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Abstract—We present an alternative to the epidemic type aftershock sequence (ETAS) model of

OGATA (1988). The continuous time two-node network stress release/transfer Markov model is able to

reproduce the (modified) Omori law for aftershock frequencies. One node (denoted by A) is loaded by

external tectonic forces at a constant rate, with ‘events’ (main shocks) occurring at random instances with

risk given by a function of the ‘stress level’ at the node. Each event is a random (negative) jump of the stress

level, and adds (or removes) a random amount of stress to the second node (B), which experiences ‘events’

in a similar way, but with another risk function (of the stress level at that node only). When that risk

function satisfies certain simple conditions (it may, in particular, be exponential), the frequency of jumps

(aftershocks) at node B, in the absence of any new events at node A, follows Omori’s law (/ ðcþ tÞ�1) for

aftershock sequences. When node B is allowed tectonic input, which may be negative, i.e., aseismic slip, the

frequency of events takes on a decay form that parallels the constitutive law derived by DIETERICH (1994),

which fits very well to the modified Omori law. We illustrate the model by fitting it to aftershock data from

California post-1973, and from the Valparaiso earthquake of March 3 1985.

Key words: Aftershocks, modified Omori formula, constitutive law, stress release, Markov model.

1. Introduction

OMORI (1894a,b) studied the frequency of felt aftershocks following the 1891

Nobi, Central Japan, earthquakes. He showed that the frequency of aftershocks per

unit time interval, nðtÞ at time t is well represented by the Omori formula (or

hyperbolic law)

nðtÞ ¼ Kðt þ cÞ�1; ð1Þ

where K and c are constants. UTSU (1957) generalized this to the modified Omori

formula

nðtÞ ¼ Kðt þ cÞ�p; ð2Þ

where the constant p usually falls in the range 0.9–1.8 (UTSU et al., 1995). This has

been shown by a number of studies (see UTSU et al., 1995, for a review) to be a good
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representation of the temporal variation of aftershock activity. The constant c is

small, and strongly influenced by incomplete detection of small aftershocks in the

early stage of the sequence.

The parameter of interest is of course the index p. Although no systematic

dependence of p has been demonstrated, it differs from sequence to sequence,

perhaps as a consequence of the tectonic conditions such as structural heterogeneity,

stress and temperature (KISSLINGER, 1996). Depth is probably the most important

factor, p increasing sharply (FROHLICH, 1987), although this may be at least partially

a consequence of the detection threshold. The value of p is relatively low for

intraplate China (ZHAO et al., 1992) but little variation has been observed between

inter- and intraplate events in Japan (MATSU’URA, 1993). Three similar events in

Japan (1940, 1983, 1993) with similar magnitudes and source regions showed great

variability in p. There may be a correlation with the degree of heterogeneity of the

fault zone of the main shock.

Stochastic models for temporal shallow seismicity must include the existence of

aftershocks. UTSU (1961, 1969) discusses the characterization of individual

aftershock sequences by the values p and c, indicating that derived formulae must

cater for the variation implicit in (2). This was the motivation for the ETAS model

formulated by OGATA (1988), which incorporates (2) together with a constant

background activity rate. Our object is to construct an alternative model, which

besides producing modified Omori formula decay, also allows for additional

behaviors in the underlying rate of main sequence events. Our candidate for the

latter is the Stress Release Model (SRM) proposed by VERE-JONES (1978). This is a

stochastic version of the elastic rebound theory, incorporating a deterministic

build-up of stress within a region and its stochastic release through earthquakes.

The key variable, or state, is the stress level in a region, which controls the

probability of an earthquake occurring. This stress level X ðtÞ can be represented in

the form

X ðtÞ ¼ X ð0Þ þ qt � SðtÞ; ð3Þ

where X ð0Þ is the initial value, q is a constant loading rate from external tectonic

forces, and SðtÞ is the accumulated stress release from earthquakes within the region

over the period ð0; tÞ, that is, SðtÞ ¼
P

ti<t Si, where ti and Si are the origin time and

the stress release associated with the i-th earthquake.

