H, 0 < H < 1 is known as the Hurst parameter. A covariance

analysis shows that the fBm are nonstationary processes. Despite this, their

increments are stationary so that it is possible to define a generalized power

spectrum having a power-law decay, with an exponent b ¼ 2H þ 1 and 1 < b < 3.

Furthermore (TURCOTTE, 1992) the self-similarity implies that any individual

realization of the process is a fractal curve with a fractal dimension D given by:

D = 2 ) H . Realizations of fractional Brownian motions are everywhere singular,

i.e., " t ˛ R and for 0 £ a < 1, the following relationship is verified:

jBH ðtÞ � BH ðt � DtÞj � KjDtja; ð4Þ

where K is some positive constant.

The Lipschitz regularity of a given signal at some point t0 is the superior bound of

all a verifying the above equation. If the Lipschitz regularity is a < 1 at some point

t0, the signal is not differentiable at t0 and a will characterize the singularity type.

Note that the Lipschitz regularity, i.e., the Holder exponent, may be extended to the

more general case of a > 1 and that, when considering tempered distributions,

negative exponents may be also taken into consideration (MALLAT and HWANG,

1992), as in the case of a Dirac d(x) distribution (a = )1).
Finally, the fact that fractional Brownian motions satisfy (MALLAT, 1998)

jBH ðtÞ � BH ðt � DtÞj / jDtjH ; ð5Þ

implies that the Holder exponent of fBm is equal to the Hurst parameter.

Since fBm are everywhere singular with the same Holder exponent, they may also

be called ‘‘homogeneous fractals’’ or ‘‘monofractals’’.

Monofractals are characterized by burstiness and long-range dependence (LRD).

The latter implies that the data show a positive correlation, differently from a pure

Gaussian noise b = 0. H controls the LRD of fBm and its local spikiness.

The statistical self-similarity of fBm has proved useful for signal modeling, since

it efficiently captures signal features such as burstiness and LRD, nevertheless

models based on fBm can be too restrictive to adequately characterize many types

of signals. In fact, highly intermittent signals, with distinct active bursts and passive

regions cannot be satisfactorily represented only in terms of second-order statistics,

but need higher-order statistics. In other words, power spectra or variogram

analysis may be useful for the characterization of the signal up to the second-order

statistics, but may fail in describing more complex structures. One has now to ask

what does change in the signal if H is allowed to vary across scales and/or across

times. The answer is that the signals will show inhomogeneous spikiness, or in

other words, will exhibit a varying degree of intermittence with sudden bursts of

high frequency activity and large outliers. Compare for instance a self-similar signal

(Fig. 2a) generated according to the network traffic multifractal model of CROUSE

2403Vol. 160, 2003 Global and Local Multiscale Analysis



et al. (1999) and the realizations of a monofractal process characterized by

H = 0.8. In order to better approximate the multifractal, we do not consider such

nonstationary fBm, but its increment process, called fractal Gaussian noise (fGn)

(Fig. 2b). This is indeed a stationary process, with a scaling exponent b < 1

(DAVIS et al., 1994). The global scaling exponent, the mean and the variance are the

same for all the processes, however the structure of the signals is very different and

fGn clearly fails to model positive data, showing in fact a considerable number of

negative values. A similar reasoning may be made after comparison with a white

Gaussian noise (Fig. 2c).

Many signals exist which have positive increments and hence, differently from

fBm, are not Gaussians. For those with stationary increments it is still possible to

define a generalized power spectrum with the same power law decay as the fBm

(MALLAT, 1998). They are called general fractal noises (gFn). We stress that from the

spectral point of view gFn cannot be distinguished from fBm, although a strong

Figure 2

A comparison between several noisy signals. A self-similar multifractal (a) appears more complex than a

fractal Gaussian noise (fGn) (b) or a white noise (c). Note that the multifractal and the fGn have the same

global scaling exponent, mean and variance.
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difference holds. In fact, realizations of gFn may include singularities of many types.

In this sense, they belong to the class of ‘‘nonhomogeneous’’ fractals or ‘‘multifrac-

tals.’’

