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Classical Dynamical r-matrices for the
Chern–Simons Formulation of Generalized
3d Gravity

Juan Carlos Morales Parra and Bernd J. Schroers

Abstract. Classical dynamical r-matrices arise naturally in the combi-
natorial description of the phase space of Chern–Simons theories, either
through the inclusion of dynamical sources or through a gauge fixing
procedure involving two punctures. Here we consider classical dynamical
r-matrices for the family of Lie algebras which arise in the Chern–Simons
formulation of 3d gravity, for any value of the cosmological constant. We
derive differential equations for classical dynamical r-matrices in this case
and show that they can be viewed as generalized complexifications, in a
sense which we define, of the equations governing dynamical r-matrices
for su(2) and sl(2,R). We obtain explicit families of solutions and relate
them, via Weierstrass factorization, to solutions found by Feher, Gabor,
Marshall, Palla and Pusztai in the context of chiral WZWN models.

1. Introduction and Background

1.1. Motivation

One important reason for studying classical dynamical r-matrices, and the
one which motivates this paper, is their role in describing gauge-fixed Poisson
structures of character varieties over punctured Riemann surfaces. Such Pois-
son spaces appear in particular as phase spaces of lower-dimensional gauge
theories, like the Chern–Simons formulation of gravity in three dimensions
(see, e.g., [1–5]). The gauge fixing is interesting and natural classically and
offers a route to the quantization of constraint systems which avoids some of
the technical challenges of imposing constraints after quantization. This is of
particular interest in the Chern–Simons formulation of 3d gravity where the
quantized theory is an interesting toy model for quantum gravity.
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In this paper we therefore study the space of classical dynamical r-
matrices up to a naturally defined notion of gauge equivalence for some par-
ticular Lie algebras gλ that appear in the setting of 3d gravity, namely the Lie
algebras of the symmetry groups of maximally symmetric three-dimensional
Riemannian and pseudo-Riemannian manifolds. In this extended introduction
we define classical dynamical r-matrices, illustrate their appearance in gauge-
fixed character varieties in a simple example and then prepare the ground for
a full classification of the classical dynamical r-matrices which are relevant for
3d gravity in the remainder of this paper.

1.2. Definitions

A classical dynamical r-matrix is an equivariant solution of the Classical
Dynamical Yang–Baxter Equation (CDYBE). More precisely, given a finite-
dimensional real (complex) Lie algebra g, a Lie subalgebra h ⊆ g and an
element K ∈ (S2g)g, a classical dynamical r-matrix associated to the triple
(g, h,K) is a h-equivariant locally smooth (meromorphic) function K + r :
h∗ → g ⊗ g that solves the CDYBE

CDYB(r) ≡ [[r, r]] + Alt(dr) = −[[K,K]]. (1)

Explicitly,

[[r, r]] = CYB(r) ≡ [r12, r23] + [r13, r23] + [r12, r13]

is the standard Schouten bracket and

Alt(dr) ≡ h
(1)
i

∂r23

∂hi
− h

(2)
i

∂r13

∂hi
+ h

(3)
i

∂r12

∂hi
,

in terms of a basis {hi}i=1,··· ,dim h of h and its dual {hi}i=1,··· ,dim h for h∗,
where

h
(1)
i

∂r23

∂hi
=

∂rab

∂hi
hi ⊗ Ta ⊗ Tb, h

(2)
i

∂r13

∂hi
=

∂rab

∂hi
Ta ⊗ hi ⊗ Tb,

h
(3)
i

∂r12

∂hi
=

∂rab

∂hi
Ta ⊗ Tb ⊗ hi,

with r =
∑

ab rabTa ⊗ Tb and {Ta}a=1,··· ,dim g a basis of g. The Einstein sum-
mation convention will be used throughout the paper.

The h-equivariance condition means that

d

ds

∣
∣
∣
∣
s=0

r(Ad∗(esh)x) + [r(x), h ⊗ 1 + 1 ⊗ h] = 0 (2)

holds for all x ∈ h∗ and h ∈ h, i.e. the coadjoint action of h on the argument
of r equals to the adjoint action of h on the Lie algebra part of r.

The CDYBE originally appeared in research related to integrability in
conformal field theories (see, e.g., [6,7]). Since then, this equation, its solu-
tions and its quantum counterpart have been widely studied, especially its
applications to the theory of integrable systems, (quasi-) Poisson geometry
and special functions (see, e.g., [8–10]).



Classical Dynamical r-matrices

The definition of a classical dynamical r-matrix varies according to the
reference under consideration and may include or omit the equivariance condi-
tion. For example, in the literature on the origin and application of solutions of
the CDYBE to (quasi-)Poisson structures, equivariance is part of the definition
(see, e.g., [11]), while in the literature concerning their application to quantum
integrable systems the equivariance condition is usually not considered (see,
e.g., [12]). Here we make the distinction between solutions to the CDYBE and
classical dynamical r-matrices, where the latter are obtained from the former
after imposing the equivariance condition (2).

Let G be a Lie group and denote by g its Lie algebra. Given a Lie sub-
algebra h and an element K ∈ (S2g)g, the set of classical dynamical (g, h,K)
r-matrices is denoted by Dyn(g, h,K). By taking the union of these spaces for
all Lie subalgebras h of g, we get the set of dynamical r-matrices associated
to the pair (g,K), denoted by

Dyn(g,K) =
⋃

h≤g

Dyn(g, h,K), (3)

whose geometry and structure are studied, e.g., in [13] and [14].
If h and h′ are conjugate-equivalent Lie subalgebras of g, say by g ∈ G,

then the map

Dyn(g, h,K) → Dyn(g, h′,K)

r(x) �→ Ad(g) ⊗ Ad(g)r(Ad∗(g−1)x)
(4)

is well-defined and bijective (see Lemma A in Appendix A), allowing us to
define an action of the Lie group G on the space (3).

In this paper, as is usual in the literature regarding the CDYBE, we focus
in the case where the Lie subalgebras considered are Cartan subalgebras of g.
In the rest of the paper, h will generally denote a Cartan subalgebra of a Lie
algebra.

Let G be a Lie group and denote by Cg the set of Cartan subalgebras of
the Lie algebra g and by CAd

g the set of conjugacy classes of Cartan subalgebras
of g. Analogous to the construction of the set of classical dynamical r-matrices
Dyn(g,K), we restrict to Cartan subalgebras and define the set of Cartan
classical dynamical r-matrices associated to (g,K) by

DynC(g,K) =
⋃

h∈Cg

Dyn(g, h,K). (5)

By picking one representative in each conjugacy class of CAd
g and collecting

them in a set denoted by [CAd
g ], the set (5) can be decomposed as

DynC(g,K) =
⋃

g∈G

⊔

h∈[CAd
g ]

Dyng(g, h,K),

where Dyng(g, h,K) is a short notation for the image under the map (4) for
g ∈ G.



J. C. M. Parra and B. J. Schroers Ann. Henri Poincaré

Writing H ≤ G for a the Lie subgroup of G such that Lie(H) = h, the
group of smooth functions from h∗ to the stabilizer of H

G(g, h) ≡ {p ∈ Fun(h∗, GH) | p is smooth}, (6)

the so-called group of dynamical (g, h) gauge transformations, acts on classical
dynamical r-matrices Dyn(g, h,K), for each h ∈ [CAd

g ], according to

p � r = Ad(p) ⊗ Ad(p) (r + ηp − ηp
21) for r ∈ Dyn(g, h,K), (7)

where ηp : h∗ → h ⊗ gh is the dual of the gh-valued 1-form ηp = p−1dp, i.e.
explicitly

ηp =
dim h∑

i=1

hi ⊗ p−1 ∂p

∂hi

in terms of the dual bases {hi}i=1,··· ,dim h and {hi}i=1,··· ,dim h for h and h∗,
respectively.

The moduli space of Cartan classical dynamical r-matrices associated to
(g,K) is defined by

MC(g,K) =
⊔

h∈[CAd
g ]

M(g, h,K) (8)

where
M(g, h,K) ≡ Dyn(g, h,K)/G(g, h),

such that the full set of Cartan classical dynamical r-matrices (5) can be gener-
ated from it via (i) dynamical (g, h) gauge transformations (7) on M(g, h,K)
for each h ∈ [CAd

g ] and (ii) the G-action (4) on Dyn(g, h,K) for each g ∈ G

and h ∈ [CAd
g ].

As will be explained below, the Poisson structures of gauge-fixed moduli
spaces of G-flat connections (character varieties) over Riemann surfaces are
in bijection with the moduli space of Cartan dynamical r-matrices MC(g,K).
The decomposition in (8) implies that in order to have a full description of
these Poisson structures, it is sufficient to determine classical dynamical r-
matrices associated to (g, h,K) for representatives h of each conjugacy class
in CAd

g , up to dynamical (g, h) gauge transformations.

1.3. Example: The Four-Punctured S2 with G = SL(2, R)
To illustrate the appearance of dynamical r-matrices in a simple setting, con-
sider the character variety

P0,4
SL(2,R),{Ci} ≡ {A ∈ Hom(π1(Σ0,4), SL(2,R))|A(�i) ∈ Ci for i = 1, 2, 3, 4}/SL(2,R)

where Σ0,4 ≡ S
2 − {4pts} is the four-punctured 2-sphere, {�i}i=1,··· ,4 is the

(homotopy type) set of generators of its fundamental group consisting of four
loops (each going around one of the punctures once) and the Ci’s are fixed
conjugacy classes of SL(2, R). For simplicity we assume the conjugacy classes
are two-dimensional (over R) generated by elements of the form esiJ0 for i =
1, 2, 3, 4, where {Ja}a=0,1,2 is the standard basis of the real Lie algebra sl(2, R)
satisfying

[Ja, Jb] = εabcJ
c,
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and the coefficients are raised or lowered using the Minkowskian metric
diag(1,−1,−1).

The canonical Poisson structure over P0,4
SL(2,R),{Ci} can be seen as a re-

duction of the Poisson structure over the extended space

P0,4
SL(2,R),ext ≡ SL(2, R)1 × · · · × SL(2, R)4

︸ ︷︷ ︸
4 times

,

with Poisson bivector (see, e.g., [15]) given by

Π0,4
ext(r) ≡ rab

∑

1≤i≤j≤4

(Ri
a + Li

a) ∧ (Rj
b + Lj

b), (9)

where r = rabJa ⊗ Jb ∈ sl(2, R) ⊗ sl(2, R) is a classical r-matrix, i.e. a solution
of the Classical Yang–Baxter Equation (CYBE)

[[r, r]] = 0, (10)

such that its symmetric part K ≡ r + r21 is sl(2, R)-invariant.
In the expression above we have adopted the notation of Ri

a and Li
a

to indicate the right and left fundamental vector fields generated by the Lie
algebra element Ja and associated to the i-th copy of SL(2, R), respectively.

The Poisson space P0,4
SL(2,R),{Ci} is obtained from (P0,4

SL(2,R),ext,Π
0,4
ext) by

(i) restricting each copy of SL(2, R) to the corresponding conjugacy class, (ii)
imposing the topological condition that the product of the elements in each 4-
tuple must be the identity element of SL(2, R), and (iii) identifying conjugate-
equivalent 4-tuples. This approach, developed originally by Fock and Rosly
(see, e.g., [15–17]), exhibits explicitly how the (decorated) character variety
P0,4

SL(2,R),{Ci} can be realized as a constrained system.

The dimension of P0,4
SL(2,R),ext is 3 × 4 = 12, while the dimension of

P0,4
SL(2,R),{Ci} is

2 = 12 − 10 = 12 − 4 × (1)
︸ ︷︷ ︸

(i)

− 3︸︷︷︸
(ii)

− 3︸︷︷︸
(iii)

,

where the underbrace symbols indicate which of the three types of constraints
indicated above is responsible of the corresponding dimensional reduction.
Since the constraint functions over P0,4

ext associated to (i) are Poisson func-
tions with respect to Π0,4

ext (see, e.g., [18]), as an intermediate step we have the
partially constrained space given by

P0,4
SL(2,R),ext(cc) ≡ C1 × C2 × C3 × C4

of dimension 8 = 4×2, with Poisson structure given still by the bivector Π0,4
ext, in

such a way that the fully reduced space is obtained by imposing the remaining
6 = 3 + 3 constraints (topological and conjugation equivalence constraints).
The label (cc) is used to indicate each copy of SL(2, R) has been restricted to
the conjugacy class of the corresponding puncture.

The quantization of character varieties (see, e.g., [19]) has been an active
topic of research in the recent years, both in mathematics and physics, since
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it provides, e.g., quantum group representations of the mapping class group of
Riemann surfaces and a quantization scheme for Chern–Simons theory. The
fact that character varieties can be realized as constrained Poisson spaces
implies one needs to deal with the constraints at some point along the way to
quantization. Even though the standard approach is to impose the constraints
at the quantum level (see, e.g., [20,21]), there are technical advantages to
incorporating the constraints at the classical level and then quantizing the
reduced theory.1

At the classical level the (first class) constraints of any constrained Pois-
son space can be gauge-fixed, which amounts to reducing the space to a sector
of the original one with the help of auxiliary (second class) constraints and
defining over it a new Poisson structure (the so-called Dirac brackets, see, e.g.,
[22] and [23]), in such a way that the constraints become Poisson functions
(for details see, e.g., [24–26]). In the particular case of P0,4

SL(2,R),{Ci}, the three
topological constraints (ii) can be gauge-fixed á la Dirac via three auxiliary
constraint functions defined just on the part C1 × C2 of the space (see, e.g., [5]
for details), getting a 5 = 1 + 2 + 2-dimensional intermediate space

P0,4
SL(2,R),{Ci},GF (1,2) = H0 × C3 × C4

where H0 is the Cartan group generated by the Lie algebra generator J0, with
Poisson structure given explicitly for F, F̃ ∈ C∞(SL(2, R) × SL(2, R)) by

{F,ϕ} =
∑

i=3,4

(Ri
0 + Li

0)F,

{F, F̃}(ϕ) = Π0,4
ext(r(ϕ))(dF, dF̃ )

= rab(ϕ)
∑

3≤i≤j≤4

(Ri
a + Li

a) ∧ (Rj
b + Lj

b)(dF, dF̃ ),

(11)

where ϕ is a variable parametrizing the dual of the Lie subalgebra h0 = Lie(H0)
and

r : h∗
0 → sl(2, R) ⊗ sl(2, R)

is now an h0-equivariant solution of the CDYBE (1) such that Sym(r(ϕ)) =
Sym(r) ≡ K, i.e. a classical dynamical r-matrix for the triple (sl(2, R), h0,K).
In fact, the Jacobi identity for the brackets of the form {F, {F̃ , ϕ}} and
{F, {F̃ , F}} (for F, F̃ , F ∈ C∞(SL(2, R)×SL(2, R))) implies the h0-equivariance
of r and CDYB(r) = 0, respectively.
Hence, after performing the gauge fixing, an explicit realization of the Poisson
space P0,4

SL(2,R),{Ci} is obtained by imposing the Poisson constraint

g−1
4 g−1

3 = eϕJ0 ,

obtaining in this way the two-dimensional Atiyah–Bott phase space of SL(2, R)-
flat connections over the four-punctured 2-sphere (see, e.g., [27,28]). Analo-
gously, if instead conjugacy classes generated by elements of the form esiJ1 are

1The two approaches are widely assumed to be equivalent, but there is no proof of this
assumption.
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Table 1. Local isometry groups of pure 3d gravity

ΛC Euclidean Lorentzian

0 SU(2) �< R
3 SL(2,R) �< R

3

> 0 SU(2) × SU(2) SL(2,C)R
< 0 SL(2,C)R SL(2,R) × SL(2,R)

Table 2. Lie algebras of the previous local isometry groups

ΛC Euclidean Lorentzian

0 iso(3) iso(2, 1)
> 0 su(2) ⊕ su(2) so(3, 1)
< 0 so(3, 1) sl(2,R) ⊕ sl(2,R)

considered, the Poisson structure of the gauge-fixed phase space will be defined
in terms of a classical dynamical r-matrix for the triple (sl(2, R), h1,K), where
h1 is the Lie subalgebra generated by J1.