The probability intensity of an earthquake occurrence is controlled by a hazard

function WðxÞ, with the interpretation that, given X ðtÞ ¼ x, the probability of an

event occurring in the time interval ðt; t þ DÞ is approximately WðxÞD for small D.
Obviously the function W must be nondecreasing. A constant independent of x would
result in a random (Poisson) model of occurrences. Using

WðxÞ ¼ 0 x � xc
1 x > xc

�
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produces a time-predictable model, supposing a fixed crustal strength xc. An effective

compromise (ZHENG and VERE-JONES, 1991, 1994) between these extremes of

behavior is the form WðxÞ ¼ expðl þ mxÞ. It also represents the behavior that might

be expected from a region with a locally heterogeneous strength. We can interpret the

constant l (or rather the parameter a that replaces it, see below) as effectively a

parameter to be fitted for the unknown initial value of stress, while the constant m is

an amalgam of the strength and heterogeneity of the crust in the region.

Statistical analysis is made possible by treating the data in historical earthquake

catalogs as a point process in time-stress space with conditional intensity function

kðtÞ ¼ WðX ðtÞÞ ¼ exp½l þ mðX ð0Þ þ qt � SðtÞÞ
 ¼ exp½a þ mðqt � SðtÞÞ
: ð4Þ

Estimates of the parameters can then be found by maximizing the log-likelihood

function (see, for example, DALEY and VERE-JONES, 1988). Stochastic process

properties have been examined by VERE-JONES (1988), ZHENG (1991) and BOROVKOV

and VERE-JONES (2000).

Obviously, stress transfer and interaction cannot be considered in the simple

stress release model, motivating a modification of the stress release model as follows.

The modeled seismic area is subdivided into n regions. The evolution of stress XiðtÞ in
the ith region can then be rewritten, generalizing (3), as

XiðtÞ ¼ Xið0Þ þ qit �
Xn
j¼1

hijSðjÞðtÞ; ð5Þ

where SðjÞðtÞ is the accumulated stress release in region j over the period ð0; tÞ, and
the coefficient hij measures the fixed proportion of stress drop, initiated in region j,
which is transferred to region i. Clearly hii ¼ 1 for all i. Here, hij may be positive or

negative, resulting in damping or excitation respectively. This is called a linked stress

release model (LSRM) ( LIU et al., 1998 ; LU et al., 1999). Note that the construction

treats space only in the form of regions, which will be of differing size and shape.

Hence there is no requirement for symmetry in the transfers, as these are not between

points, and hence no distance can be calculated. Instead we fit the transfers

statistically.

We shall assume each region to have an exponential risk function

WiðxiÞ ¼ expðli þ mixiÞ, with differing parameters indicating different tectonic prop-

erties by region. In other words, the strength (earthquake triggering condition) and

tectonic loading rate can differ in each seismic region. Thus, in a similar manner to

(4), we obtain a point process conditional intensity function

kiðtÞ ¼ WiðXiðtÞÞ ¼ exp ai þ mi qit �
Xn
j¼1

hijSð jÞðtÞ
 !" #

; ð6Þ

for each region i.

Vol. 160, 2003 A Stochastic Two-node Stress Transfer Models 1431



In order to fit the model to data we need to estimate the value of stress released

during an earthquake. This requires a relationship between the observed quantity,

magnitude, and our notional variable, stress. KANAMORI and ANDERSON (1975) show

that the magnitude M is proportional to the logarithm of the seismic energy E
released during an earthquake according to the relation M ¼ 2

3 log10 E þ const: For
simplicity, we assume that the stress drop during an earthquake is

S / E1=2 ð7Þ

(Benioff strain), giving the formula

S ¼ 100:75ðM�M0Þ; ð8Þ

where M0 is the normalized magnitude. The use of the exponent 1=2 in (7) has been

investigated by ZHENG and VERE-JONES (1991), who found that this provided the

best fit statistically, although the results were not particularly sensitive to an

exponent in the range ð1=3; 1Þ. A similar phenomenon for the accelerating moment

release model was observed by JAUMÉ and SYKES (1999), who felt that a Benioff

strain variable was favored by the use of a restricted magnitude range.