Multiscale Wavelet Analysis

Multifractal signal models are therefore positive measures or distributions

possessing self-similarity but nonhomogeneous scaling. They were first introduced by

MANDELBROT (1974) to explain turbulence phenomena and, since then, they have

been utilized in very different contexts (MANDELBROT, 1989). As stated by STANLEY

and MEAKIN (1988) multifractal scaling provides a quantitative description of a

broad range of heterogeneous phenomena that can distinguish between different

regions which have different fractal properties. Multifractal phenomena seem to be

associated with systems where the underlying physics is governed by a random

multiplicative process. The typical construction of a multifractal starts at a coarse

scale and develops the details of the process on finer scales iteratively, in a

multiplicative fashion. The simplest of this process is the binomial multifractal

(FEDER, 1988). We have two ways to study multifractals, which are respectively of

local and global nature. The first one allows a local estimation of the Lipschitz

regularity, i.e., at each point of the support of a multifractal signal. This is possible

especially if the singularities appear isolated. Otherwise, the estimation is more

difficult, due to interference effects which may occur especially at large scales and also

due to the finite numerical resolution. The second one consists in defining a

procedure to estimate the global repartition of the various Holder exponents. As

such, it leads to the definition of a spectrum, D(a), called singularity spectrum.

In both cases, techniques based on the continuous wavelet transform (CWT) may

be used (MALLAT, 1989; FLANDRIN, 1999) and, in particular, on the wavelet

transform local maxima, as described in a landmark paper of MALLAT and HWANG

(1992).

As it is known, for any f ˛ L2 (<) its continuous wavelet transform Wf is defined

as the integral transform (DAUBECHIES, 1992):

Wf ða; bÞ ¼ 1ffiffiffi
a
p

Z1

�1

f ðxÞ �WW x� b
a

� �
dx; ð6Þ

where �WW is the complex conjugate of a fixed function Y ˛ L2 (<), called the mother

wavelet or analyzing wavelet, whose main properties are: a) a compact support (to

obtain localization in space) ; b) a zero-mean for the wavelet and for higher-order

moments (to oscillate like a wave).

Wf is built with translations and dilations of Y, the two parameters a and b

controlling the dilations and translations. a is related to the scale and b to the
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position. At a given scale, the parameter b assures the space-localization of the

features of the signal specific to that scale.

The continuous wavelet transform allows for a localized decomposition of

measured physical quantities (in our case, well logs and field data) into their

multiscale constituents. This naturally leads to unravel considerably more complexity

than which we can deal with other techniques, such as the Fourier analysis. In

particular, the scaling behavior of a process carries over the local scaling properties

of its wavelet coefficients.

Care, however, must be taken in choosing an appropriate analyzing wavelet. We

must initially be sure that the analyzing wavelet possesses a number of vanishing

moments adequate to study a given signal. The analyzing wavelet must also be more

regular (or smoother) than the process under study. Otherwise the analysis will be

biased by its own properties instead of reflecting those of the signal.

Referring to MALLAT (1998) for a full explanation of the theory, the spectrum

D(a) is obtained by the inverse Legendre transform of the ‘‘mass exponent’’ function

s(q), computed with a linear regression of log(Sn |Wf(xn, a)|
q ) versus log a, where q

are suitable exponents. The typical multifractal spectrum is strictly concave and the

maximum of D(a) will reach the dimension of the support of the measure. As an

example of D, first consider the integral measure M(x), as obtained by integration of

a binomial multifractal measure l (Fig. 3a). Its singularity spectrum (Fig. 3b) defines

a notably large interval of values, with Holder exponents from 0.25 to 2.75

approximately. Consider instead a monofractal process, with H ¼ 0:5 (Fig. 4a) and

its Legendre spectrum (Fig. 4b). We note that in this monofractal case, the Holder

exponents are all close in their values to the assumed exponent 0.5. We may therefore

conclude that the two processes are clearly distinguished by their spectra.

The procedure for the local approach is based instead on computing the local

Holder exponent with a linear regression of log jWf ðx; aÞj as a function of log a at the

finest scales, avoiding those large scales which could be affected by consecutive

singularities.

As an example, consider a signal consisting of an isolated singularity at some

point t0 (Fig. 5a) with a local Lipschitz-Holder regularity a = )1. Following the

above steps, the local multiscale analysis, based on the CWT maxima of the signal

(Fig. 5b), generates the correct Holder exponent (Fig. 5c).