This example2 helps to understand how the Poisson structures of the
moduli space P0,4

SL(2,R),{Ci} are determined by the moduli space of Cartan clas-
sical dynamical r-matrices MC(sl(2, R),K). Indeed, due to (8) and the fact
any Cartan subalgebra of sl(2, R) is either conjugate to h0 or to h1, the prob-
lem of describing the Poisson structures of P0,4

SL(2,R),{Ci} reduces to finding two
classical dynamical (sl(2, R), h,K) r-matrices, one for h = h0 and for h = h1.

1.4. Chern–Simons Formulation of 3d Gravity

Character varieties of the type

Pg,n
G,{Ci} ≡ {A ∈ Hom(π1(Σg,n), G)|A(�i) ∈ Ci for i = 1, · · · , n}/G

appear in the Chern–Simons formulation of 3d gravity for 3-manifolds of the
form M3 ∼= R × Σg,n (stationary spacetimes) and five possible Lie groups
G. Depending on the signature (Euclidean or Lorentzian) and the sign of the
cosmological constant ΛC , the possible five Lie groups G (local isometry groups
of the possible spacetime models of General Relativity in three dimensions)
are

and so, the possible associated Lie algebras g are
These five Lie algebras can be described in a unified way as follows. They

are six-dimensional real Lie algebras generated by {J0, J1, J2, P0, P1, P2} with
commutation relations given by

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pc] = λεabcJ
c (12)

2The gauge fixing for G = SU(2) is completely analogous except that in this case all Cartan
subalgebras are conjugate to h0. It will be interesting to study the complex case G = SL(2,C)
and other topologies like Σ1,1.
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where λ = −c2ΛC and the indices are raised or lowered using the metric

ηab := diag
(

1,−|c|2
c2

,−|c|2
c2

)

with c ∈ iR and c ∈ R for the Euclidean and Lorentzian cases, respectively,
where for the latter it is interpreted as the speed of light. These Lie algebras
are denoted by gλ, since by picking the right metric, i.e. diag(1, 1, 1) for the
Euclidean or diag(1,−1,−1) for the Lorentzian, the commutation relations
depend only on the parameter λ. Similarly, we denote the corresponding Lie
groups in Table 1 by Gλ (Table 2).

For any Lie group G, the Poisson structure of the moduli space Pg,n
G,{Ci}

depends on the choice of a non-degenerate symmetric Ad-invariant bilinear
form over the Lie algebra g = Lie(G). In the case G = SL(2, R) considered
above, this dependence translates into the (equivalent) choice of the element
K in (S2sl(2, R))sl(2,R). For the Lie groups we are interested in this paper Gλ,
the space of non-degenerate symmetric Ad-invariant bilinear forms over the
Lie algebra gλ has two generators [29]

t(Ja, Jb) = 0, t(Ja, Pa) = c2ηab, t(Pa, Pb) = 0, (13)

and

s(Ja, Jb) = ηab, s(Ja, Pa) = 0, s(Pa, Pb) = ληab. (14)

The bilinear form t is usually called the standard (gravity) pairing, since when
it is used in the Chern–Simons formulation of three-dimensional gravity the
action reduces to the Einstein–Hilbert action; meanwhile, s is commonly re-
ferred as the exotic pairing. Nevertheless, both actions provide the same phase
space, i.e. the same equations of motions, but equipped with different sym-
plectic/Poisson structures.

Following the same reductions presented above for G = SL(2, R) and
the four-punctured 2-sphere, the canonical Poisson structure over the space
Pg,n

Gλ,{Ci} of dimension

4n + 12g − 12 = n × (6) + 2g × (6) − n × (2)
︸ ︷︷ ︸

(i)

− 6︸︷︷︸
(ii)

− 6︸︷︷︸
(iii)

,

for any of the Lie groups Gλ presented above, can be recovered starting from
the 6n + 12g-dimensional extended space

Pg,n
Gλ,ext ≡ (Gλ)1 × · · · × (Gλ)n

︸ ︷︷ ︸
n-times

× (Gλ)A1 × (Gλ)B1 × · · · × (Gλ)Ag × (Gλ)Bg
︸ ︷︷ ︸

2g-times
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equipped with the Fock–Rosly Poisson structure [15]

Πg,n
ext (r) =

n∑

i=1

rab

(
1

2
Ri

a ∧ Ri
b +

1

2
Li

a ∧ Li
b + Ri

a ∧ Li
b

)

+
∑

1≤i<j≤n

rab(Ri
a + Li

a) ∧ (Rj
b + Lj

b)

+
∑

1≤i<j≤g

rab
(
RAi

a + LAi
a + RBi

a + LBi
a

)
∧
(
RAi

b + LAi
b + RBi

b + LBi
b

)

+
n∑

i=1

g∑

j=1

rab
(
RMi

a + LMi
a

)
∧
(
R

Aj

b + L
Aj

b + R
Bj

b + L
Bj

b

)

+

g∑

j=1

rab

[
1

2
(R

Aj
a ∧ RAi

b + LAi
a ∧ LAi

b + RBi
a ∧ RBi

b + LBi
a ∧ LBi

b )

+ RAi
a ∧ (RBi

b + LAi
b + LBi

b ) + RBi
a ∧ (LAi

b + LBi
b ) + LAi

a ∧ LBi
b

]

,

(15)
where r ∈ gλ ⊗ gλ is a classical r-matrix such that Sym(r) = Kαβ , where
Kαβ ∈ (S2gλ)gλ is the symmetric element

Kαβ ≡ α

α2 − λβ2
(Ja ⊗ P a + Pa ⊗ Ja) − β

α2 − λβ2
(λJa ⊗ Ja + Pa ⊗ P a)

(16)

associated to the gλ Ad-invariant symmetric bilinear form

(·, ·)α,β = αt(·, ·) + βs(·, ·) (17)

with t and s given by (13) and (14), respectively, and α, β ∈ R. The non-
degeneracy of (·, ·)αβ is equivalent to the condition α2 − λβ2 �= 0 (see, e.g.,
[30]).

Exactly as before, given that the constraints reducing the first n-copies
of Gλ to conjugacy classes Cλ are Poisson functions with respect to Πg,n

ext (see
[18] again for details), we have the partially constrained space given by

Pg,n
Gλ,ext(cc) ≡ (Cλ)1 × · · · × (Cλ)n

︸ ︷︷ ︸
n-times

× (Gλ)A1 × (Gλ)B1 × · · · × (Gλ)Ag × (Gλ)Bg
︸ ︷︷ ︸

2g-times

.

In this case the gauge fixing procedure, via six auxiliary constraint func-
tions defined again over the product of the first two conjugacy classes (Cλ)1 ×
(Cλ)2, will provide the intermediate space

Pg,n
Gλ,{Ci},GF (1,2) = Hλ,0 × (Cλ)3 × · · · × (Cλ)n

︸ ︷︷ ︸
(n−2)-times

× (Gλ)A1 × (Gλ)B1 × · · · × (Gλ)Ag × (Gλ)Bg
︸ ︷︷ ︸

2g-times

of dimension 4n+12g−6, where Hλ,0 is, for definiteness, the Cartan subgroup
with Lie subalgebra hλ,0 generated by J0 and P0 (see [5]). Similarly to the



J. C. M. Parra and B. J. Schroers Ann. Henri Poincaré

SL(2, R) case, the reduced Poisson structure (i.e. the Dirac brackets) is given,
for F, F̃ ∈ C∞(Gn−2+2 g

λ ), by

{γ, ψ} = 0,

{F, γ} = (RJ0 + LJ0)F,

{F,ψ} = (RP0 + LP0)F,

{F, F̃}(γ, ψ) = Πg,n
ext(r(γ, ψ))(dF, dF̃ ),

(18)

where γ, ψ ∈ R parametrize elements of hλ,0 as γJ0 + ψP0, and

r : h∗
λ,0 → gλ ⊗ gλ

is a hλ,0-equivariant solution of the CDYBE (1) with Sym(r(γ, ψ)) = Sym(r) =
Kαβ .

In general, we will require solutions of the CDYBE with hλ,0 replaced by a
representative of each of the conjugacy classes of Cartan subalgebras in gλ. As
shown in Appendix B, the Lie algebras gλ have at most four conjugacy classes
of Cartan subalgebras: For so(4), so(3, 1) and iso(3) the set CAd

gλ
is a singleton,

being all the Cartan subalgebras conjugate to the algebra hλ,0. For iso(2, 1)
the set CAd

gλ
has cardinality two, since any Cartan subalgebra is conjugated to

one of the non-conjugate Cartan subalgebras hλ,0 or hλ,1 (generated by J1 and
P1). Finally for so(2, 2), CAd

gλ
has cardinality four since any Cartan subalgebra

is conjugated to hλ,0, hλ,1, h±
01 (generated by J0 + P0 and J1 − P1) or h∓

01

(generated by J0 − P0 and J1 + P1). Hence, depending on the Lie algebra gλ

and the conjugacy classes considered {Ci}, the Poisson structures of the gauge-
fixed phase space are in correspondence with classical dynamical r-matrix for
the triples (gλ, hλ,Kαβ) with hλ = hλ,0 and hλ = hλ,1 (and also hλ = h±

01 and
hλ = h∓

01 for so(2, 2)).
The rest of the paper is organized as follows: In Sect. 2 we present a

systematical treatment of the CDYBE for the Lie algebras gλ, following the
treatment in [31] and using as a main tool the fact these Lie algebras can be
realized as generalized complexifications of su(2) and sl(2, R). In Sect. 3 a full
description of the set DynC(gλ,Kαβ) and the moduli space MC(gλ,Kαβ) of
Cartan classical dynamical r-matrices is presented, including also some dynam-
ical generalizations of well-known solutions of the CYBE. Section 4 is devoted
to showing that the classical dynamical r-matrices found in the previous section
are gauge equivalent to a family of classical dynamical r-matrices studied by
Feher, Gabor, Marshall, Palla and Pusztai in the setting of gauge-fixed WZNW
models. Finally, in the Appendices we give some technical background regard-
ing the action of G on the sets of classical dynamical r-matrices, the Cartan
subalgebras of the Lie algebras gλ and the Weierstrass factorization theorem.
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2. Structure of the CDYBE for gλ

2.1. The Lie Algebras gλ as Generalized Complexifications

The realization of the Lie algebras gλ as the real form of a generalized com-
plexification of su(2) or sl(2, R), depending on the signature, has proved useful
for describing the classical r-matrices and Poisson–Lie structures associated
to the local isometry groups of 3d gravity (see, e.g., [30]). The Lie algebras
iso(3), so(3, 1) and so(4) can be constructed via generalized complexification
of the real Lie algebra su(2). Analogously, the Lie algebras iso(2, 1), so(3, 1)
and so(2, 2) can be obtained from sl(2, R) using the same construction.

This generalized complexification requires the introduction of a formal
parameter θ such that θ2 = λ and to set

Pa = θJa for a = 0, 1, 2, (19)

where {Ja} are precisely the generators of su(2) or sl(2, R), i.e.

[Ja, Jb] = εabcJ
c.

using the metrics diag(1, 1, 1) or diag(1,−1,−1) to raised or lowered indices
in the su(2) or sl(2, R) cases, respectively.

Formally, the main ingredient of the construction is a ring denoted by
Rλ, which is obtained by adjoining a formal element θ such that θ2 = λ.

Definition 1 [32]. Let λ ∈ R. Then we denote by

Rλ ≡ {(x + θy) | x, y ∈ R, θ2 = λ}, (20)

the ring isomorphic to (R2,+) as an abelian group and with product given by

(x + θy) · (u + θv) = (xu + λyv) + θ(xv + yu).

for x, y, u, v ∈ R.

The construction of Rλ mimics the one of the complex numbers C by
adjoining a formal element i to R such that i2 = −1. Indeed, in the case
λ < 0, it is isomorphic to C. For the other cases, the rings have zero divisors
and are often referred to as dual and hyperbolic numbers in the cases λ = 0
and λ > 0, respectively.

Then for g = su(2) or g = sl(2, R), the generalized complexification g⊗Rλ

is isomorphic to one of the five Lie algebras gλ, via the identification established
in (19):

Lemma 1 [32]. For λ ∈ R we have the following isomorphisms

su(2) ⊗ Rλ
∼=

⎧
⎪⎨

⎪⎩

iso(3) λ = 0
so(4) λ > 0
so(3, 1) λ < 0

, sl(2, R) ⊗ Rλ
∼=

⎧
⎪⎨

⎪⎩

iso(2, 1) λ = 0
so(2, 2) λ > 0
so(3, 1) λ < 0

.

The utility of this algebraic observation will become apparent in the rest
of this paper where we will use it to simplify and indeed solve the CDYBE
for gλ. In preparation for this we introduce the notion of differentiability in



J. C. M. Parra and B. J. Schroers Ann. Henri Poincaré

the ring Rλ, mimicking the familiar definitions for functions of one or several
complex variables.

For ψ, η ∈ R, we denote a generalized complex variable by

z = ψ + θγ (21)

and write its conjugate as
z = ψ − θγ. (22)

Their differentials are

dz = dψ + θdγ and dz = dψ − θdγ.

In the cases when λ �= 0, the generalized analogues of the complex (anti-)
holomorphic derivatives are given by

∂z =
1
2

(
∂

∂ψ
+

1
θ

∂

∂γ

)

and ∂z̄ =
1
2

(
∂

∂ψ
− 1

θ

∂

∂γ

)

,

satisfying

dz(∂z) = 1, dz̄(∂z) = 0, dz̄(∂z̄) = 1, dz(∂z̄) = 0.

Explicitly, by considering a generalized function w = b + θc : Rλ → Rλ, its
generalized partial derivatives are given by

∂zw =
1
2

(
∂b

∂ψ
+

∂c

∂γ
+ θ

∂c

∂ψ
+

1
θ

∂b

∂γ

)

and ∂z̄w =
1
2

(
∂b

∂ψ
− ∂c

∂γ
+ θ

∂c

∂ψ
− 1

θ

∂b

∂γ

)

. (23)

We call a generalized function w Rλ-holomorphic if

∂z̄w = 0, (24)

i.e. if
∂b

∂ψ
=

∂c

∂γ
and

∂b

∂γ
= λ

∂c

∂ψ
.