The central tenet of this paper is, using a two region version of the above

formulation, to represent main shocks by one region (henceforth node ), denoted A,

and aftershocks by the second node (B). In this case the ‘‘regions’’ will in fact be

spatially congruent, with A comprising the largest fault or faults, and B the

secondary faults on which corresponding aftershocks will occur. In terms of the

linked stress release model the essential distinction is in the nature of the stress

loading. For node A, it is tectonic in nature, while for node B it is basically due to the

stress release from node A. This later can be thought of as the ‘‘secondary

redistribution’’ of MENDOZA and HARTZELL (1988); DIETERICH (1994) similarly

supposed aftershocks to represent adjustments on secondary faults to stresses

induced by main shock slips. In fact, we will later assume that there can be some

tectonic loading at node B as well, in order to produce behavior approximating the

modified Omori law. Hence, instead of node B representing a single process, it may

be better thought of as the superposition of a large number (cf., KISSLINGER, 1996) of

independent statistically identical processes. This enables us to make the simplifi-

cation that the jumps down in the stress level of node B can be independent of the

stress level, presuming that larger events simply load a greater number of secondary

faults, in line with the greater extent of the original rupture. KISSLINGER (1996)

further notes that there is no theoretical basis for determining the magnitude of an

aftershock from that of the main shock, hence we can assign a distribution of stress

releases to node B independent of the joint process history. The self-similar/fractal

nature of faulting (KNOPOFF, 1996) implies that a large event on the main fault (node

A) loads some number of the many smaller faults in the neighborhood of the original

slip, which collectively comprise node B. One can then assume that each minor fault
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has a number of even smaller faults to which it disperses stress, and so on, until the

magnitude cutoff in the Omori law is reached. In sequences which include a

secondary sequence triggered by a strong event, such as Whittier Narrows and

Superstition Hills (KISSLINGER and JONES, 1991) or Landers/Big Bear (JONES, 1994),

a third node might be included to represent the intermediate size events.

We will show that the simple scheme outlined above not only displays aftershock

sequences, but also that such sequences follow patterns specified by the modified

Omori formula. We shall next derive, analytically, decay formulae for the aftershock

frequency, and show how the approximation can closely fit the modified Omori law

(2). Following that we shall fit the entire point process model to a catalog of

aftershocks from California, in order to demonstrate that the model captures most of

the dynamics producing aftershocks. Using the aftershock sequence from the

Valparaiso earthquake of March 3, 1985, we will then show how a very close estimate

of the decay parameter p can be extracted from the fitted SRM parameters.

2. Derivation of the Decay Formula

Let fX1ðtÞ;X2ðtÞg be a bivariate process of the type (5), X1ðtÞ representing the

stress at node A and X2ðtÞ standing for the stress level at node B. In accordance with

our construction, we set h12 ¼ 0 (no stress transfer from B to A), with hii ¼ 1, as

usual. Since there is no stress transfer to A from node B, the process X1ðtÞ is just a
simple SRM whose behavior is quite well studied. In particular, in the case of the

exponential hazard function W1, we know the conditions for stability of the process

in the long run and can compute some important characteristics of the process, such

as the stationary distribution (BOROVKOV and VERE-JONES, 2000). Thus we can

concentrate on the behavior of node B only.

The node B also evolves generally as an isolated SRM process, but, from time to

time, the value of X2ðtÞ increases by a random jump due to a stress discharge at node

A, DX2ðtÞ ¼ n > 0 when DX1ðtÞ 6¼ 0. Interpreting a large jump of that sort as a major

seismic event, we want now to analyze how X2 behaves during a (relatively) short

period after it. More precisely, we want to analyze the ‘‘typical behavior’’ of the

hazard function W2ðX2ðtÞÞ in the absence of any further jumps at node A, when the

starting level of stress at node B is rather high. If the stress drops at node B are

relatively small and the hazard function value initially is high, the node will be losing

stress in a rather long series of drops. The ‘‘typical value’’ of the hazard function t
time units after a sharp increase of the risk due to a large stress transfer from node A

would then give us the frequency at which jumps occur at node B at that time, i.e.,

the frequency law for the aftershocks.