Global Scaling Properties of Sources from Well Logs

and Potential Field Measurements

The problem faced in this section is to study, within the more general theory of

multifractals, the complexity shown by well-log measurements. Well-log measure-

ments have given evidence of a predominant scaling behavior of the spatial

distribution of physical parameters such as magnetic susceptibility, density and
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others (WALDEN and HOSKEN, 1985; TODOESCHUCK and JENSEN, 1989; HERRMANN

(1992); PILKINGTON and TODOESCHUCK (1993).

Magnetic susceptibility logs from shallow boreholes (< 300 m) were analysed by

PILKINGTON and TODOESCHUCK (1993). The power spectra of the analyzed logs were

scaling with an exponent b ranging from 1.32 to 1.96 for sedimentary rocks and from

2.08 to 2.72 for igneous rocks. PILKINGTON et al. (1994) explored further the

horizontal distribution of susceptibility for two large datasets in Sierra Nevada

(USA) and Saskatchewan (Canada). They found scaling exponents of about 3 for

these surface 2-D data sets of susceptibility. MAUS and DIMRI (1994) analyzed a

vertical profile of rock susceptibilities from drill cores of the KTB pilot drill hole

(Germany) and estimated b = 0.4 from the power spectrum. LEONARDI and

KUMPEL (1996) explored susceptibility logs again from the German KTB borehole

(down to 4000 m) and found scaling exponents from 1.4 to 0.3. Extending the

analysis of KTB data down to 9000 m, ZHOU and THYBO (1998, their Fig. 5)

obtained an average value of about 1.5 and observed variability with respect to

depth, with estimates of b varying from 0.5 to 2.

Figure 3

Singularity spectrum of a multifractal binomial process for P ¼ 0:15, where P indicates the distribution

fraction. The measureM(x) is shown (a), obtained by integration of the multifractal binomial measure l(x)
on the region [0, x]. The corresponding Legendre spectrum (b) has extreme values 0.25 and 2.75.
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For isotropic scaling sources, MAUS and DIMRI (1994, 1995) illustrated important

relationships between the scaling exponents of sources and those of the related

potential fields. A good approximation for the scaling exponent of any 3-k

dimensional subset of the distribution is bs ) k, where bs is the scaling exponent of

the susceptibility distribution. Furthermore, assuming a half-space of sources, a good

approximation for the scaling exponent (b) of the 2-D magnetic field, reduced to the

pole and at source-level, is: b = bs ) 1.

Figure 4

A self-affine signal (a) of H ¼ 0:5 (D ¼ 1:5) and its singularity spectrum (b). The singularity spectrum

clearly shows the homogeneous scaling property of such signal.
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This scheme allows a simple way to study the source statistical properties from its

measured field. Scaling exponents of about 3 were actually estimated from a series of

aeromagnetic surveys (GREGOTSKI et al., 1991; PILKINGTON and TODOESCHUCK,

1993), suggesting a scaling exponent of about 2 for susceptibility (1-D) well logs and

of about 3 for 2-D susceptibility datasets. The above-mentioned estimates for well

logs often correspond to the above rules, however the agreement is substantially

worse at large depths, as in the case of the KTB borehole.

This clearly indicates that the isotropic scaling half-space of sources is too

simplified a model to reflect the real geology. The measured fields are a superposition

of effects related to different rocks. Also within the same mineralogy, any change in

temperature, pressure and composition can produce variations in density or

magnetization, which in turn are reflected in the fields. Consequently, a more

complicated behavior of the scaling properties is expected, which leads us to consider

for these signals the more general theory of multifractals.