Consequently, the generalized partial derivative of an Rλ-holomorphic function
becomes a generalized total derivative, given by

dw

dz
=

∂b

∂ψ
+ θ

∂c

∂ψ
. (25)

In the next section, when finding explicitly solutions of the CDYBE for gλ,
this generalized notion of holomorphicity for Rλ will play a key role.

Remark 1. We have not formally defined (anti-)holomorphic derivatives for
functions of Rλ here, and are aware that the presence of zero divisors makes
the definition via limits of difference quotients tricky. However, we will derive
all differential equations in this paper using conventional real calculus, and use
the ring Rλ as a convenient tool for collecting pairs of real equations into one
generalized complex one.
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2.2. Casimirs and the CDYBE for gλ

In terms of the generalized complexification (19), the Casimir (16) can be
written as

Kαβ =
α

α2 − λβ2
(Ja ⊗ θJa + θJa ⊗ Ja)− β

α2 − λβ2
(λJa ⊗ Ja+θJa ⊗ θJa)

(26)

and consequently, by extending linearly the Classical Yang–Baxter map over
the ring Rλ, we obtain

Ωαβ = CYB(Kαβ)

= [μ(λid ⊗ id ⊗ id + id ⊗ θ ⊗ θ + θ ⊗ id ⊗ θ + θ ⊗ θ ⊗ id)]εabcJ
a ⊗ Jb ⊗ Jc

+ [ν(θ ⊗ θ ⊗ θ) + νλ(θ ⊗ id ⊗ id + id ⊗ θ ⊗ id

+ id ⊗ id ⊗ θ)]εabcJ
a ⊗ Jb ⊗ Jc

where

μ ≡ α2 + λβ2

(α2 − λβ2)2
, ν ≡ − 2αβ

(α2 − λβ2)2
. (27)

Here it is important that, even though the Lie algebras gλ can be recovered
via the generalized complexifications su(2) ⊗ Rλ and sl(2, R) ⊗ Rλ, any tensor
product of gλ with itself is taken over R. In most discussions of dynamical
r-matrices, authors consider complex Lie algebras and seek meromorphic so-
lutions of the CDYBE. In the context of 3d gravity, the real structure of gλ is
crucial, and we therefore do not consider complexifications here. When seek-
ing classical dynamical (gλ, hλ,Kαβ) r-matrices, we are therefore looking for
real, smooth solutions of the CDYBE, possibly defined only locally. Writing
C∞

loc(h
∗
λ) for real-valued infinitely often differentiable functions defined in open

subsets of h∗
λ, we are therefore seeking r ∈ C∞

loc(h
∗
λ) ⊗ (gλ ∧ gλ) such that

CDYB(r) = −Ωαβ . (28)

Analogously to [31], the most general antisymmetric classical dynamical r-
matrix is of the form

r(γ,ψ) = Aab(γ,ψ)Ja ⊗ Jb + Bab(γ,ψ)P a ⊗ Jb

−Bab(γ,ψ)Jb ⊗ P a + Cab(γ,ψ)P a ⊗ P b

= Ja ⊗ A(γ,ψ)Ja + P a ⊗ B(γ,ψ)Ja

−B(γ,ψ)Ja ⊗ P a + P a ⊗ C(γ,ψ)Pa

= (id ⊗ A(γ,ψ) + θ ⊗ B(γ,ψ)
−B(γ,ψ) ⊗ θ + θ ⊗ θC(γ,ψ))Ja ⊗ Ja (29)

where A,B,C ∈ C∞
loc(h

∗
λ) ⊗ L(g, g), with g = su(2) for Euclidean or g =

sl(2, R) for Lorentzian signature, such that A and C are skew-symmetric, i.e.
Aab(γ,ψ) = −Aba(γ,ψ) and Cab(γ,ψ) = −Cba(γ,ψ). The skew-symmetry of
these linear maps of g implies there exist vector functions v(α,ψ) and w(α,ψ)
in C∞

loc(h
∗
λ, R3) (for g = su(2)) or in C∞

loc(h
∗
λ, M1,2) (for g = sl(2, R)), such that

A(γ,ψ)(·) = [v(γ,ψ), · ] and C(γ,ψ)(·) = [w(γ,ψ), · ],
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where the coordinates (γ,ψ) parametrize the dual Lie subalgebra h∗
λ via

γ0J
∗
0 + γ1J

∗
1 + γ2J

∗
2 + ψ0P

∗
0 + ψ1P

∗
1 + ψ2P

∗
2 . (30)

Then, by plugging this general ansatz of r(γ,ψ) into the CDYBE (28) and
using some algebra, we obtain the first main result of the present paper, which
consists of a set of four equations for the linear maps A,B,C, which must
be satisfied in order to conclude (29) is a solution of the Classical Dynamical
Yang–Baxter equation (28).

Theorem 1. Let hλ be a Lie subalgebra of gλ, with h∗
λ parametrized like in (30).

A function r ∈ C∞
loc(h

∗
λ) ⊗ (gλ ∧ gλ) given by

rd(ψ,γ) = Kαβ + r(ψ,γ)

=
α

α2 − λβ2
(Ja ⊗ P a + Pa ⊗ Ja)

− β

α2 − λβ2
(λJa ⊗ Ja + Pa ⊗ P a) + Ja ⊗ A(ψ,γ)Ja

+P a ⊗ B(ψ,γ)Ja − B(ψ,γ)Ja ⊗ P a + P a ⊗ C(ψ,γ)Pa

(31)

is a solution of the CDYBE (28) if and only if the linear maps A,B,C ∈
C∞

loc(h
∗
λ) ⊗ L(gλ, gλ), with A = [vA(ψ,γ), · ] and C = [vC(ψ,γ), · ] skew-

symmetric, satisfy the following set of four equations:

−1
2
tr(A2) +

λ

2
[tr(B)2 − tr(B2)] − divγ (v) = −μλ (32)

−tr(CB) − divψ (w) = −ν (33)

[B − tr(B)id](B + Bt) +
1
2
[tr(B)2 − tr(B2)]id − CA

+λ(C2 − 1
2
tr(C2)id) + curlψ (B) − gradγ (w) = −μid (34)

−A(B + Bt) + (Bt − tr(B)id)(λC − A)
−tr(AB)id + curlγ (Bt) − gradψ (v) = −λνid (35)

where [grad(v)]ab = (grad(vb))a and [curl(M)]ab = curl(Rowa(M))b, such that
the subindices γ and ψ indicate if the differential operators are computed with
respect to the variables (γ0, γ1, γ2) or (ψ0, ψ1, ψ2), respectively.

Proof. In [33], the contraction of the CYBE with a generic element X ⊗ Y ⊗
Z ∈ g⊗3

λ was found to be useful to determine classical r-matrices of gλ with
symmetric part Kαβ (equations (4.11)–(4.18)). Following the same approach,
the contraction

〈alt[d(r(ψ,γ))],X ⊗ Y ⊗ Z〉 = 0

can be decomposed into the following eight independent terms in (Rλ)⊗R3
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• id ⊗ id ⊗ id

0 = 〈Jb,X〉〈Ja, Y 〉〈∂γb
(A)Ja, Z〉 − 〈Ja,X〉〈Jb, Y 〉〈∂γb

(A)Ja, Z〉
+ 〈Ja,X〉〈∂γb

(A)Ja, Y 〉〈Jb, Z〉
= 〈Jb,X〉〈Y, ∂γb

(At)(Z)〉 − 〈Jb, Y 〉〈X, ∂γb
(At)(Z)〉

+ 〈X, ∂γb
(At)(Y )〉〈Jb, Z〉

= 〈∂γa
(A)([Ja, [Y,X]]), Z〉 + 〈〈X, ∂γa

(At)(Y )〉Ja, Z〉

(36)

• id ⊗ θ ⊗ θ

0 = 〈∂ψb
(B)Ja,X〉〈Jb, Y 〉〈Ja, Z〉 − 〈∂ψb

(B)Ja,X〉〈Ja, Y 〉〈Jb, Z〉
+ 〈Jb,X〉〈Ja, Y 〉〈∂γb

(C)Ja, Z〉
= 〈∂ψb

(Bt)X,Z〉〈J i, Y 〉 − 〈Y, ∂ψb
(Bt)X〉〈Jb, Z〉

+ 〈Jb,X〉〈Y, ∂γb
(Ct)Z〉

= 〈[Y, [∂ψb
(Bt)X,Jb]], Z〉 + 〈〈Jb,X〉∂γb

(C)Y,Z〉

(37)

• θ ⊗ id ⊗ θ

0 = −〈Jb,X〉〈∂ψb
(B)Ja, Y 〉〈Ja, Z〉 + 〈Ja,X〉〈∂ψb

(B)Ja, Y 〉〈Jb, Z〉
− 〈Ja,X〉〈Jb, Y 〉〈∂γb

(C)Ja, Z〉
= −〈Jb,X〉〈∂ψb

(Bt)Y,Z〉 + 〈X, ∂ψb
(Bt)Y 〉〈Jb, Z〉

− 〈X, ∂γb
(Ct)Z〉〈Jb, Y 〉

= 〈[X, [Ja, ∂ψa
(Bt)Y ]], Z〉 − 〈〈Jb, Y 〉∂γa

(C)X,Z〉

(38)

• θ ⊗ θ ⊗ id

0 = 〈Jb,X〉〈Ja, Y 〉〈∂ψb
(B)Ja, Z〉 − 〈Ja,X〉〈Jb, Y 〉〈∂ψb

(B)Ja, Z〉
+ 〈Ja,X〉〈∂γb

(C)Ja, Y 〉〈Jb, Z〉
= 〈Ja,X〉〈Y, ∂ψa

(Bt)Z〉 + 〈Ja, Y 〉〈X, ∂ψa
(Bt)Z〉

− 〈X, ∂γa
(Ct)Y 〉〈Ja, Z〉

= 〈∂ψa
(B)([Jb, [Y,X]]), Z〉 − 〈〈X, ∂γa

(Ct)Y 〉Ja, Z〉

(39)

• θ ⊗ θ ⊗ θ

0 = 〈Jb,X〉〈Ja, Y 〉〈∂ψb
(C)Ja, Z〉 − 〈Ja,X〉〈Jb, Y 〉〈∂ψb

(C)Ja, Z〉
+ 〈Ja,X〉〈∂ψa

(C)Ja, Y 〉〈Ja, Z〉
= 〈Jb,X〉〈Y, ∂ψb

(Ct)Z〉 − 〈Jb, Y 〉〈X, ∂ψb
(Ct)Z〉

+ 〈〈X, ∂ψb
(Ct)Y 〉Jb, Z〉

= 〈∂ψa
(C)([Ja, [Y,X]]), Z〉 + 〈〈X, ∂ψa

(Ct)Y 〉Ja, Z〉

(40)
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• θ ⊗ id ⊗ id

0 = 〈Jb,X〉〈Ja, Y 〉〈∂ψb
(A)Ja, Z〉 − 〈Ja,X〉〈Jb, Y 〉〈∂γb

(B)Ja, Z〉
+ 〈Ja,X〉〈∂γb

(B)Ja, Y 〉〈Jb, Z〉
= 〈Ja,X〉〈Y, ∂ψa

(At)Z〉 + 〈Ja, Y 〉〈X, ∂γa
(Bt)Z〉

− 〈X, ∂γa
(Bt)Y 〉〈Ja, Z〉

= 〈〈Ja,X〉∂ψa
(A)Y,Z〉 − 〈[Y, [Ja, ∂γa

(B)X]], Z〉

(41)

• id ⊗ θ ⊗ id

0 = 〈Ja,X〉〈Jb, Y 〉〈∂ψb
(A)Ja, Z〉 + 〈Jb,X〉〈Ja, Y 〉〈∂γb

(B)Ja, Z〉
− 〈∂γb

(B)Ja,X〉〈Ja, Y 〉〈Jb, Z〉
= −〈X, ∂ψa

(At)Z〉〈Ja, Y 〉 + 〈〈Ja,X〉Y, ∂γa
(Bt)Z〉

− 〈Y, ∂γa
(Bt)X〉〈Ja, Z〉

= 〈[X, [∂γa
(B)Y, Ja]], Z〉 − 〈〈Ja, Y 〉∂ψa

(A)X,Z〉

(42)

• id ⊗ id ⊗ θ

0 = 〈Ja,X〉〈∂ψb
(A)Ja, Y 〉〈Jb, Z〉 − 〈Jb,X〉〈∂γb

(B)Ja, Y 〉〈Ja, Z〉
+ 〈∂γb

(B)Ja,X〉〈Jb, Y 〉〈Ja, Z〉
= 〈X, ∂ψa

(At)Y 〉〈Ja, Z〉 − 〈Ja,X〉〈∂γa
(Bt)Y,Z〉

+ 〈∂γa
(Bt)X,Z〉〈Ja, Y 〉

= 〈∂γa
(Bt)([Ja, [Y,X]]), Z〉 + 〈〈X, ∂ψa

(At)Y 〉Ja, Z〉

(43)

Hence, combining the corresponding terms among (4.11)–(4.18) in [31] and
(36)–(43), we conclude the contraction

〈CDYBE(r(ψ,γ)),X ⊗ Y ⊗ Z〉 = −〈Ωαβ ,X ⊗ Y ⊗ Z〉 (44)

can be decomposed into a set of eight terms, which reduces to the following
of four independent coupled partial differential equations for the linear maps
A,B,C

[A(X), A(Y )] − A2([X,Y ]) + λ(B([X,Bt(Y )] + [Bt(X), Y ]) + [Bt(X), Bt(Y )])

− ∂γa
(A)([Ja, [X,Y ]]) + 〈∂γa

(A)(X), Y 〉Ja = −μλ[X,Y ]

BtC([X,Y ]) + [B(X), C(Y )] + [C(X), B(Y )] − C([B(X), Y ] + [X,B(Y )])

− ∂ψa
(C)([Ja, [X,Y ]]) + 〈∂ψa

(C)(X), Y 〉Ja = −ν[X,Y ]

[B(X), B(Y )] − B([X,B(Y )] + [X,B(Y )]) − AC([X,Y ]) + λ[C(X), C(Y )]

− ∂ψa
(B)([Ja, [X,Y ]]) + 〈∂γa

(C)(X), Y 〉Ja = −μ[X,Y ]

BtA([X,Y ]) − [Bt(X), A(Y )] − [A(X), Bt(Y )] + λC([X,Bt(Y )] + [Bt(X), Y ])

− ∂γa
(Bt)([Ja, [X,Y ]]) + 〈∂ψa

(A)(X), Y 〉Ja = −λν[X,Y ]

Finally, using adjugates (exactly like in [33] and [31]) we derive the four equa-
tions (32)–(35). �
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The equations (32)–(35) are the dynamical generalization of (4.39) in [31].
It is immediate to notice that if we assume the linear maps are constant, i.e.
A,B,C ∈ L(gλ, gλ) ⊂ C∞

loc(h
∗
λ) ⊗ L(gλ, gλ), then the former set of equations

reduces to the latter, as expected.