To simplify notation, we introduce a new process, ZðtÞ, which describes the

behavior of such an isolated node with a fixed initial value z, and put q ¼ q2;W ¼ W2.

In this context it is convenient to use generators (see, for example, KURTZ, 1981,
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Chapter 3) to derive properties of the process. The generator, A, of the process ZðtÞ
is specified by its action on a function h as

AhðxÞ ¼ lim
D!0

D�1
h
EðhðZðt þ DÞÞjZðtÞ ¼ xÞ � hðxÞ

i
¼ lim

D!0
D�1

h
hðxþ qDÞð1� WðxÞDÞ þ Ehðxþ qD � nÞWðxÞD

� hðxÞ þ oðDÞ
i
¼ qh0ðxÞ þ WðxÞðEhðx� nÞ � hðxÞÞ; ð9Þ

where Eð�Þ denotes the expected value, h is a bounded continuously differentiable

function and n a random variable which has the jump distribution J at node B (see

e.g., BOROVKOV and VERE-JONES, 2000).

What could be meant by the ‘‘typical behavior’’ of the hazard function at node B

after a large jump at A? Recall that, for two processes fX ðtÞg and fY ðtÞg, for any

bounded continuous ‘‘test’’ function uðxÞ, one has EuðX ðtÞÞ ¼ EuðY ðtÞÞ if and only

if X ðtÞ has the same distribution as Y ðtÞ. So if the ‘‘typical value’’ of X ðtÞ is given by a

deterministic function mðtÞ, and the variation of X ðtÞ (in a certain range of t) is not
high, then one may expect that

EuðX ðtÞÞ � uðmðtÞÞ:
In fact, this last relation can be taken as a definition of the ‘‘typical behavior’’ of

X ðtÞ. It will of course depend on the choice of the test function uðxÞ. A standard

choice is to take uðxÞ � x which takes the typical behavior to be the mean function

mðtÞ ¼ EX ðtÞ. Choosing uðxÞ � x2 leads to mðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EX 2ðtÞ

p
, and so on. In the

general case, if uðxÞ has an inverse u�1, we set

mðtÞ ¼ u�1ðEuðX ðtÞÞÞ: ð10Þ
This approach is, in a sense, similar to the method of moments in statistics where one

equates theoretical moments to the sample ones to get estimates for parameters. The

particular choice of u is a rather subjective issue, depending often on computational

convenience. The choice uðxÞ ¼ x yielding the mean function does not appear to be

any better than any other u. One usually uses means simply because they are easier to

compute, since the value of interest is a sum of random variables. On the other hand,

when the variation of the process value is relatively small for any given t from a time

interval, any reasonable choice of the test function u would lead to about the same

answer for this time interval.

Assuming the exponential hazard function W, we will derive first an approximate

form of the mean function EWðZðtÞÞ and then an explicit closed form for the ‘‘typical

behavior function’’ for the risk WðZðtÞÞ corresponding to the test function choice

uðxÞ � 1=x. We will see that the expressions will be very close to each other.

Setting, for a bounded smooth (in an interval D such that PðWðZðtÞÞ 2 DÞ ¼ 1; in

the case of the exponential hazard function we can put D ¼ ð0;1Þ) function u,

f ðtÞ ¼ EuðWðZðtÞÞÞ � EhðZðtÞÞ for hðxÞ ¼ uðWðxÞÞ;
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we observe from (9) that

d
dt
f ðtÞ ¼ EAhðZðtÞÞ ¼ qEh0ðZðtÞÞ þ EWðZðtÞÞ½EðhðZðtÞ � nÞjZðtÞÞ � hðZðtÞÞ
;

n being a random variable, independent of ZðtÞ, following the jump distribution

J . Choosing uðxÞ � xj, x > 0, j ¼ . . . ;�1; 0; 1; . . . ; leads to hjðxÞ ¼ WjðxÞ �
expð jðmxþ lÞÞ and hence, for the functions

fjðtÞ ¼ EWjðZðtÞÞ; j ¼ . . . ;�1; 0; 1; 2; . . . ;

we get

f 0j ðtÞ ¼ jmqfjðtÞ þ ðqð jmÞ � 1Þfjþ1ðtÞ; j 6¼ 0; ð11Þ

where qðkÞ ¼ Ee�kn is the Laplace transform of the jump size n (when j ¼ 0, we

simply get the identity 0 ¼ 0).