Figure 5

An isolated and spiky singularity (a) which has a local Lipschitz-Holder regularity a = )1 and its CWT

(b). The CWT shows a characteristic cone at the point where the singularity lies (Fig. 6b). A local

multiscale analysis gives the correct Holder exponent (Fig. 6c). Circles indicate CWT maxima.
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Multiscale Analysis of Well-logs Measurements and Discussion

As described in the previous section, the global analysis provides all the

information required to assess the fractal nature of a signal through the singularity

spectrum, but does not help to find and classify the singularities in a local sense. This

can be achieved by a local multiscale analysis, since the local Lipschitz regularity of

f(x) at any singular point may be estimated from the decay of the wavelet transform

along the maxima line that converges to that point. This task may be problematic

when singularities are not isolated, but MALLAT and HWANG (1992, Theorem 5) give

additional criteria, consisting in testing the sign at which the modulus maxima occur

within the cone of influence of a given point x0. We will perform both kinds of

analysis on a deep susceptibility well log which has performed down to a depth of

about 9 km in West Germany (KTB main hole, drill section HB1; data are from the

Web-site http://icdp.gfz-potsdam.de/html/ktb). The analysis of the data of such a

deep well gives us a good chance to detect significant scaling variations with depth.

The susceptibilities were measured from rock cuttings at a 2 m sampling interval.

Figure 6

Susceptibility versus depth for the KTB well log (West Germany). For the sake of clarity the data are

shown on a linear (a) and a semilogarithmic scale (b).
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The data, shown in Figure 6, immediately suggest a probable multifractal nature.

Firstly, they are in the typical nonnegative format of measures (DAVIS et al., 1994).

Furthermore, large outliers appear, together with a high degree of intermittency. This

may be defined as the ratio between the relative active (sudden bursts) and passive

regions (quiet zones) in a signal. Unfortunately, we have shown that modeling with

monofractals is rather insensitive to these properties (see Fig. 2). The more general

approach of multifractals may instead allow significant improvements in the

understanding of the source properties.

The global scaling exponent for the KTB susceptibility data, shown in Figure 7, is

H ¼ 0:32, corresponding to b = 1.64. The estimation seems consistent either using a

Fourier power spectrum (a) or a wavelet power spectrum (b). It does not correspond to

the value found byMAUS andDIMRI (1995) for KTB susceptibility data (b = 0.4), but

matches the average value estimated by ZHOU and THYBO (1998). As mentioned, the

latter authors computed the scaling exponent from power spectra relative to windows

Figure 7

The global scaling exponent of the KTB susceptibility data (Fig. 7) is about 1.6 from either a Fourier (a) or

a wavelet (b) power spectrum estimation.
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of 1024 and 256 m, and estimates for both the window sizes indicate that the scaling

exponent changes significantly with depth. The discrepancy with the result obtained

by MAUS and DIMRI (1994) could be caused either by differences in the effectively

analyzed datasets or by their different depth range (which was down to 4 km).

We have thus compared several estimations obtained within just second order

statistics. Let us now see if a global multiscale analysis will help us to establish

whether the data belong to a monofractal or a multifractal class. We recall that the

typical multifractal spectrum is strictly concave and spans a large interval of Holder

exponents, while in the case of monofractals, the spectrum shows Holder exponents

very close to each other. The computation of the singularity spectrum for the KTB

log susceptibility leads to a spectrum with a clear concave shape (Fig. 8). It is defined

in a somewhat large interval of Holder exponents, between 0 and 0.7 approximately.

Therefore, it appears to be multifractal. These values correspond to the scaling

exponent range estimated by ZHOU and THYBO (1998). Note however that the

Legendre spectrum evaluation does not often produce stable results. Also, in this case

we found instability in performing the analysis, depending on the type of analyzing

wavelet used and on the range of considered q.

Moreover, the singularity spectrum cannot provide the distribution of the Holder

exponent with depth. This is similar to power spectra which completely lack any

space localization. Therefore, we turn now to the local singularity analysis, in an

attempt to assess the behavior of the average scaling properties with the depth.

We know (MALLAT, 1998) that this kind of analysis is not strictly defined for

studying multifractal singularities, which vary from point to point, due to the

limitations of any numerical analysis of discrete datasets. It is therefore important to

assess the feasibility of a local analysis for non-isolated singularities. We test this

kind of analysis on a simple case of geological value, i.e., that of piecewise self-similar

processes (GONCALVES et al., 1998), by which the profile is divided into several

parts, each one having an homogeneous scaling. Such a case would correspond to

the simplified succession assumed in geophysics, of layers having different

Figure 8

The singularity spectrum for the KTB susceptibility log. Note its concave shape and that it is defined over

an interval of Holder exponents between approximately 0 and 0.7.
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lithologies, temperature, pressure and so on. As shown in Figure 9, the multiscale

analysis produces good results, with a transition zone at the boundary between the

two layers.