3. Classical Dynamical r-matrices for gλ

3.1. Classical Dynamical (gλ, hλ, Kαβ) r-matrices

The main result of the previous section, the equivalence of the set of equations
(32)–(35), equivalent to the CDYBE (28), holds for any Lie subalgebra hλ of gλ.
However, as mentioned in the Introduction we are interested in the case when
hλ is a Cartan subalgebra. Since any Cartan Lie subalgebra of gλ is conjugate-
equivalent to hλ,0 and/or hλ,1 (also to h±

λ,01 or h∓
λ,01 only for so(2, 2)), for our

purposes it is enough to determine the set Dyn(gλ, hλ,Kαβ) for the cases where
hλ is hλ,0 and hλ,1 (and also h±

01 and h±
10 for so(2, 2)). This gives us the full

moduli space MC(gλ,Kαβ) and then, via dynamical gauge transformations,
the full space DynC(gλ,Kαβ) can be generated.

For all λ ∈ R, the Cartan subalgebras hλ are Abelian subalgebras of gλ.
Therefore, the hλ-equivariance condition (2) of a classical dynamical r-matrix
reduces to

[rd(x), h ⊗ 1 + 1 ⊗ h] = 0 (45)
for all x ∈ h∗

λ and h ∈ hλ.
Using the notation introduced for the antisymmetric part r of rd in (31), we
now determine the implications of the hλ-equivariance condition for the linear
maps [v, ·], B and [w, ·] in (29), which we write more explicitly as

r(ψ, γ) = εabcv
c(ψ, γ)Ja ⊗ Jb + Bab(ψ, γ)(P a ⊗ Jb − Jb ⊗ P a)

+εabcw
c(ψ, γ)P a ⊗ P b. (46)

As we shall see shortly, this condition only has interesting solutions for the
Cartan subalgebras hλ,0 and hλ,1. In the cases hλ = h±

01 (arising in gλ =
so(2, 2)), the equivariance condition implies that all the coefficients in (46)
vanish except for B01, B10, v2 and w2, and additionally B01 = B10 = v2 =
−w2. This means that the most general h±

01-invariant element in C∞
loc(h

±∗
01 ) ⊗

so(2, 2) ⊗ so(2, 2) is of the form

Kαβ + f(ψ, γ)(J0 + P0) ∧ (J1 − P1) (47)

with f ∈ C∞
loc(h

±∗
01 ) arbitrary. Analogously, the most general h∓

01-invariant ele-
ment in C∞

loc(h
∓∗
01 ) ⊗ so(2, 2) ⊗ so(2, 2) is of the form

Kαβ + g(ψ, γ)(J0 − P0) ∧ (J1 + P1) (48)

with g ∈ C∞
loc(h

∓∗
01 ) arbitrary.

However, neither of these lead to interesting solutions of the CDYBE. By
plugging (47) or (48) into the CDYBE, the equations (32) and (33) reduce in
both cases to 0 = μλ and 0 = ν, respectively, showing that Dyn(so(2, 2), hλ,

Kαβ) = ∅ for hλ = h±
01 and hλ = h∓

01. Therefore, the discussion of DynC(gλ,Kαβ)
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is reduced to the determination of Dyn(gλ, hλ,0,Kαβ) and Dyn(gλ, hλ,1,Kαβ),
to which we now turn.

Lemma 2. The most general hλ,0-equivariant element r ∈ C∞
loc(h

∗
λ,0)⊗(gλ⊗gλ)

is of the form

r(ψ0, γ0) = Kαβ + c(ψ0, γ0)(λJ1 ∧ J2 + P 1 ∧ P 2) + f(ψ0, γ0)(P 0 ∧ J0)

+b(ψ0, γ0)(P 1 ∧ J2 − J1 ∧ P 2) (49)

with b, c, f ∈ C∞
loc(h

∗
λ,0) arbitrary functions.

Similarly, the most general hλ,1-equivariant element r ∈ C∞
loc(h

∗
λ,1)⊗(gλ⊗

gλ) is of the form

r(ψ1, γ1) = Kαβ + c(ψ1, γ1)(λJ2 ∧ J0 + P 2 ∧ P 0)

+f(ψ1, γ1)(P 1 ∧ J1) + b(ψ1, γ1)(P 2 ∧ J0 − J2 ∧ P 0) (50)

with b, c, f ∈ C∞
loc(h

∗
λ,1) arbitrary.

Proof. For the hλ = hλ,0 case, by direct computation we have for the first term
in the skew-symmetric part of (46)

[J0 ⊗ 1 + 1 ⊗ J0, εabcv
cJa ⊗ Jb] = vi(J0 ∧ J i),

while for the second

[J0 ⊗ 1 + 1 ⊗ J0, Bab(P a ⊗ Jb − Jb ⊗ P a)]

= εijBi0(P j ∧ J0) + εijB0i(P 0 ∧ Jj) + (εijBik + ε�kBj�)(P j ∧ Jk),

and for the third

[J0 ⊗ 1 + 1 ⊗ J0, εabcw
cP a ⊗ P b] = wi(P 0 ∧ P i).

Thus, in order to have equivariance with respect to the generator J0 of hλ,0,
we need

0 = vi(J0 ∧ J i) + εijBi0(P j ∧ J0) + εijB0i(P 0 ∧ Jj)

+(εijBik + ε�kBj�)(P j ∧ Jk) + wi(P 0 ∧ P i) (51)

where the indices i, j just take the values 1 or 2. Therefore, the equivariance
with respect to J0 requires:

• vi = wi = 0 for i = 1, 2,
• Bi0 = B0i = 0 for i = 1, 2,
• B12 = −B21,
• B11 = B22.

Analogously, by straightforward computation we get for the first term in the
skew-symmetric part of (46)

[P0⊗1+1⊗P0, εabcv
cJa⊗Jb] = v0(P 1∧J1+P 2∧J2)+v1(J0∧P 1)+v2(J0∧P 2),

for the second

[P0 ⊗ 1 + 1 ⊗ P0, Bab(P a ⊗ Jb − Jb ⊗ P a)]

= εjiB0iP
j ∧ P 0 + (B11 + B22)P 1 ∧ P 2 + λεijBibJ

j ∧ Jb,
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and for the last one

[P0 ⊗ 1 + 1 ⊗ P0, εabcw
cP a ⊗ P b] = λw0(J1 ∧ P 1 + J2 ∧ P 2)

+λw1(P 0 ∧ J1) + λw2(P 0 ∧ J2)

So, the equivariance with respect to the generator P0 is equivalent to the
equation

0 = (λw0 − v0)(J1 ∧ P 1 + J2 ∧ P 2) + (λwi − vi)(J0 ∧ P i) + εjiB0iP
j ∧ P 0

+ (B11 + B22)P 1 ∧ P 2 + λεijBibJ
j ∧ Jb

(52)
where again the indices i, j run from 1 to 2, while b from 0 to 2. This equation
translates into the following set of additional conditions:

• va = λwa for a = 0, 1, 2,
• B11 + B22 = 0.

Consequently, by incorporating the set of constraints derived above and con-
sidering the gλ-invariance of Kαβ , we conclude that an element r ∈ C∞

loc(h
∗
λ,0)⊗

(gλ ⊗ gλ) results to be hλ,0-equivariant if and only if it is of the form (49),
with the identification

f ≡ B00, b ≡ B12, c ≡ w0.

The conditions for the equivariance for the case hλ = hλ,1 are derived in an
completely analogous way, concluding an element r ∈ C∞

loc(h
∗
λ,1) ⊗ (gλ ⊗ gλ)

results to be hλ,1-equivariant if and only if it is of the form (50), but now with
the identifications f ≡ B11, b ≡ B20 and c ≡ w1. �

Having at hand the form of the most general hλ-equivariant element of
C∞

loc(h
∗
λ) ⊗ (gλ ⊗ gλ), for both hλ = hλ,0 (49) and hλ = hλ,1 (50), we proceed

to determine all the classical dynamical (gλ, hλ,Kαβ) r-matrices by solving
the CDYBE (1) using it now as Ansatz, deriving in this way the second main
result of this paper.

Remark 2. The obtained dynamical r-matrices are given in terms of fairly
complicated compositions of rational and trigonometric functions. Nevertheless
our proof shows that they have a simple and unified form when written in terms
of generalized complex variables (i.e. in Rλ defined by (20)).

Theorem 2. Let (ψC , γC) ∈ R
2 constants. The classical dynamical (gλ, hλ,Kαβ)

r-matrices for hλ = hλ,0 and hλ = hλ,1 are necessarily elements in C∞
loc(h

∗
λ) ⊗

(gλ ⊗ gλ) of the form

rd(ψ0, γ0) = Kαβ + f(ψ0, γ0)(P 0 ∧ J0) + b(ψ0, γ0)(P 1 ∧ J2 − P 2 ∧ J1)

+c(ψ0, γ0)(λJ1 ∧ J2 + P 1 ∧ P 2)

and

rd(ψ1, γ1) = Kαβ + f(ψ1, γ1)(P 1 ∧ J1) + b(ψ1, γ1)(P 2 ∧ J0 − J2 ∧ P 0)

+c(ψ1, γ1)(λJ2 ∧ J0 + P 2 ∧ P 0),



J. C. M. Parra and B. J. Schroers Ann. Henri Poincaré

respectively, such that f ∈ C∞
loc(h

∗
λ),

b(ψ, γ) =
α

α2 − λβ2
B

(
α(ψ − ψC) − β(γ − γC)

α2 − λβ2
,
α(γ − γC) − λβ(ψ − ψC)

α2 − λβ2

)

− λ
β

α2 − λβ2
C

(
α(ψ − ψC) − β(γ − γC)

α2 − λβ2
,
α(γ − γC) − λβ(ψ − ψC)

α2 − λβ2

)

(53)
and

c(ψ, γ) =
α

α2 − λβ2
C

(
α(ψ − ψC) − β(γ − γC)

α2 − λβ2
,
α(γ − γC) − λβ(ψ − ψC)

α2 − λβ2

)

− β

α2 − λβ2
B

(
α(ψ − ψC) − β(γ − γC)

α2 − λβ2
,
α(γ − γC) − λβ(ψ − ψC)

α2 − λβ2

)

(54)
where for hλ,0

B(Ψ,Γ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin(2Ψ)

cos(2Ψ)+cosh
(
2
√

|λ|Γ
)

tan (Ψ)
sin(2Ψ)

cos(2Ψ)+cos(2
√

λΓ)

C(Ψ,Γ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
|λ|

sinh
(
2
√

|λ|Γ
)

cos(2Ψ)+cosh
(
2
√

|λ|Γ
) λ < 0

Γ
2 cos2(Ψ) λ = 0
1√
λ

sin(2
√

λΓ)
cos(2Ψ)+cos(2

√
λΓ)

λ > 0

, (55)

while for hλ,1, we have two types of solutions:

(i) Non-constant coefficients:

B(Ψ,Γ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sinh(2Ψ)

cosh(2Ψ)+cos
(
2
√

|λ|Γ
)

tanh (Ψ)
sinh(2Ψ)

cosh(2Ψ)+cosh(2
√

λΓ)

C(Ψ,Γ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
|λ|

sin
(
2
√

|λ|Γ
)

cosh(2Ψ)+cos
(
2
√

|Λ|Γ
) , λ < 0

Γ
2 cosh2(Ψ)

, λ = 0
1√
λ

sinh(2
√

λΓ)
cosh(2Ψ)+cosh(2

√
λΓ)

, λ > 0

(56)

(ii) or constant coefficients

B(Ψ,Γ) = ±1 and C(Ψ,Γ) = 0 (57)

Proof. By plugging (49) in (32)–(35), we conclude that classical dynamical
(gλ, hλ,0,Kαβ) r-matrices are elements in C∞

loc(h
∗
λ,0) ⊗ (gλ ⊗ gλ) of the form

Kαβ +f(ψ0, γ0)(P
0∧J0)+b(ψ0, γ0)(P

1∧J2−P 2∧J1)+c(ψ0, γ0)(λJ1∧J2+P 1∧P 2)
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where the coefficients satisfy the equations

λc2 + b2 − ∂c

∂γ0
= −μ, (58a)

2bc − ∂c

∂ψ0
= −ν, (58b)

λc2 + b2 − ∂b

∂ψ0
= −μ, (58c)

λ
∂c

∂ψ0
=

∂b

∂γ0
. (58d)

These equations can be understood as the hλ,0-equivariant reduction of the set
(32)–(35) for the hλ = hλ,0 case, and can be rewritten in the more compact
way

∂b

∂ψ0
= λc2 + b2 + μ =

∂c

∂γ0
,

∂b

∂γ0
= λ(2bc + ν) = λ

∂c

∂ψ0
.

(59)

Analogously, by inserting (50) in (32)–(35) we get the classical dynamical r-
matrices associated to (gλ, hλ,1,Kαβ) have the form

Kαβ +f(ψ1, γ1)(P
1∧J1)+b(ψ1, γ1)(P

2∧J0−J2∧P 0)+c(ψ1, γ1)(λJ2∧J0+P 2∧P 0),

such that

−λc2 − b2 − ∂c

∂γ1
= −μ, (60a)

−2bc − ∂c

∂ψ1
= −ν, (60b)

−λc2 − b2 − ∂b

∂ψ1
= −μ, (60c)

λ
∂c

∂ψ1
=

∂b

∂γ1
(60d)

or more compactly,
∂b

∂ψ1
= −(λc2 + b2) + μ =

∂c

∂γ1
,

∂b

∂γ1
= λ(−2bc + ν) = λ

∂c

∂ψ1
.