The ‘‘upper half’’ (case j > 0) of (11) is an infinite hierarchy of differential

equations. There is apparently no simple way of solving the hierarchy. In statistical

mechanics, to ‘‘close’’ such infinite systems, one makes a plausible simplifying

assumption (such as the ergodic hypothesis used to derive the Boltzmann equation).

Similarly, we can assume here that, when the risk is rather high ( just after the inflow

of stress at time t ¼ 0 from an event at node A, the value of the hazard function is

large), and our node B is releasing stress in a series of relatively small jumps, the

coefficient of variation of the risk is small:

EW2ðZðtÞÞ
½EWðZðtÞÞ
2

� 1; or f2ðtÞ � f 21 ðtÞ

on some time interval. Then, instead of (11) for j ¼ 1, we have the following equation

for only one unknown function yðtÞ to be used as an approximation to f1ðtÞ:

y0ðtÞ ¼ syðtÞ � ay2ðtÞ; s ¼ mq; a ¼ 1� qðmÞ > 0:

The solution to this equation is easily seen to be given by

yðtÞ ¼ s
að1� Ce�stÞ ;

C being the integration constant. Now clearly C ¼ 1� s=aw, where w ¼ WðZð0ÞÞ is
the initial risk at node B just after the event at A. This leads to the following

expression for our approximation yðtÞ to the mean function:

yðtÞ ¼ w
e�st þ ð1� e�stÞaw=s : ð12Þ

In the case where there is no tectonic input at node B, s ¼ 0, and (12) reduces to

wð1þ awtÞ�1 which is exactly the Omori law (1).
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The ‘‘lower half’’ (case j < 0) of (11) is, in contrast to the case j > 0, a ‘‘closed’’

sequence of differential equations which can be solved recursively. Choosing j ¼ �1

in (11), we get, for the mean reciprocal hazard function f�1ðtÞ the equation

f 0�1ðtÞ ¼ �sf�1ðtÞ þ a�; a� ¼ qð�mÞ � 1 > 0

(we have to assume now that qð�mÞ ¼ Eemn < 1, which is usually the case since the

distribution J is truncated). From this we immediately conclude that

f�1ðtÞ ¼ Ce�st þ a�

s
¼ 1

w
e�st þ a�

s
ð1� e�stÞ

(using the initial condition f�1ð0Þ ¼ 1=WðZð0ÞÞ ¼ 1=w). Applying our definition (10)

yields the ‘‘typical behavior function’’

1

f�1ðtÞ
¼ w
e�st þ ð1� e�stÞa�w=s ; ð13Þ

which is basically identical to (12), with the only difference that, instead of a we

have now a�. But this difference is, in fact, very small. Indeed, our assumption that

the stress change due to a single jump of size n at node B is small relative to the

total stress accumulated there means that the hazard value WðxÞ ¼ expðl þ mxÞ
changes insignificantly when the value of x decreases by n. This implies that the

values our random variable mn takes are usually rather small, so that one can

expect that

qð�mÞ ¼ Ee�mn � 1� mEn:

Therefore

a ¼ 1� qðmÞ � mEn � qð�mÞ � 1 ¼ a�:

Having found f�1ðtÞ, we can then easily use (11) to compute f�2ðtÞ and so on. The

resulting expressions for the moments f�jðtÞ, j ¼ �1;�2; . . . ; will be linear

combinations of exponential functions of t (case q 6¼ 0) or polynomials of the

respective order j (when q ¼ 0). We can then, in particular, find the variance of

the reciprocal risk process which would indicate how large the deviations from the