Application of local multiscale analysis to KTB susceptibility data (k) is rather

satisfying (Fig. 10), since it yields Holder exponent estimations consistent with those

retrieved by the global analysis and may therefore aid our understanding of how the

values are distributed with depth. Comparing our results with those of ZHOU and

THYBO (1998), we obtain substantial differences. In fact, they estimated a rather

noninformative and oscillating behavior of the scaling exponent, which is here

replaced by several rather homogeneous zones (Fig. 10). The first zone (from 0 to

3500 m approximately), is relative to a sequence consisting of variable units: gneiss,

variegated and amphibolite units. The susceptibility and the Holder exponent vary

too: gneiss units are characterized by low susceptibilities (about 0.5 SI) and by

Holder exponents of about 0.4. The only noticeable exception corresponds to fault 3,

where both susceptibility and Holder exponent change abruptly (k�1 SI; H� 0). The

variegated units have higher susceptibilities (from 1 to 9 SI) and lower Holder

exponents (around 0). As we will see later, variegated units are well identified by the

Holder exponent throughout the entire well. Finally, amphibolites correspond to

susceptibilities of about 1 SI and to a 0.2 H, approximately.

Figure 9

A multifractal signal which is piecewise homogeneous with respect to the Holder exponent (a). The right

and left zone correspond respectively to H ¼ 0:2 and H ¼ 0:6. This is clearly evidenced by a multiscale

local analysis (b).
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From 3000–7500 m the well intersects amphibolite and amphibolite-metagabbro

units. From the susceptibility point of view, this relative lithologic homogeneity is

confirmed by rather constant values of about 1 SI, except in the region of faults 7, 8,

where it is higher (5–6 SI). This region is also characterized by relatively constant H

values (about 0, 0.1). The final part (6500–7500 m), however, has considerably higher

H values (from 0.6 to 1). Note that this change of regularity is not accompanied by

an analogous variation of susceptibility, except a slow decay between faults 10 and

11, but that it seems well correlated to the presence of the faults 10, 11 ,12. Note also

that fault 6 (completely within amphibolite units) does not correspond to any no

change of either susceptibility or regularity.

The final part of the well, from 7500 down to 9000 m, crosses variegated and

gneiss units. The first of them has very high susceptibilities (about 80 SI) and

again a 0.2 H value. Recalling the similar behavior of it for this unit within the

first 3500 m, the regularity seems therefore well characterize it, better than

susceptibilities which vary largely, of about an order of magnitude. Gneiss units

have compatible, but slightly higher, values for both H and k, if compared with

the shallow layers of the well. The last unit of the well, again a variegated unit,

seems instead to have susceptibilities and regularity values more compatible

(a)

(b)

(c)

Figure 10

Local multiscale analysis of the KTB susceptibility data. The analysis of susceptibilities (b) puts in evidence

several rather homogeneous zones (c), which seem well correlated to the lithologic units shown in (a). The

lithologic sketch is modified from http://icdp.gfz-potsdam.de/html/ktb.
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with those of gneiss units than with those of the other variegated units within the

well.

Conclusions

We may conclude that the regularity analysis yields valuable information which

may be used to complete and/or compare that obtained from a simple

susceptibility analysis. As shown in Figure 10c, one may identify in a relatively

clear way, the occurrence of several units from their regularity value; it being

higher for gneiss units, intermediate for amphibolite units and lower for variegated

units. Looking at Figures 10b and 10c this task appears easier than simply

analysing the susceptibilities. This general correspondence with lithological units

locally breaks down due to the occurrence of faults, which introduce nonnegligible

changes for H also when they are of intra-lithological type, such as faults 3, 6, 7

and 11. The effect of faults is sometimes stronger on regularities (10, 11, 12) than

on susceptibilities; nevertheless a combined analysis of both seems effective in

identifying them.

A more exhaustive study of the well should surely be advantageous of taking into

account the role of temperature, pressure and other physical and chemical parameters,

especially for depths where the interpretation is less clear (from 8500 to 9000 m, for

instance). Inanycase, thecomplexityof thegeologyseemswelloutlinedbyamultifractal

studyof thesusceptibilitywell-logdata.
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