(61)

If we consider the generalized complexified variable z0 = ψ0 + θγ0 (over Rλ)
in the sense of (21) and construct the function over Rλ given by

w(z0) = b(z0) + θc(z0),

then from (23), we deduce the equations (59) can be re-expressed over the ring
Rλ as

∂z0w = 0, (62a)

∂z0w = w2 + (μ + θν). (62b)
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As indicated above in (24), Eq. (62a) can be understood as a generalized holo-
morphicity condition of the function w, i.e. it just depends on the generalized
variable z0 but not on z0 (precisely like holomorphic functions in complex
analysis), and due to this property, as explained in (25), Eq. (62b) is simply

dw

dz0
= w2 + (μ + θν) (63)

Using the same argument, equations (61) can be rewritten over Rλ as

∂z1w = 0, (64a)

∂z1w = −w2 + (μ + θν) (64b)

but now w(z1) = b(z1) + θc(z1) with z1 = ψ1 + θγ1 and, again, the holomor-
phicity condition implies

dw

dz1
= −w2 + (μ + θν). (65)

Taking into account

μ + θν =
1

(α + θβ)2
,

then solving the CDYBE for the triples (gλ, hλ,Kαβ) with hλ = hλ,0 and
hλ = hλ,1, amounts to solving the following two nonlinear generalized complex
ODEs

(α + θβ)
d

dz
((α + θβ)w) = ±((α + θβ)w)2 + 1. (66)

For hλ,0, the general solution is given by

w(z0) =
1

α + θβ
tan
(

z0 − C

α + θβ

)

, (67)

where
C = ψC + θγC

is a constant. For hλ,1 the solution is the following function of z1

w(z1) =
1

α + θβ
tanh

(
z1 − C

α + θβ

)

(68)

with C ∈ Rλ again a constant, or the constant

w(z1) = ± 1
α + θβ

= ± α − θβ

α2 − λβ2
. (69)

Finally, separating (67) into its real-part and θ-part we get b (53) and c (54),
respectively, with B and C as given in (55). Proceeding in the same way for
(68) or (69), we get a similar result but now with B and C as given by (56)
or by (57), respectively. See the Appendix D to see in detail how this splitting
into real and θ parts works for every λ ∈ R. �
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In particular, for β = 0, the most general classical dynamical (gλ, hλ,0,
Kα0) r-matrix is given by

rβ=0
d (ψ0, γ0) = Kα0 + f(ψ0, γ0)(P 0 ∧ J0) + b(ψ0, γ0)(P 1 ∧ J2 − P 2 ∧ J1)

+c(ψ0, γ0)(λJ1 ∧ J2 + P 1 ∧ P 2) (70)

where f ∈ C∞
loc(h

∗
λ,0) is an arbitrary function,

b(ψ0, γ0) =
1
α

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sin( 2
α (ψ0−ψC))

cos( 2
α (ψ0−ψC))+cosh

(
2
√

|λ|
α (γ0−γC)

) , λ < 0

tan
(

ψ0−ψC

α

)
, λ = 0

sin( 2
α (ψ0−ψC))

cos( 2
α (ψ0−ψC))+cos

(
2

√
λ

α (γ0−γC)
) , λ > 0

(71)

and

c(ψ0, γ0) =
1
α

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
|λ|

sinh

(
2
√

|λ|
α (γ0−γC)

)

cos( 2
α (ψ0−ψC))+cosh

(
2
√

|λ|
α (γ0−γC)

) , λ < 0

γ0−γC

2 cos2
(

ψ0−ψC
α

) , λ = 0

1√
λ

sin

(
2
√

|λ|
α (γ0−γC)

)

cos( 2
α (ψ0−ψC))+cos

(
2

√
λ

α (γ0−γC)
) , λ > 0

. (72)

Similarly, for β = 0, the most general classical dynamical (gλ, hλ,1,Kα0) r-
matrix is given by

rβ=0
d (ψ1, γ1) = Kαβ + f(ψ1, γ1)(P 1 ∧ J1) + b(ψ1, γ1)(P 2 ∧ J0 − J2 ∧ P 0)

+c(ψ1, γ1)(λJ2 ∧ J0 + P 2 ∧ P 0), (73)

where f ∈ C∞
loc(h

∗
λ,1) is an arbitrary function,

b(ψ1, γ1) =
1
α

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sinh( 2
α (ψ1−ψC))

cosh( 2
α (ψ1−ψC))+cos

(
2
√

|λ|
α (γ1−γC)

) , λ < 0

tanh
(

ψ1−ψC

α

)
, λ = 0

sinh( 2
α (ψ1−ψC))

cosh( 2
α (ψ1−ψC))+cosh

(
2

√
λ

α (γ1−γC)
) , λ > 0

(74)

and

c(ψ1, γ1) =
1
α

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
|λ|

sin

(
2
√

|λ|
α (γ1−γC)

)

cosh( 2
α (ψ1−ψC))+cos

(
2
√

|λ|
α (γ1−γC)

) , λ < 0

γ1−γC

2 cosh2
(

ψ1−ψC
α

) , λ = 0

1√
λ

sinh

(
2
√

|λ|
α (γ1−γC)

)

cosh( 2
α (ψ1−ψC))+cosh

(
2

√
λ

α (γ1−γC)
) , λ > 0

. (75)
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These correspond to extensions, for both signatures and any value of the
cosmological constant ΛC , of the classical dynamical r-matrices found in [5]
(Lemma 4.11) for ΛC = 0 in the Lorentzian case (with ψC = γC = 0, α = 2
and f ≡ 0).

Theorem 2 provides all the elements in Dyn(gλ, hλ,Kαβ) for hλ = hλ,0

and hλ = hλ,1, parametrized in terms of (ψC , γC) ∈ R
2 and f ∈ C∞

loc(h
∗
λ) in

both cases. In order to achieve a full description of the moduli space of classical
dynamical r-matrices MC(g,Kα,β) we first need to consider the quotients

Dyn(gλ, hλ,Kαβ)/G(gλ, hλ)

for both hλ,0 and hλ,1 (if it is the case).

Lemma 3. The space of orbits of classical dynamical (gλ,hλ, Kαβ) r-matrices
with respect to the action of dynamical (gλ,hλ) gauge transformations is
parametrized by pairs (ψC , γC) ∈ R

2, for both hλ = hλ,0 and hλ = hλ,1.

Proof. Theorem 2 states that any classical dynamical (gλ,hλ,i,Kαβ) r-matrix
are of the form

rd(ψ0, γ0) = Kαβ + f(ψ0, γ0)(P 0 ∧ J0) + b(ψ0, γ0)(P 1 ∧ J2 − P 2 ∧ J1)

+c(ψ0, γ0)(λJ1 ∧ J2 + P 1 ∧ P 2)

and

rd(ψ1, γ1) = Kαβ + f(ψ1, γ1)(P 1 ∧ J1) + b(ψ1, γ1)(P 2 ∧ J0 − J2 ∧ P 0)

+c(ψ1, γ1)(λJ2 ∧ J0 + P 2 ∧ P 0),

for i = 0 and i = 1, respectively, with f ∈ C∞
loc(h

∗
λ,i) an arbitrary function and

b, c : h∗
λ,i → R given by (53) and (54).

All the elements of G(gλ, hλ,i) are of the form

g(ψi, γi) = exp(m(ψi, γi)Ji + s(ψi, γi)Pi)

with m, s : h∗
λ,i → R smooth maps.

Hence, the action of any g ∈ G(gλ, hλ,i) over any element rd ∈ Dyn(gλ, hλ,i,
Kαβ) is explicitly given by

g � rd = (Ad(g) ⊗ Ad(g))
[

rd −
(

∂s

∂γi
− ∂m

∂ψi

)

P i ∧ J i

]

= rd −
(

∂s

∂γi
− ∂m

∂ψi

)

P i ∧ J i.

Since, by the Poincaré Lemma, for every function f ∈ C∞
loc(h

∗
λ,i) there

exist smooth functions s,m : h∗
λ,i → R such that

∂s

∂γi
− ∂m

∂ψi
= f,

we conclude that any classical dynamical (gλ,hλ,i,Kαβ) r-matrix is gauge
equivalent to

rd(ψ0, γ0) = Kαβ + b(ψ0, γ0)(P 1 ∧ J2 − P 2 ∧ J1)

+c(ψ0, γ0)(λJ1 ∧ J2 + P 1 ∧ P 2) (76)
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and

rd(ψ1, γ1) = Kαβ + b(ψ1, γ1)(P 2 ∧ J0 − J2 ∧ P 0)

+c(ψ1, γ1)(λJ2 ∧ J0 + P 2 ∧ P 0), (77)

for i = 0 and i = 1, respectively, with b and c as given in Theorem 2.
Hence, since the functions b and c above are uniquely determined by the con-
stants ψC and γC , it follows each of the quotients MC(gλ, hλ,i,Kαβ) is in
bijection with R

2. �

Theorem 2 and Lemma 3 provide a parametrization and complete de-
scription of all the elements in the moduli space of Cartan classical dynamical
r-matrices associated to (gλ,Kαβ)

MC(gλ,Kαβ) = MC(gλ, hλ,0,Kαβ) � MC(gλ, hλ,1,Kαβ)

for every λ, α, β ∈ R. This amounts, following the explanation in Sect. 1.4, to
a full description of all the Poisson structures over the gauge-fixed space of
Gλ-flat connections over Riemann surfaces.

Finally, the set of all the Cartan classical dynamical r-matrices associated
to the pair (gλ,Kαβ) is then given by

DynC(gλ,Kαβ) =

⎡

⎣
⋃

g∈G

Dyng(gλ, hλ,0,Kαβ)

⎤

⎦ �
⎡

⎣
⋃

g∈G

Dyng(gλ, hλ,1,Kαβ)

⎤

⎦ .

3.2. Dynamical Generalizations of Classical r-matrices for gλ

A systematic algebraic analysis of the CYBE for gλ and the derivation of some
particular solutions were considered in [31]. In this spirit now we examine
some particular solutions of the CDYBE for gλ, using for this purpose the
equivalent description derived in Theorem 1. We recall that even though we
are mainly interested in classical dynamical r-matrices (where the equivariance
condition is required), since these appear in the Poisson structure of gauge-
fixed character varieties, the space of solutions of the CDYBE has been studied
too (as mentioned in passing in our Introduction) and also, it is interesting to
see what dynamical generalizations of some well-known solutions of the CYBE
for gλ look like.

Following the presentation in [31], we consider solutions of the CDYBE
(1) associated to (gλ, hλ,0,Kαβ)

r(ψ0, γ0) = Kαβ + Aab(ψ0, γ0)Ja ⊗ Jb + Bab(ψ0, γ0)(P a ⊗ Jb − Jb ⊗ P a)

+Cab(ψ0, γ0)P a ⊗ P b

for the cases where (I) B is diagonal and C ≡ 0, (II) A = λC and B is
skew-symmetric and (III) A = C ≡ 0 and B is skew-symmetric, obtaining
in this way dynamical generalizations of the so-called (see Table 1 in [31] for
the terminology) classical doubles, generalized complexifications and kappa-
Poincaré r-matrices, respectively.
Here we focus on the hλ = hλ,0 case, since for hλ,1 analogous solutions of the
CDYBE are obtained (as we observed in the previous subsection) and then via
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the Gλ-action (4) all the solutions presented in this section can be derived for
any Cartan subalgebra of gλ.

(I) Solutions with B diagonal and trivial C. If we consider solutions with
C ≡ 0, the Eq. (33) forces ν = 0, while the other 3 equations (32), (34) and
(35) reduce to
1
2
tr(A2) − λ

2
[
tr(B)2 − tr(B2)

]
+ divα (vA) = μλ

[B − tr(B)id](B + Bt) +
1
2
[tr(B)2 − tr(B2)]id + curlψ (B) = −μid

− A(B + Bt) − (Bt − tr(B)id)A − tr(AB)id + curlα (Bt) − gradψ (vA) = 0

(78)

Denoting vA(ψ0, γ0) by (a0(ψ0, γ0), a1(ψ0, γ0), a2(ψ0, γ0)) and taking

B(α0, ψ0) = diag(b0(ψ0, γ0), b1(ψ0, γ0), b2(ψ0, γ0)),

(78) leads to the following system of PDEs

−
2∑

i=0

a2
i − λ(b0b1 + b0b2 + b1b2) +

∂a0

∂γ0
= μλ, (79a)

⎛

⎜
⎜
⎝

b1b2 − b0(b1 + b2) 0 0

0 b0b2 − b1(b0 + b2) ∂b1
∂ψ0

0 − ∂b2
∂ψ0

b0b1 − b2(b0 + b1)

⎞

⎟
⎟
⎠ = −μid,

(79b)
⎛

⎜
⎜
⎜
⎝

− ∂a0
∂ψ0

a2(b1 − b2) − ∂a1
∂ψ0

−a1(b1 − b2) − ∂a2
∂ψ0

−a2(b0 − b2) 0 a0(b0 − b2) + ∂b1
∂γ0

a1(b0 − b1) −a0(b0 − b1) − ∂b2
∂γ0

0

⎞

⎟
⎟
⎟
⎠

= 0. (79c)

From equations (79b) and (79c) we conclude

B = ±√
μid (80)

and

A(ψ0, γ0) = A(γ0), (81)

while Eq. (79a) reduces to a constraint over the vector vA associated to the
antisymmetric matrix A,

〈vA(γ0), vA(γ0)〉 − da0

dγ0
= −4μλ. (82)

Hence, for diagonal B and trivial C, we have found there exist solutions to the
CDYBE for (gλ, hλ,0,Kαβ) of the form

rβ=0
D (γ0) =

1

α
(Ja ⊗ P a + Pa ⊗ Ja) + εabcva(γ0)Jb ⊗ Jc ± √

μ(P a ⊗ Ja − Ja ⊗ P a)

=

(
1

α
∓ √

μ

)

Ja ⊗ P a +

(
1

α
± √

μ

)

Pa ⊗ Ja + εabcva(γ0)Jb ⊗ Jc (83)
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if β = 0, or

rα=0
D (γ0) =

1
λβ

(λJa ⊗ Ja + Pa ⊗ P a) + εabcva(γ0)Jb ⊗ Jc

± √
μ(P a ⊗ Ja − Ja ⊗ P a)

(84)

if α = 0, where the choice of sing depends on if we are dealing with the
Euclidean or Lorentzian case, respectively.

The family of classical dynamical r-matrices (83) is a dynamical gen-
eralization of the well-known classical r-matrices associated to the standard
double bialgebra structures over gλ. Similarly, the family (84) is the dynami-
cal generalization of the classical r-matrices related to exotic double structures
over gλ.

(II) Solutions with A = λC and B skew-symmetric. If now we demand for
solutions of the CDYBE such that A = λC, the set (32)–(35) reduces to the
following system of coupled PDEs

λ

2
tr(C2) − 1

2
[tr(B)2 − tr(B2)] + divγ (vC) = μ,

tr(BC) + divψ (vC) = ν,

[B − tr(B)id](B + Bt) + divγ (vC)id + curlψ (B) − gradγ (vC) = 0,

−λC(B + Bt) + λ[divψ (vC)id − gradψ (vC)] + curlγ (Bt) = 0.

(85)

This system is still complicated enough to solve in a general way, reason why
we focused on some specific solutions corresponding to a particular choice of
the maps C and B: For B = [vB(ψ0, γ0), · ] and C = [vC(ψ0, γ0), · ], with
vB(ψ0, γ0) and vC(ψ0, γ0) in C∞

loc(h
∗
λ,0) ⊗ R

3 or in C∞
loc(h

∗
λ,0) ⊗ M

1,2, given by

vB(ψ0, γ0) = (b0(ψ0, γ0), b1(ψ0, γ0), b2(ψ0, γ0)

and vC(ψ0, γ0) = (c0(ψ0, γ0), c1(ψ0, γ0), c2(ψ0, γ0)),

the set of equations (85) reduces to

−λ〈vC , vC〉 − 〈vB , vB〉 +
∂c0

∂γ0
= μ,

−2〈vB , vC〉 +
∂c0

∂ψ0
= ν,

∂bi

∂ψ0
− ∂ci

∂γ0
= 0 for i = 0, 1, 2,

λ
∂ci

∂ψ0
− ∂bi

∂γ0
= 0 for i = 0, 1, 2

(86)

which precisely reduces to the system (58) associated to classical dynamical
r-matrices in the case vB ‖ e0 and vC ‖ e0.
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(III) Solutions with A and C trivial and B skew-symmetric. If in the previous
case, we additionally consider C = 0, then (86) reduces to

〈vB, vB〉 = −μ

∂b0

∂γ0
=

∂b1

∂γ0
=

∂b2

∂γ0
= 0

∂b0

∂ψ0
=

∂b1

∂ψ0
=

∂b2

∂ψ0
= 0

(87)

In other words, vB is a constant vector function (just an element in R
3 or M

1,2)
whose (pseudo)norm is given by −μ. Therefore, we find there are not dynamical
generalizations of the classical Kappa-Poincaré r-matrices. Explicitly, since
ν = 0, there exist just two possible dynamical r-matrices of this type given by

rβ=0
κP =

1
α

(Ja ⊗ P a + Pa ⊗ Ja) + εabcv
a(P b ⊗ Jc − Jb ⊗ P c) with

〈v, v〉 = − 1
α2

(88)

or

rα=0
κP =

1
λβ

(λJa ⊗ Ja + Pa ⊗ P a) + εabcv
a(P b ⊗ Jc − Jb ⊗ P c) with

〈v, v〉 = − 1
λβ2

(89)

which are precisely the two possible cases described in [34] (equations (5.5)
and (5.6)).