Omori-type law could be. To illustrate this statement, we will find now the

variance of the reciprocal risk process in the case when q ¼ 0 (corresponding to the

classical form of the Omori law). Clearly, in this case we have f�1ðtÞ ¼ 1=w þ a�t
from (13), and hence (11) for j ¼ �2 and the initial condition f�2ð0Þ ¼ w�2

immediately yield

f�2ðtÞ ¼ ðqð�2mÞ � 1Þ
�
1

w
þ a�

2
t


t þ 1

w2
:
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Therefore

Var
1

WðZðtÞÞ

� �
¼ f�2ðtÞ � f 2�1 ¼ b

1

w
þ a�

2
t

� �
t

with b ¼ qð�2mÞ � 1� 2a� ¼ Eðe�mn � 1Þ2. So the variance is small for small values

of t, and it is small even for moderate t’s when the initial risk w is large enough and a�

is small (which, as we have already said, is the case when mn is a ‘‘small’’ random

variable). This indicates that, in the respective range of t, our ‘‘typical behavior’’

functions (12) and (13) will be rather close to the observed frequencies of the events

on node B which we interpret as aftershocks, and so the (modified) Omori law will

pretty well describe the behavior of the node.

DIETERICH (1994) constructed a general analytic physical model of earthquake

nucleation and time to instability which results in a formula for the seismicity rate

of aftershocks. The approach involves calculating the change in an assumed steady

background seismicity rate r due to some variation in the shear stressing rate.

Aftershocks arise as the effect of a step in shear stress (due to the main shock)

superimposed on the background shear stressing rate, and followed by a constant

shear stressing rate. In the case where the latter is nonzero, the derived seismicity

rate is

R ¼ r _ss= _srsr
_ss
_srsr
exp �Ds

Ar

� �
� 1

h i
exp �t

ta

� �
þ 1

; ð14Þ

where A is a fault constitutive parameter, r the reference seismicity rate, and ta the

characteristic time for the seismicity to return to steady state, defined as the time at

which the activity returns to the background rate. Parameters r; s and sr are

respectively the normal, shear and reference (before the drop) shear stress, and

Ds < 0 is the stress change initiating the process. A most interesting observation is

that, by setting

s ¼ 1=ta; w ¼ r exp
Ds
Ar

� 

; a� ¼ _srsr

r _ssta
;

(12)–(13) are equivalent to the formula (14) for the seismicity rate following a stress

step derived by DIETERICH (1994). Hence, provided s > 0, (13) gives the Omori law

for t < ta, after which seismicity merges to the background rate given by q > 0.

Note that the two node model described above is fitted, as we shall see later,

through the observed event data, rather than to physical quatities as in the formula

(14). The stochastic nature provides a mechanism for the noise of individual

aftershocks around the mean rate. The model also allows for repeated, possibly

overlapping, main-shock aftershock sequences, as does the ETAS model. The

model can be used to forecast activity in a probabilistic sense (VERE-JONES, 1995)
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and, furthermore, these forecasts can be updated in the light of activity or the

absence thereof.

3. Numerical Fitting

As noted by DIETERICH (1994) (14), and hence (12)–(13), give the Omori law

provided s > 0. However, in our formulation, it is also possible for s (and hence q) to
be negative, representing a decrease in stress over time in addition to the decrease due

to aftershocks. We would expect faster decay in the seismicity rate in such cases, but

do the decay functions (12)–(13) still mimic the modified Omori law (2)? A second

question is the range of values obtainable for p. One way to investigate this is to

numerically find values of K; c; p to minimize the mean-squared error between the

two functions for given values of s;w; a. In order to improve the stability of the

algorithm, and because of the scale and nature of c, we choose to make this a fixed

value of 0.1, thus identifying the time units. Figure 1 shows an example of the fit with

a ¼ 0:5;w ¼ 25; s ¼ �0:25, producing estimates of K ¼ 1:929; p ¼ 1:367, for the

corresponding modified Omori formula. As we can see, the two curves are unlikely to

be separated on the basis of observations. Experimentation resulted in values of p
ranging from 0.5 to 1.0 (s > 0) and 0.8 to 1.7 (s < 0), although these are certainly not

limits. Figures 2 and 3 show how the fitted p-value depends on the parameters a;w
and s. We see that s is the primary factor, p decreasing almost linearly with s. While p
also increases somewhat with a and w, it is in a nonlinear fashion, and soon reaches

saturation point. DIETERICH (1994) observed that p > 1 could be a result of stress

decreasing logarithmically with time. This is paralleled here by the fact that values of

p > 1 are produced only by s < 0, as this implies q < 0, and hence a logarithmically

decreasing point process intensity.
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Figure 1