Therefore, rβ=0
κP and rα=0

κP correspond to classical dynamical (gλ, hλ,0,Kα0)
and (gλ, hλ,0,K0β) r-matrices, respectively, if and only if v ∈ Span{e0}. In
other words, the hλ,0 equivariance condition constrains the vector defining the
classical dynamical r-matrix to have the same direction of the generators (J0

and P0) of hλ,0.

4. The FGMPP Dynamical r-matrices for gλ

Theorem 2 shows that dynamical generalized complexifications, i.e. with coef-
ficients solving (86), are the only solutions of the CDYBE that actually are
classical dynamical r-matrices and therefore have a natural origin in the set-
ting of gauge-fixed character varieties (see, e.g., [4] and [5]). In this section we
show how these solutions are related (indeed coincide up to dynamical gauge
transformations) with a family of classical dynamical r-matrices found by Fe-
her, Gabor, Marshall, Palla and Pusztai when studying the (quasi-)Poisson
structures of the chiral WZNW model (see [35]).

Alekseev and Meinrenken (AM) [36] found that for any self-dual Lie
algebra g, i.e. equipped with a non-degenerate Ad-invariant symmetric bilinear
form 〈·, ·〉, there exists a canonical classical dynamical (g, g,K) r-matrix rAM :
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g∗ → g⊗ g, where K is the element in S2(g)g associated to 〈·, ·〉 and g∗ is the
dual of g with respect to the bilinear form, given by

rAM(x) = K + ρAM(x) (90)

such that
ρAM : g∗ → g ∧ g

x �→ f(1 ⊗ ad[K∨(x)])(K)
(91)

with K∨ the linear map g∗ → g associated to K and

f(z) = coth(z) − 1
z
. (92)

The adjective canonical was introduced by [14] and extensively used since then
(see, e.g., [37]), given that any classical dynamical (g, g,K) is dynamical gauge
equivalent to rAM(x − x0) for a shift x0 ∈ g∗.

Analogously, as explained for gauge-fixed character varieties (18), this
classical dynamical (g, g,K) r-matrix defines a Poisson structure over

g∗ × G

given by

{ta, tb} = −fab
c tc, (93a)

{F, ta} = (Rta
+ Lta

)F, (93b)

{F, F̃}(t) = Π0,1
ext(rAM(t))(dF, dF̃ ), (93c)

where F, F̃ ∈ C∞(G), {ta}a=1,··· ,dimg is a basis of g and {ta}a=1,··· ,dim g its
dual in g∗.

Then we consider a self-dual Lie subalgebra of h of g (i.e. such that the
restriction 〈·, ·〉∣∣

h
is non-degenerate) and decompose (even adapting) the basis

{ta}a=1,··· ,dim g of g into a basis {ha}a=1,··· ,dim h for h and {h̃a}a=1,··· ,dim h⊥ for
h⊥, since g = h+ h⊥. Feher, Gabor, Marshall, Palla and Pusztai in a series of
papers (see [7,35,38–41]) considered the reduced subspace of g∗ × G obtained
by imposing the first class constraints h̃a ≈ 0 for a = 1, · · · ,dim h⊥. In other
words, by seeing {h̃a}a=1,··· ,dim h⊥ as functions over g∗ ×G, the Poisson struc-
ture (93) is modified in such a way these functions become Poisson functions
with respect to the new (Dirac) bracket.

Exactly as before, these new Poisson structure is obtained via gauge
fixing, getting so a Poisson structure

{F, F̃}D = {F, F̃} − {F1, e
a}C−1

ab (th){eb, F̃}
over

h∗ × G

(after strongly imposing the constraints h̃a = 0 for a = 1, · · · ,dim h⊥) where

Cab(th) = {ta, tb}|t
h⊥=0 = C(th) = ad(th)|h⊥ .
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Thus, this gauge fixing amounts to modify (93) by changing the skew-symmetric
part of the AM classical dynamical r-matrix by

ρFGMPP(x) = ρAM(x) +
1

ad(x)
, (94)

getting in this way a Poisson structure over h∗ × G with Dirac brackets given
by

{ha, hb}D = 0, (95a)

{F, ha}D = (Rha + Lha)F, (95b)

{F, F̃}D(h) = Π0,1
ext(rFGMPP(h))(dF, dF̃ ), (95c)

where the canonical classical dynamical (g, h,Ω) r-matrix (denoted here by
FGMPP) is given by

rFGMPP(x) = K + ρFGMPP(x) (96)

such that

ρFGMPP : h∗ → h⊥ ∧ h⊥

x �→ g(1 ⊗ ad[K∨(x)])(K)
(97)

with

g(z) = coth(z). (98)

In this section we compute the FGMPP classical dynamical r-matrices as-
sociated to (gλ, hλ,i,Kαβ) for i = 0, 1 and any α, β ∈ R, proving by direct
computation the following.

Theorem 3. The generalized complexified classical dynamical (gλ, hλ,i,Kαβ) r-
matrices (76) and (77) are gauge equivalent to the FGMPP classical dynamical
r-matrices (96) associated to (gλ, hλ,i,Kαβ).

Proof. We start by considering the i = 0 case. Since

Kαβ ≡ α

α2 − λβ2
(Ja ⊗ P a + Pa ⊗ Ja) − β

α2 − λβ2
(λJa ⊗ Ja + Pa ⊗ P a),

for a general element x0 = γ0J
∗
0 + ψ0P

∗
0 in h∗

λ,0 we have

K∨
αβ(x0) = ξ(γ0, ψ0, α, β)J0 + ζ(γ0, ψ0, α, β)P0

with

ξ(γ0, ψ0, α, β) = ψ0

(
α

α2 − λβ2

)

− γ0

(
βλ

α2 − λβ2

)

and

ζ(γ0, ψ0, α, β) = γ0

(
α

α2 − λβ2

)

− ψ0

(
β

α2 − λβ2

)

.

Note these are precisely the arguments of the functions B and C in (53) and
(54).
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Thus, according to (12), we get

ad[K∨
αβ(x0)]|h⊥

λ,0
:

⎛

⎜
⎜
⎝

J1

J2

P1

P2

⎞

⎟
⎟
⎠ �→ ξ

⎛

⎜
⎜
⎝

−J2

J1

−P2

P1

⎞

⎟
⎟
⎠+ ζ

⎛

⎜
⎜
⎝

−P2

P1

−λJ2

λJ1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−(ξJ2 + ζP2)
ξJ1 + ζP1

−(ξP2 + ζλJ2)
ξP1 + ζλJ1

⎞

⎟
⎟
⎠ ,

where we have omitted the dependence of ξ and ζ on γ0, ψ0, α and β. Hence, the
matrix representation of ad[K∨

αβ(x0)]|h⊥
λ,0

in the (standard) basis {J1, J2, P1, P2}
of h⊥

λ,0 is given by

ad[K∨
αβ(x0)]|h⊥

λ,0
=

⎛

⎜
⎜
⎝

0 ξ 0 ζλ
−ξ 0 −ζλ 0
0 ζ 0 ξ

−ζ 0 −ξ 0

⎞

⎟
⎟
⎠ . (99)

As indicated in Appendix C, by the Weierstrass factorization theorem, the
function g(z) is equal to

g(z) =
1
z

+
∞∑

n=1

2z

(πn)2 + z2
. (100)

Therefore, given that

ad[K∨
αβ(x0)]|h⊥

λ,0

(πn)2 +
(
ad[K∨

αβ(x0)]|h⊥
λ,0

)2

=

⎛

⎜
⎜
⎝

0 Fn(ζ, ξ, λ) 0 λGn(ζ, ξ, λ)
−Fn(ζ, ξ, λ) 0 −λGn(ζ, ξ, λ) 0

0 Gn(ζ, ξ, λ) 0 Fn(ζ, ξ, λ)
−Gn(ζ, ξ, λ) 0 −Fn(ζ, ξ, λ) 0

⎞

⎟
⎟
⎠

where

Fn(ζ, ξ, λ) =
ξ[(πn)2 − (ξ2 − λζ2)]

[(πn)2 − (ξ2 + λζ2)]2 − (2ζξ)2λ
,

Gn(α,ψ, λ) =
ζ[(πn)2 + (ξ2 − λζ2)]

[(πn)2 − (ξ2 + λζ2)]2 − (2ζξ)2λ

and the matrix representation of the inverse of ad[K∨
αβ(x0)]|h⊥

λ,0
is

1
ad[K∨

αβ(x0)]|h⊥
λ,0

=
1

ξ2 − λζ2

⎛

⎜
⎜
⎝

0 −ξ 0 λζ
ξ 0 −λζ 0
0 ζ 0 −ξ

−ζ 0 ξ 0

⎞

⎟
⎟
⎠ ,
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then we obtain the matrix representation of g(ad[K∨
αβ(x0)]|h⊥

λ,0
) is

g
(
ad[K∨

αβ(x0)]|h⊥
λ,0

)

=

⎛

⎜
⎜
⎝

0 F (ζ, ξ, λ) 0 λG(ζ, ξ, λ)
−F (ζ, ξ, λ) 0 −λG(ζ, ξ, λ) 0

0 G(ζ, ξ, λ) 0 F (ζ, ξ, λ)
−G(ζ, ξ, λ) 0 −F (ζ, ξ, λ) 0

⎞

⎟
⎟
⎠

(101)

with

F (ζ, ξ, λ) = − ξ

ξ2 − λζ2
+ 2

∞∑

n=1

Fn(ζ, ξ, λ)

= − ξ

ξ2 − λζ2
+

∞∑

n=1

2ξ[(πn)2 − (ξ2 − λζ2)]
[(πn)2 − (ξ2 + λζ2)]2 − (2ζξ)2λ

=
1
2

[

− 1
ξ + θζ

+ 2
∞∑

n=1

ξ + θζ

(πn)2 − (ξ + θζ)2

]

+
1
2

[

− 1
ξ − θζ

+ 2
∞∑

n=1

ξ − θζ

(πn)2 − (ξ − θζ)2

]

and

G(ζ, ξ, λ) =
ζ

ξ2 − λζ2
+ 2

∞∑

n=1

Gn(ζ, ξ, λ)

=
ζ

ξ2 − λζ2
+

∞∑

n=1

2ζ[(πn)2 + (ξ2 − λζ2)]
[(πn)2 − (ξ2 + λζ2)]2 − (2ζξ)2λ

=
1
2θ

[

− 1
ξ + θζ

+ 2
∞∑

n=1

ξ + θζ

(πn)2 − (ξ + θζ)2

]

− 1
2θ

[

− 1
ξ − θζ

+ 2
∞∑

n=1

ξ − θζ

(πn)2 − (ξ − θζ)2

]

,

where implicitly we have extended R to the ring Rλ (20).
As shown in Appendix D, using again the Weierstrass factorization theorem
and properties of Rλ, the functions F (ζ, ξ, λ) and G(ζ, ξ, λ) over Rλ are given
by the following functions for the different signs of λ:

• For λ = 0, then

F (ζ, ξ, 0) = tan
(
ξ − π

2

)
, (102a)

G(ζ, ξ, 0) =
ζ

2 cos2
(
ξ − π

2

) (102b)
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• For λ �= 0, then

F (ζ, ξ, λ) = −1
2

[cot (ξ + θζ) + cot (ξ − θζ)] , (103a)

G(ζ, ξ, λ) = − 1
2θ

[cot (ξ + θζ) − cot (ξ − θζ)] (103b)

which for λ < 0 are given by

F (ζ, ξ, λ) =
− sin(2ξ)

− cos(2ξ) + cosh(2
√|λ|ζ)

, (104a)

G(ζ, ξ, λ) =
1
√|λ|

sinh(2
√|λ|ζ)

− cos(2ξ) + cosh(2
√|λ|ζ)

, (104b)

and for λ > 0

F (ζ, ξ, λ) =
− sin(2ξ)

− cos(2ξ) + cos(2
√

λζ)
, (105a)

G(ζ, ξ, λ) =
1√
λ

sin(2
√

λζ)
− cos(2ξ) + cos(2

√
λζ)

. (105b)

Finally, replacing (101) in (97), we obtain the skew-symmetric part of the
canonical FGMPP dynamical r-matrix associated to (gλ, hλ,0,Kαβ) is given
by

ρFGMPP(x0)

= 〈Ta, g(ad[K∨
αβ(x0)])J1〉sT

a ⊗ P 1 + 〈Ta, g(ad[K∨
αβ(x0)])J2〉sT

a ⊗ P 2

+ 〈Ta, g(ad[K∨
αβ(x0)])P1〉sT

a ⊗ J1 + 〈Ta, g(ad[K∨
αβ(x0)])P2〉sT

a ⊗ J2

= b̃(ζ, ξ, λ)(J1 ⊗ P 2 − J2 ⊗ P 1 − P 2 ⊗ J1 + P 1 ⊗ J2)

+ c̃(ζ, ξ, λ)(P 1 ⊗ P 2 − P 2 ⊗ P 1 − λJ2 ⊗ J1 + λJ1 ⊗ J2)

where

b̃(ζ, ξ, λ) =
α

α2 − λβ2
F (ζ, ξ, λ) − λ

β

α2 − λβ2
G(ζ, ξ, λ) (106)

and

c̃(ζ, ξ, λ) =
α

α2 − λβ2
F (ζ, ξ, λ) − β

α2 − λβ2
G(ζ, ξ, λ) (107)

concluding the canonical FGMPP dynamical r-matrix associated to (gλ, hλ,0,
Kαβ) is given by

rFGMPP(x0) = Kαβ + b̃(ξ, ζ, λ)(P 1 ∧ J2 − P 2 ∧ J1)

+c̃(ξ, ζ, λ)(λJ1 ∧ J2 + P 1 ∧ P 2), (108)

which coincides precisely with the solution rd(ψ0, γ0) in Theorem 2 by choosing
Ψ0 = π

2 α and Γ0 = π
2 β.

In a completely analogous way if we consider a generic element x1 =
γ1J

∗
1 + ψ1P

∗
1 in h∗

λ,1, we obtain for g(ad[K∨
αβ(x1)]|h⊥

λ,1
) a matrix similar to
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(101) but with F and G now given by

F (ζ, ξ, 0) = tanh
(
ξ − π

2

)
, (109a)

G(ζ, ξ, 0) =
ζ

2 cosh2
(
ξ − π

2

) (109b)

for λ = 0,

F (ζ, ξ, λ) =
sinh(2ξ − π)

cosh(2ξ − π) + cosh(2
√|λ|ζ)

, (110a)

G(ζ, ξ, λ) =
1
√|λ|

sin(2
√|λ|ζ)

cosh(2ξ − π) + cos(2
√|λ|ζ)

, (110b)

for λ < 0, and

F (ζ, ξ, λ) =
sinh(2ξ − π)

cosh(2ξ − π) + cosh(2
√

λζ)
, (111a)

G(ζ, ξ, λ) =
1√
λ

sinh(2
√

λζ)
cosh(2ξ − π) + cosh(2

√
λζ)

. (111b)

for λ > 0.
Thus, evaluating (97) in this case leads to a classical dynamical r-matrix

of the form

rFGMPP(x1) = Kαβ + b̃(ξ, ζ, λ)(P 2 ∧ J0 − J2 ∧ P 0)

+c̃(ξ, ζ, λ)(λJ2 ∧ J0 + P 2 ∧ P 0), (112)

with b̃ and c̃ defined exactly as before, which coincides with the solution
rd(ψ1, γ1) in Theorem 2 by choosing again Ψ0 = π

2 α and Γ0 = π
2 β. �

5. Conclusion and Outlook

In this paper we gave a full classification of the classical dynamical r-matrices
up to gauge equivalence for the Lie algebras gλ of the local isometry groups
of the maximally symmetric Euclidean and Lorentzian spaces in three di-
mensions. The classical dynamical r-matrices for vanishing cosmological con-
stant in the Lorentzian setting were obtained previously by Meusburger and
Schönfeld in [5], but our results for classical dynamical r-matrices for the gen-
eral triple (gλ, hλ, Kαβ) are new.

It is interesting to compare our results with the analogous study of (non-
dynamical) classical r-matrices in [31] for the family gλ. The general ansatz
used here is a generalization of the one used in that paper, where three fam-
ilies of solutions were identified, associated with the Lie bialgebra structure
of a classical double, a generalized bicross-product (or κ-Poincaré algebra) or
a generalized complexification (in the same sense as used in this paper) of
the standard sl(2, R) bialgebra structure. Here we found that, of these three,
only the dynamical version of the generalized complexification solves both the
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dynamical classical Yang–Baxter equation and the equivariance condition re-
quired for dynamical r-matrices. In particular, there is no dynamical version
of the r-matrices associated to the family of classical double structures identi-
fied in [31]. The equivariance constraint effectively makes the full classification
of classical dynamical r-matrices for gλ easier than the classification of non-
dynamical r-matrices for that family of Lie algebras (which indeed has not yet
been achieved).

While our results can be summarized conveniently as generalized com-
plexifications of known results for sl(2, R) or su(2), our derivations and proofs
do not make essential use of this point of view. In future work, it may be
interesting to see which parts of standard holomorphic function theory extend
when C is replaced by the ring Rλ, and if the resulting machinery is suffi-
cient to establish our results directly by ‘generalized holomorphic methods’. It
would then also be interesting if this point of view can be usefully adopted in
the quantization.

As remarked, the quantization of the Hamiltonian Chern–Simons theory
(i.e. over manifolds homeomorphic to R×Σg,n) reduces to the quantization of a
constrained Poisson space Pg,n

ext , whose Poisson structure is defined in terms of a
classical r-matrix r. In the so-called combinatorial quantization approach (see
[20] and [21]), the quantization is performed before imposing the constraints.
It relies on the existence of a quantum R-matrix which quantizes r, i.e. which
has an expansion

R(�) = 1 + �r + O(�2).
Meanwhile in the approach presented here, the constraints are imposed be-
fore quantization, leading to the appearance of a classical dynamical r-matrix
rd describing the Poisson structure of the (constrained) space Pg,n. Hence,
a dynamical combinatorial quantization (i.e. where the classical r-matrix is
replaced by a classical dynamical r-matrix rd, see [42]) is expected to lead to
a quantization of the Hamiltonian Chern–Simons theory. In analogy to the
non-dynamical case, this quantization scheme requires a quantum dynamical
R-matrix that quantizes rd. In our case, where the Poisson structure is defined
in terms of classical dynamical r-matrices gauge equivalent to the classical
dynamical r-matrix, the quantization requires the existence of a quantum dy-
namical R-matrix, i.e.

R(x, �) = 1 + �rd(x) + O(�2).

The quantization of the AM classical dynamical r-matrix discussed at the
start of Sect. 4 was addressed by Enriquez and Etingof in [43]. The extension
of this approach to the quantization of the FGMPP classical dynamical r-
matrix seems possible and interesting. Further developments in this direction
could lead to a complete formulation of quantum character varieties, provide
interesting links to the categorical approaches (see, e.g., [19] and [44]), and
open up a new approach to quantized 3d gravity. Also, extensions of the re-
sults presented here to the setting of supersymmetric Chern–Simons theory
(see, e.g., [45]) and Super Character Varieties (see, e.g., [46]) seem interest-
ing. For the family of Lie algebras gλ relevant for 3d gravity, the point of
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view of generalized complexification, which proved so useful here, may provide
additional insights and connections.
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Appendix A: Action of G Over the Space Dyn(g, K)

Let g be a Lie algebra and K ∈ (S2g)g. In this Appendix we prove that if h
and h′ are two conjugate Lie subalgebras of g, say h′ = Ad(g)(h) for g ∈ G,
then the sets of classical dynamical r-matrices Dyn(g, h,K) and Dyn(g, h′,K)
are in bijection, via a natural map constructed using the adjoint action of G
over g ⊗ g and its coadjoint action over g∗.

Lemma A. Let h and h′ be conjugate Lie subalgebras of g, say by g ∈ G. Then
the map

Dyn(g, h,K) → Dyn(g, h′,K)

r(x) �→ Ad(g) ⊗ Ad(g)r(Ad∗(g−1)x)
(113)

is well-defined and bijective.

Proof. Take r ∈ Dyn(g, h,K) and let g ∈ G such that Ad(g)(h) = h′. Define

r′(x) = Ad(g) ⊗ Ad(g)r(Ad∗(g−1)x) for x ∈ (h′)∗

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where Ad∗ : G → Aut(g∗) is the coadjoint action of the Lie group G over the
dual of the Lie algebra g∗.
Writing r in terms of a basis {Ta}a=1,··· ,dim g of g, we get r(x) = rab(x)Ta ⊗Tb

for all x ∈ h∗ and by direct computation we obtain

[r′
12(x), r′

23(x)] = [rab(Ad∗(g−1)x)Ad(g)Ta ⊗ Ad(g)Tb

⊗ 1, rcd(Ad∗(g−1)x)1 ⊗ Ad(g)Tc ⊗ Ad(g)Td]

= rab(Ad∗(g−1)x)rcd(Ad∗(g−1)x)Ad(g)Ta

⊗ [Ad(g)Tb,Ad(g)Tc] ⊗ Ad(g)Td

= Ad(g)⊗3[r12(Ad∗(g−1)x), r23(Ad∗(g−1)x)].

Similarly

[r′
13(x), r′

23(x)] = Ad(g)⊗3[r13(Ad∗(g−1)x), r23(Ad∗(g−1)x)],

[r′
12(x), r′

13(x)] = Ad(g)⊗3[r12(Ad∗(g−1)x), r13(Ad∗(g−1)x)]

and consequently

[[r′(x), r′(x)]] = [[Ad(g) ⊗ Ad(g)r(Ad∗(g−1)x),Ad(g) ⊗ Ad(g)r(Ad∗(g−1)x)]]

= Ad(g)⊗3[[r(Ad∗(g−1)x), r(Ad∗(g−1)x)]]. (114)

Also, by direct computation

h′
i
(1) ∂r′

23

∂h′i = (Ad(g)hi)(1)(Ad(g) ⊗ Ad(g))
∂r23

∂hi
(Ad∗(g−1)x)

= Ad(g)⊗3h
(1)
i

∂r23

∂hi
(Ad∗(g−1)x)

and analogously

h′
i
(2) ∂r′

13

∂h′i = Ad(g)⊗3h
(2)
i

∂r13

∂hi
(Ad∗(g−1)x),

h′
i
(3) ∂r′

12

∂h′i = Ad(g)⊗3h
(3)
i

∂r12

∂hi
(Ad∗(g−1)x).

Hence,

Alt(dr′)(x) =
dim h′
∑

i=1

h′
i
(1) ∂r′

23

∂h′i (x) − h′
i
(2) ∂r′

13

∂h′i (x) + h′
i
(3) ∂r′

12

∂h′i (x)

= Ad(g)⊗3

[

h
(1)
i

∂r23

∂hi
(Ad∗(g−1)x) − h

(1)
i

∂r23

∂hi
(Ad∗(g−1)x)

+h
(1)
i

∂r23

∂hi
(Ad∗(g−1)x)

]

= Ad(g)⊗3Alt(dr)(Ad∗(g−1)x)
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and so, by combining with (114), we conclude r′ is indeed a solution of the
CDYBE, i.e.

CDYB(r′)(x) = [[r′(x), r′(x)]] + Alt(dr)(x)

= Alt(g)⊗3([[r(Ad∗(g−1)x), r(Ad∗(g−1)x)]]

+ Alt(dr)(Ad∗(g−1)x))

= Alt(g)⊗3(CDYBE(r)(Ad∗(g−1)x))

= −Alt(g)⊗3[[K,K]]

= −[[K,K]].

Since the subspace S2(g) of g ⊗ g is invariant under the adjoint action of the
Lie group G, the fact Sym(r) = K ∈ (S2g)g implies

Sym(r′) = Sym(r) = K.

Finally, take h′ ∈ h′ and let h ∈ h be such that h′ = Ad(g)h. Then we get

d

ds

∣
∣
∣
∣
s=0

r′(Ad∗(esh′
)x) = Ad(g) ⊗ Ad(g)

d

ds

∣
∣
∣
∣
s=0

r(Ad∗(g−1)Ad∗(esh′
)x)

= Ad(g) ⊗ Ad(g)
d

ds

∣
∣
∣
∣
s=0

r(Ad∗(esh)Ad∗(g−1)x),

where we have used Ad∗(esh′
) = Ad∗(g)Ad∗(esh)Ad∗(g−1), and

[r′(x), h′ ⊗ 1 + 1 ⊗ h′]

= [Ad(g) ⊗ Ad(g)r(Ad∗(g−1)x),Ad(g)h ⊗ 1 + 1 ⊗ Ad(g)h]

= Ad(g) ⊗ Ad(g)[r(Ad∗(g−1)x), h ⊗ 1 + 1 ⊗ h].

Therefore,

d

ds

∣
∣
∣
∣
s=0

r′(Ad∗(esh′
)x) + [r′(x), h′ ⊗ 1 + 1 ⊗ h′]

equals

Ad(g) ⊗ Ad(g)

(
d

ds

∣
∣
∣
∣
s=0

r(Ad∗(esh)Ad∗(g−1)x) + [r(Ad∗(g−1)x), h ⊗ 1 + 1 ⊗ h]

)

= 0,

i.e. the h′-equivariance of r′.
The previous computations show the map (113) is well-defined and is

clearly bijective (the inverse is obtained by replacing g with g−1). �

Appendix B: Conjugacy Classes of Cartan Subalgebras of gλ

One of the main results of this paper is the complete description of the set
DynC(gλ,Kαβ) (Theorem 2) and the moduli space MC(gλ,Kαβ) (Lemma 3)
of Cartan classical dynamical r-matrices associated to (gλ,Kαβ). Lemma A is
essential to achieve this since reduces the task to finding classical dynamical
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r-matrices for representatives of CAd
gλ

(the conjugacy classes of Cartan subal-
gebras of gλ).

As stated in Sect. 3.1 the cardinality of CAd
gλ

is at most two for all λ ∈ R.
More precisely, in the case where the cardinal is one all the Cartan subalgebras
are conjugate-equivalent to hλ,0 (the Cartan subalgebra generated by J0 and
P0), while in the case it is two they could be conjugate-equivalent to hλ,0 or
hλ,1 (the Cartan subalgebra generated by J1 and P1).

In this Appendix we provide a detailed description of the Cartan subal-
gebras of the simple (so(3, 1)), semisimple (so(4) and so(2, 2)) and indecom-
posable non-solvable (iso(3) and iso(2, 1)) six- dimensional real Lie algebras.

Simple Case: so(3, 1)

By so(3, 1)λ,with λ < 0, we denote the six- dimensional real algebra generated
by {J0, J1, J2, P0, P1, P2} such that

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = λεabcJ
c.

All these Lie algebras are isomorphic to so(3, 1)−1 via the map Ja → Ja and
Pa → √|λ|Pa. In standard literature so−1(3, 1) is simply denoted by so(3, 1)
and is the only (up to isomorphism) simple six- dimensional real Lie algebra.
This follows from the fact so(3, 1) is isomorphic to sl(2, C) (viewed as a real
Lie algebra of dimension six).

The Lie algebra so(3, 1) has a representation as linear maps End(R4), via
the traceless matrices of the form

miJi + siPi =

⎛

⎜
⎜
⎝

0 −m0 −m1 s2

m0 0 m2 s1

m1 −m2 0 s0

s2 s1 s0 0

⎞

⎟
⎟
⎠ . (115)

It is straightforward to check that if the eigenvalues of miJi +siPi are all zero
then there exists M ∈ SO(3, 1) such that

M(miJi + siPi)M−1 ∈ R�=0(P2 − J0), (116)

while if at least one is not zero there exists M̃ ∈ SO(3, 1) such that

M̃(miJi + siPi)M̃−1 ∈ {mJ0 + sP0 | (m, s) ∈ R
2, (m, s) �= (0, 0)}. (117)

Clearly the Lie subalgebra spanned by J2 and P2 is nilpotent (indeed it is
abelian) and by (117) self-normalizing, then we conclude this Lie subalgebra
is a Cartan subalgebra of so(3, 1) and so rnk(so(3, 1)) is two.

Since the two-dimensional Lie subalgebras of so(3, 1) are Abelian and the
normalizer of P2 − J0 is spanned by P0 − J2 and P1, we get that there exists
only one conjugacy class of Cartan subalgebras of so(3, 1) with representative
Span{J0, P0}.
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Semisimple Cases: so(4) and so(2, 2)

In the case when λ > 0, the Lie algebras gλ

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = λεabcJ
c

result to be semisimple for both the Euclidean and Lorentzian cases. To see
this we consider the following six alternative generators

J±
a =

1
2

(

Ja ± 1√
λ

Pa

)

for a = 0, 1, 2.

Since this new set of generators satisfies the commutation relations

[J±
a , J±

b ] = εabc(J±)c, [J+
a , J−

b ] = 0, for a, b = 0, 1, 2,

then we conclude in the Euclidean case

so(4) ∼= su(2) ⊕ su(2), (118)

while in the Lorentzian case

so(2, 2) ∼= sl(2, R) ⊕ sl(2, R); (119)

showing explicitly that for λ > 0 the Lie algebras gλ could be factorized as the
direct sum of two simple three-dimensional Lie subalgebras.

Proposition A [47]. Let g be a semisimple real Lie algebra, with simple decom-
position given by

g = ⊕n
i=1gn

and h a Cartan subalgebra of g. Then h is decomposable as a direct sum

h = ⊕n
i=1hn

such that
1. hi = h ∩ gi for all i = 1, · · · , n.
2. hi is a Cartan subalgebra of the simple Lie algebra gi for i = 1, · · · , n.