Decay of aftershock frequency for modified Omori law (dashed line) and two-node model (12)–(13)

(solid line).
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4. Examples

The single most important feature of the linked stress release model is that it can

be objectively fitted to data by means of maximum likelihood estimation. To do this

we numerically maximize the log-likelihood
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Dependence of p on parameters from (13) for s < 0:
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log LðT1; T2Þ ¼
X

k:T1�tk�T2
log kðtkÞ �

Z T2

T1

kðtÞ dt;

(see, for example, DALEY and VERE-JONES, 1988) where events occur at ftkg, and
T1 < t1 < � � � < tn < T2 is the observation interval.
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Dependence of p on parameters from (13) for s > 0.
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This naturally raises the question of how well the model explains actual data. We

shall take the PDE catalog from 1973 to present, for a region corresponding roughly

to California. Events were identified as either main shocks or aftershocks by the M8

declustering procedure (KOSSOBOKOV, 1997), and trimmed to minimum magnitudes

of 4.5 (main shocks) and 4.0 (aftershocks). The difference in the magnitude cutoffs

corresponds to the accepted designation of aftershocks as being of smaller magnitude

than the main shock and matches the observation of KISSLINGER and JONES (1991) of

a smallest observed difference of 0.3–0.6 between the magnitudes of the main shock

and largest aftershock. The result was a catalog of 425 main shocks and 1273

aftershocks, as shown in Figure 4. We note that this is of course a superposition of

multiple sequences, but repeated sequences, if they even exist in the time frame, are

hard to identify. However, the practice of superimposing sequences is an accepted

one in the analysis of aftershocks (see, for example, PAPAZACHOS, 1974, or DAVIS and

FROHLICH, 1991), and this is the equivalent in the framework we are using. It also

accords very well with our object of determining if there are any effects the model is

unable to deal with.

Three two-region linked stress release models (6) (cf. BEBBINGTON and HARTE,

2001) were fitted to the data. These were the independent regions (or unlinked) model

(hij ¼ 0; i 6¼ j), the full (linked) model (hij 6¼ 0; 8i; j) and the A/B node model

presented above with h12 ¼ 0; h21 6¼ 0. The goodness of fit of the model is measured

by the Akaike Information Criterion (AIC), defined as
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236 238 240 242 244
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Figure 4

California epicentres; main shocks (left) and aftershocks (right). Symbol size scales with magnitude.

Longitude is given in degrees E of Greenwich.
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AIC ¼ �2 log Lþ 2k

(AKAIKE, 1977), where L is the maximum likelihood, and k the number of fitted

parameters. The best model is that with the smallest AIC. The results are presented in

Table 1. Firstly we note the negative fitted values of q, indicating that the dominant

p-values in the catalog are greater than 1. KISSLINGER and JONES (1991) likewise

determined that the median p-value in Southern California is greater than 1. The high

relative AIC value of the independent model indicates that the linked stress release

model does pick up the dependence of the aftershocks. Further, the negative values

for m in this case indicates that the independent model considers the aftershocks to be

self-exciting (cf. (6)), which is physically implausible. The fact that the remaining two

AICs are very close indicates that the proposed model fits the data very well. The

difference, as can be seen by the fitted parameters, is due to the main shocks,

probably because of the inclusion of main shocks without aftershocks in the catalog.