This proposition indicates that the set of Cartan subalgebras of a semisim-
ple algebra g is contained in the set of subalgebras generated by taking the
direct sum of Cartan subalgebras of the simple factors of g. Therefore, since the
adjoint actions of SO(4) and SO(2, 2) factor through the actions of each copy
of SU(2) and SL(2, R) over each factor of su(2) ⊕ su(2) and sl(2, R) ⊕ sl(2, R),
respectively, the conjugacy classes of Cartan subalgebras of so(4) and so(2, 2)
are given by the direct sum of conjugacy classes of Cartan subalgebras of su(2)
and sl(2, R), respectively. Hence, the problem reduces to determining first the
conjugacy classes of Cartan subalgebras of real forms of sl(2, C), which are
known to have rank one: in the case of su(2) there exists just one conjugacy
class of Cartan subalgebras with representative spanned by J0, while sl(2, R)
has two conjugacy classes of Cartan subalgebras with representatives spanned
by J0 and J1.

In the Euclidean case there is clearly just one conjugacy class of Cartan
Lie subalgebras with

Span{J+
0 } ⊕ Span{J−

0 } ∼= Span{J0, P0},
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as a representative. Meanwhile, in the Lorentzian one can show that there exist
four conjugacy classes of Cartan subalgebras, with

Span{J+
0 } ⊕ Span{J−

0 } ∼= Span{J0, P0},

Span{J+
1 } ⊕ Span{J−

1 } ∼= Span{J1, P1},

Span{J+
0 } ⊕ Span{J−

1 } ∼= Span{J0 + P0, J1 − P1},

and
Span{J+

1 } ⊕ Span{J−
0 } ∼= Span{J1 + P1, J0 − P0}

as representatives.

Semidirect Sum Cases: iso(3) and iso(2, 1)
Finally in the λ = 0, the Lie algebras gλ

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = 0

are isomorphic to the semidirect sums so(3) �ad∗ so(3)∗ and sl(2, R) �ad∗

sl(2, R)∗ for the Euclidean and Lorentzian cases, respectively.

Proposition B [48]. Let k be a Lie algebra that acts over a nilpotent Lie algebra
V via φ : k → Der(V ). If h is a Cartan subalgebra of k, then

h �φ V 0(h)

is a Cartan subalgebra of the Lie algebra g ≡ k �φ V , where

V 0(h) ≡ {v ∈ V | ∀x ∈ h, ∃n ∈ Z>0 such that φ(x)nv = 0}.

For our cases of interest, k = so(3) or k = sl(2, R) with V = R
3 ∼= so(3)∗

or V = R
1,2 ∼= sl(2, R)∗, respectively, such that the action φ is given by the

coadjoint action, i.e.
ad∗ : k → Der(k∗)

x �→ [x, ·]
in both cases.

From this proposition it follows immediately

〈Ji〉 �ad∗ 〈Pi〉 for i = 0, 1, 2

are Cartan subalgebras of iso(3) and iso(2, 1), showing in this way both Lie
algebras have rank two.

Proposition C. The Cartan subalgebras of the Lie algebras iso(3) and iso(2, 1)
are generated by sets of the form

{maP a,maJa + naP a | m,n ∈ R
1,2,m2 �= 0,m · n = 0} (120)

Proof. Start considering the most general set of two elements in gλ, i.e.

{mP + nJ ,kP + �J} (121)

where we use the notation mP (�J) to denote in a compact manner the
elements maP a (�aJa) in the Lie algebra.
Since

[mP + nJ ,kP + �J ] = (m ∧ � + n ∧ k)P + (n ∧ �)J
in order for (121) to generate a Lie subalgebra, we require:
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1. n ∧ � ∈ Span{n, �}: Since 〈n ∧ �,n〉 = 〈n ∧ �, �〉 = 0, this condition
holds if and only if n ∧ � = 0, which implies (both in the Euclidean and
Lorentzian settings) � = Cn for some C ∈ R.

2. m ∧ � + n ∧ k ∈ Span{m,k}: This condition holds if and only if there
exist A,B ∈ R such that

m ∧ � + n ∧ k = m ∧ (Cn) + n ∧ k = (Cm − k) ∧ n = Ak + Bm

From above we know g(1) ≡ [g, g] is generated by

(Ak + Bm)P

Similarly, by direct computation, we get g(2) ≡ [[g, g], g] is generated by

((Ak + Bm) ∧ n)P .

Indeed, by induction, we have that any term g(n) in the lower central series is
one-dimensional and generated by

(· · · (((Ak + Bm)∧n) ∧ n) ∧ · · · ∧ n
︸ ︷︷ ︸

(n−1)−times

)P

Hence, the condition
(Cm − k) ∧ n = 0

is required in order to have a Nilpotent Lie subalgebra. Since the condition
Cm − k = 0 provides a one-dimensional Lie subalgebra, we conclude that
any the two-dimensional Nilpotent Lie subalgebras of iso(3) or iso(2, 1) are
generated by sets of the form

{mP + nJ , (Cm − Dn)P + CnJ | C,D ∈ R} (122)

Finally, assume there exists sP + tJ in the normalizer of the Lie algebra
generated by (122) that does not belong to it. The brackets of this element
with the generators of the Lie algebra are given by

[mP + nJ , sP + tJ ] = (m ∧ t + n ∧ s)P + (n ∧ t)J

and

[(Cm−Dn)P +CnJ , sP + tJ ] = [(Cm−Dn)∧ t+(Cn∧s)]P +(Cn∧ t)J

The fact the right-hand side belongs to the Lie algebra generated by (122)
implies

t = En for E ∈ R

Hence, it follows that sP + tJ must be of the form sP + EnJ , such that the
previous two Lie brackets reduce then to

[mP + nJ , sP + EnJ ] = (Em ∧ n + n ∧ s)P

and

[(Cm − Dn)P + CnJ , sP + EnJ ] = [E(Cm − Dn) ∧ n + (Cn ∧ s)]P

Here we split into two cases:
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1. If n2 = 0, then we find that if we take

s = Em − Dn + Gm ∧ n

then
[mP + nJ , sP + EnJ ] = −G〈m,n〉nP

and

[(Cm − Dn)P + CnJ , sP + EnJ ] = −CG〈m,n〉nP

concluding that in this case is possible to find an element in the normalizer
that indeed does not belong to the Lie subalgebra generated by (122),
say

(Em − Fn + Gm ∧ n)P + EnJ

with G �= 0.
2. If n2 �= 0 and C �= 0, then the only possibility is

s = Em − Fn

and so an element in the normalizer must be of the form

(Em − Fn)P + EnJ

which clearly belongs to the span of (122).
�

In the Euclidean framework, by conjugating with the right element in
ISO(3), any element in (120) could be mapped into the element with n = 0
and m ∈ Span{e0}. Analogously for the Lorentzian signature, by conjugating
with the proper element in ISO(2, 1) any element in (120) could be mapped
either the element with n = 0 and m ∈ Span{e0} (if m2 > 0) or the one
with n = 0 and m ∈ Span{e1} (if m2 < 0). Hence, any Cartan subalgebra of
iso(3) is conjugate-equivalent to Span{J0, P0}, while any Cartan subalgebra
of iso(2, 1) is conjugate-equivalent to Span{J0, P0} or Span{J1, P1}.

Appendix C: Weierstrass Factorization Theorem

In Sect. 4 we made use of some expansions of certain (meromorphic) functions,
in order to recognize that the dynamical generalized complexifications (which
include the particular Λ = 0 case found before in [5]) are dynamical gauge
equivalent to the dynamical r-matrices studied by Feher, Gabor, Marshall,
Palla and Pusztai in the setting of WZNW and Calogero–Moser models.

All the expansions are derived from a “well-known” result in complex
analysis known as the Weierstrass factorization Theorem (see, e.g., [49]). It
states the following: If f : C → C is an entire function with a zero at z = 0
of order m and with nonzero zeros {an} (including multiplicities), then there
exist an entire function g : C → C and a sequence of integers {pk}, such that

f(z) = zmeg(z)
∞∏

k=1

Epk

(
z

ak

)
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where En are the Weierstrass elementary factors, given by

En(z) =

⎧
⎨

⎩

(1 − z) if n = 0

(1 − z) exp
(

n∑

m=1

zm

m

)

otherwise
.

For example (see [49]), the trigonometric function sin(z) can be factorized as

sin(z) = z

∞∏

k=1

(

1 − z2

k2π2

)

.

and by taking log and differentiating both sides we get

cot(z) − 1
z

= 2
∞∑

n=1

z

z2 − (πn)2
, (123)

which is used in the derivation of the functions F (ξ, ζ, λ) (103a) and G(ξ, ζ, λ)
(103b) for the λ �= 0 cases. Then, by replacing z �→ iz, we conclude

coth(z) − 1
z

= 2
∞∑

n=1

z

(πn)2 + z2
(124)

which is precisely the representation of the function g(z) used in (100).
Similarly, but using instead the Weierstrass expansion of the function cos(z)
(see [49]), we obtain

tan (z) = − 1
z − π/2

+
∞∑

n=1

2(z − π/2)
(πn)2 − (z − π/2)2

(125)

used in (102a) to find a compact form of F (ξ, ζ, 0).
Finally, simply by taking the derivative of the previous expansion, we conclude

1
2 cos2(z)

=

[
1

(z − π/2)2
+ 2

∞∑

n=1

(z − π/2)2 + (πn)2

[(z − π/2)2 − (πn)2]2

]

(126)

used in (102b) for G(ξ, ζ, 0).

Appendix D: Functional Coefficients for FGMPP Classical
Dynamical (gλ, hλ,0, Kαβ) r-matrices

In this brief appendix, we give some details on how the coefficients F (ξ, ζ, λ)
and G(ξ, ζ, λ) in (108), for λ �= 0, were obtained from (103a) and (103b).
In the case λ < 0 we express θ =

√|λ|i such that i2 = −1 (formal symbol).
By splitting the function cot(z) with z ∈ Rλ into its real and i- parts, we get

cot(ψ + θγ) =
sin(ψ) cos(ψ)

sin2(ψ) + sinh2(
√|λ|γ)

− i
sinh(

√|λ|γ) cosh(
√|λ|γ)

sin2(ψ) + sinh2(
√|λ|γ)

=
sin(2ψ)

cosh(2
√|λ|γ) − cos(2ψ)

+ i
sinh(2

√|λ|γ)
cos(2ψ) − cosh(2

√|λ|γ)
,
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and so, from (103a), we obtain

F (ξ, ζ, λ) = −1
2

[cot (ξ + θζ) + cot (ξ − θζ)]

= − sin(2ξ)
− cos(2ξ) + cosh(2

√|λ|ζ)
,

while from (103b),

G(ξ, ζ, λ) = − 1
2θ

[cot (ξ + θζ) − cot (ξ − θζ)]

=
1

2
√|λ|

sinh(2
√|λ|ζ)

− cos(2ξ) + cosh(2
√|λ|ζ)

.

Similarly, in the λ > 0 case we express θ =
√

λi such that i2 = 1 (formal
symbol). In this case, the splitting of the function cot(z) with z ∈ Rλ into its
real and i- parts is given by

cot(ψ + θγ) =
sin(2ψ)

cos(2
√

λα) − cos(2ψ)
+ i

sin(2
√

λγ)
cos(2ψ) − cos(2

√
λγ)

so in this case, from (103a) we get

F (ξ, ζ, λ) = − sin(2ξ)
− cos(2ξ) + cos(2

√
λζ)

,

and from (103b)

G(ξ, ζ, λ) =
1

2
√

λ

sin(2
√

λζ)
− cos(2ξ) + cos(2

√
λζ)

.
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mology. Theses, Université de Montpellier (UM), FRA, (2023). [Online]. Avail-
able: https://theses.hal.science/tel-04062148

[45] Mikovic, A.R., Picken, R.: Super Chern Simons theory and flat super connections
on a torus. Adv. Theor. Math. Phys. (2002). https://doi.org/10.4310/ATMP.
2001.v5.n2.a2

[46] Aghaei, N., Gainutdinov, A.M., Pawelkiewicz, M., Schomerus, V.: Combina-
torial Quantisation of GL(1|1) Chern-Simons Theory I: The Torus. (2018).
arXiv:1811.09123 [hep-th]

[47] Sugiura, M.: Conjugate classes of cartan subalgebras in real semisimple
lie algebras. J. Math. Soc. Japan. (1959). [Online]. Available: https://api.
semanticscholar.org/CorpusID:119491912

[48] Spindler, K.: Cartan algebras and involutions. In: Proceedings of the American
Mathematical Society. (1994), ISSN: 00029939, 10886826. [Online]. Available:
http://www.jstor.org/stable/2160403

[49] Holland, A.: Infinite product representation: Order and type. In: In-
troduction to the Theory of Entire Functions, ser. Pure and Applied
Mathematics, vol. 56, Elsevier, (1973), pp. 56–82. https://doi.org/10.1016/
S0079-8169(08)62470-8. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0079816908624708

Juan Carlos Morales Parra
Maxwell Institute of Mathematical Sciences and Department of Mathematics
Heriot-Watt University
Edinburgh EH14 4AS
UK
e-mail: jcm2000@hw.ac.uk

Bernd J. Schroers
Maxwell Institute of Mathematical Sciences and School of Mathematics
University of Edinburgh
Edinburgh EH9 3FD
UK
e-mail: b.schroers@ed.ac.uk

Communicated by Carlo Rovelli.

Received: March 15, 2024.

Accepted: August 16, 2024.

http://arxiv.org/abs/math.QA/0302067
https://theses.hal.science/tel-04062148
https://doi.org/10.4310/ATMP.2001.v5.n2.a2
https://doi.org/10.4310/ATMP.2001.v5.n2.a2
http://arxiv.org/abs/1811.09123
https://api.semanticscholar.org/CorpusID:119491912
https://api.semanticscholar.org/CorpusID:119491912
http://www.jstor.org/stable/2160403
https://doi.org/10.1016/S0079-8169(08)62470-8
https://doi.org/10.1016/S0079-8169(08)62470-8
https://www.sciencedirect.com/science/article/pii/S0079816908624708
https://www.sciencedirect.com/science/article/pii/S0079816908624708

	Classical Dynamical r-matrices for the Chern–Simons Formulation of Generalized 3d Gravity
	Abstract
	1. Introduction and Background
	1.1. Motivation
	1.2. Definitions
	1.3. Example: The Four-Punctured  with 
	1.4. Chern–Simons Formulation of 3d Gravity

	2. Structure of the CDYBE for 
	2.1. The Lie Algebras  as Generalized Complexifications
	2.2. Casimirs and the CDYBE for 

	3. Classical Dynamical -matrices for 
	3.1. Classical Dynamical  -matrices
	3.2. Dynamical Generalizations of Classical -matrices for 

	4. The FGMPP Dynamical -matrices for 
	5.  Conclusion and Outlook
	Acknowledgements
	Appendix A: Action of  Over the Space 
	Appendix B: Conjugacy Classes of Cartan Subalgebras of 
	Simple Case: 
	Semisimple Cases:  and 
	Semidirect Sum Cases:  and 

	Appendix C: Weierstrass Factorization Theorem
	Appendix D: Functional Coefficients for FGMPP Classical Dynamical  -matrices
	References