We found that raising the magnitude cutoff for the main shocks to 5.0, corresponding

to the average observed difference of 1.0 between a main shock and its largest

aftershock (KISSLINGER and JONES, 1991), results in the A/B model having a superior

AIC. Further increasing the main shock and aftershock cutoffs to 6.0 and 5.0,

respectively, makes this difference statistically significant. This difficulty with smaller

magnitudes seems to be a characteristic of the stress release model that is currently

being investigated further. It does indicate that detailed analysis of a single sequence

will be best done for a case where aftershock magnitudes are large. Such a sequence is

that following the Valparaiso (Chile) earthquake of March 3, 1985.

The Valparaiso aftershock sequence has 88 events of magnitude 5.0 or greater in

the 802 days following the main shock. The decay rate fits very well the modified

Omori formula with p ¼ 1:038 (KISSLINGER, 1988). Fitting a SRM intensity (4) to the

sequence of events produces parameter estimates a ¼ 5:344; m ¼ 0:0264;

q ¼ �0:000676. We now need to transform these into estimates of s;w; a�. Firstly,
s ¼ mq ¼ �1:76� 10�5. From (4) we see that w ¼ WðZð0ÞÞ ¼ ea ¼ 209:5. Finally,

a� ¼ EðemnÞ which, averaging over the events using (8), we obtain as

Table 1

Estimated parameters and fits for the California aftershock data. The top values are for the main shock node,

the bottom for the aftershock node

Model k a m q H AIC

Indep. 6 )2.947 0.00035 0.513 1 0 11193.6

)1.999 )0.00091 0.575 0 1

Full 8 )2.898 7.6 · 10)5 4.410 1 7.87 11040.9

)1.510 2.2 · 10)4 )5.665 )9.04 1

A/B 7 )2.947 0.00035 0.513 1 0 11042.9

)1.510 0.00022 )5.665 )9.04 1
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a� ¼
X
k

expð0:0264� 100:75ðMk�5:0ÞÞ=88 ¼ 1:167:

These values produce an estimate of p ¼ 1:041 by numerical fitting of (13) to (2),

which is satisfactorily close to the original estimate. This confirms that the two node

model is able to reproduce the modified Omori formula in practice.

5. Discussion

We have presented an alternative to the ETAS model (OGATA, 1988) for point

process data from aftershock sequences. It is equally capable of being fitted to

data, with 7 as opposed to 5 parameters, but does allow for elastic rebound effects

to trigger main shocks at semi-regular intervals. The model is capable of

reproducing the modified Omori law with a range of p values. In the case where

the rate of tectonic input q > 0, it provides the form of the decay law derived by

DIETERICH (1994), when the stressing rate _ss 6¼ 0. When the tectonic input at the

second (aftershock-producing) node of the model q ¼ 0 we obtain the classical

Omori formula. If q < 0, the decay rate fits well the modified Omori formula,

typically with p > 1. This parallels the observation of DIETERICH (1994), that p > 1

can be obtained by a decreasing stressing rate and the result of MIKUMO and

MIYATAKE (1979) that high p values were obtained for the shortest maximum

relaxation time.

The strong dependence of the estimated value of p on the parameter s ¼ mq is

consistent with the absence of any strong dependence on main shock magnitude. The

latter is introduced into the decay formula through the parameter w in the model.

Fitting the model to California data indicated that it captured most of the

information concerning dependence on main shocks, although the fit was

improved by higher magnitude cutoffs. The fitted result of q < 0 is in line with

the determination of KISSLINGER and JONES (1991) of a median p > 1. Fitting

only the aftershocks of the Valparaiso earthquake of 3 March 1985 disclosed an

estimated p almost identical to that obtained through direct analysis of the

catalog.

Forecasting (in a probabilistic sense, see VERE-JONES, 1995) of aftershocks can be

achieved by repeated forward simulation of the fitted model (see, for example, LU

et al., 1999). As the fitting process incorporates the history of the process, such

forecasts can be updated as aftershocks (or quiescent periods) occur.

One obvious cause of difficulties with the model is large aftershocks which

themselves are accompanied by many secondary aftershocks. This would best be

handled by extending the model to a third ‘cascading’ node, which stands in

relation to the second node as that stands to the first. Such sequences are in

practice modeled by a combination of the modified Omori formula (UTSU, 1970;

OGATA 1983).
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