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Undressing the Electron

Andrzej Herdegen

Abstract. The extended algebra of the free electromagnetic fields, includ-
ing infrared-singular fields, and the almost radial gauge, both introduced
earlier, are postulated for the construction of the quantum electrodynam-
ics in a Hilbert space (no indefinite metric). Both the Dirac and electro-
magnetic fields are constructed up to the first order (based on the incom-
ing fields) as operators in the Hilbert space and shown to have physically
well-interpretable asymptotic behavior in far past and spacelike separa-
tions. The Dirac field tends in far past to the free incoming field, carrying
its own Coulomb field, but with no ‘soft photon dressing.’ The spacelike
asymptotic limit of the electromagnetic field yields a conserved operator
field, which is a sum of contributions of the incoming Coulomb field, and
of the low-energy limit of the incoming free electromagnetic field. This
should agree with the operator field similarly constructed with the use
of outgoing fields, which then relates these past and future character-
istics. Higher orders are expected not to change this picture, but their
construction needs a treatment of the UV question, which has not been
undertaken and remains a problem for further investigation.

1. Introduction

One of the fundamental paradigms of quantum field theory (QFT) is the rela-
tivistic locality, which in its actual form used in this field may be characterized
by the following statements.
1/ Basic observables of the theory represent quantities which may be mea-
sured in bounded spacetime regions. In the algebraic formulation of the QFT
this structure is formalized in the form of a net of C*-algebras, while both
in the Wightman axiomatic and in the practical formulation of the perturba-
tional approach, these objects are operator-valued distributions smeared with
functions of compact support and representing measurable quantities like elec-
tromagnetic field and electric current density vector.
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2/ If A1 and A2 are local observables ascribed in this sense to two spatially
separated regions O1 and O2, respectively (all vectors x2 − x1, with xi ∈ Oi,
are space-like), then [A1, A2] = 0.
3/ If an operator commutes with all local observables, then it is proportional
to the identity operator.

The latter condition defines what is called a superselection sector of the
theory, in which local observables are represented irreducibly. Different super-
selection sectors describe physical settings which are different in some global
sense. In the algebraic approach it is claimed that local observables are all one
needs to physically characterize a theory (see [9]). However, for the construc-
tion of a particular theory it also proved indispensable to employ fields subject
to gauge transformations, such as the electromagnetic potential, and the Dirac
field, which should create electric charge and interpolate between different su-
perselection sectors. In recent decades this has been recognized in the algebraic
approach as well (see a recent summary [17]). As the locality paradigm, beside
its physical role, proved crucial for the techniques employed for solving ultra-
violet problems of QFT, these ‘unphysical’ fields have been included into its
range (with the replacement of commutator by anticommutator for two fermion
fields). However, in theories with constraints and long-range interactions, such
as electrodynamics, this technical measure contradicts physics: a ‘local Dirac
field’ applied to a neutral state cannot change electromagnetic field at spatial
infinity, so the charge calculated by Gauss’ law does not change. Therefore,
the local construction may only be a first step for the construction of physical
states, which do not belong to the original state space of the construction (as
in the analysis by Steinmann [20]).

Let us now look more closely at some of the consequences of the above
structure for quantum electrodynamics (QED), in which the Maxwell equa-
tions hold,1

∂[aFbc](x) = 0, ∂aFab(x) = 4πjb(x), (1)

in the operator-distributional sense. The most natural selection condition for
the representations of physical interest is to demand that the decay of the
electromagnetic field at spatial infinity is of the Coulomb field rate, i.e., for
spacelike x, and R tending to infinity, the field R2Fab(Rx) has a well-defined,
distributional limit. More precisely, let Hphys be a dense subspace of (physical)
vector states in the Hilbert space H of the superselection sector, contained in
the domains of the smeared fields Fab(ϕ), and stable under the action of all
local observables (including the unbounded field Fab(ϕ)). Then we assume that
for each ϕ of compact, spacelike support, there exists a self-adjoint operator

1Spacetime indices will be denoted by a, b, c, etc. We assume that an origin in Minkowski
space M has been chosen, and then points are represented by vectors x, y, etc. Moreover, we
choose a unit, timelike, future-pointing vector t, to define the time axis, and then x0 = x · t,
x is the three-space part of x, and |x| = (|x0|2 + |x|2) 1

2 .
We use the Gauss units; while Heaviside’s ‘rationalization’ removes 4π from the

Maxwell equations, it makes the formalism to be used later inconveniently plagued by such
factors elsewhere.
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F 0
ab(ϕ), with Hphys contained in the domain, such that for all Φ ∈ Hphys there

exist weak limits

w-lim
R→∞

R−2Fab(ϕR)Φ = F 0
ab(ϕ)Φ, (2)

where ϕR(x) = ϕ(x/R). However, for large R the support of ϕR becomes
spacelike with respect to any chosen compact region. Therefore, F 0

ab(ϕ) com-
mutes on Hphys with all local observables, so by irreducibility is, in fact, a
numerical distribution in x · x < 0, homogeneous of degree −2.2 This shows
that a physical representation of the assumed type is characterized by a clas-
sical flux of the electromagnetic field at spatial infinity. Two such sectors with
different fluxes carry inequivalent representations of observables.

For the derivation of further consequences one needs to represent solu-
tions of (1) in the form suitable for scattering processes. Assume that the
convolution3 Dret ∗ jb exists as an operator-valued distribution, so that one
can define the retarded electromagnetic field by

F ret
ab (ϕ) =4π[Dret ∗ (∂ajb − ∂bja) ](ϕ)

=4π

∫

M

[Dadv ∗ ϕ ](x)(∂ajb − ∂bja)(x)dx, (3)

where dx is the standard Lebesgue measure on the Minkowski space M (note
that the existence assumption involves only long-range behavior of jb(x), and
not its local properties, as Dadv ∗ϕ is a smooth function). Then the decompo-
sition of Fab suitable for the discussion of incoming asymptotics is

Fab = F ret
ab + F in

ab,

where F in
ab satisfies the homogeneous Maxwell equations and describes the in-

coming radiation field.
For the discussion of the spacelike, or the past, asymptotics based on the

above splitting, one needs further assumptions on incoming charged particles.
As mentioned above, creation of a charged particle is a nonlocal operation,
which has the consequence that one-particle states do not correspond to a dis-
crete mass value in the energy-momentum spectrum (infraparticle problem).
This problem has been shown in [3] to follow from the above-described super-
selection structure and Gauss’ law alone. Charged particles differ from neutral
ones. However, if the particle interpretation of QED should be possible at all,
and the charge current is carried by massive particles only, then at least the
following assumption seems reasonable. For χ(x) a test function with support
outside the future light cone V+, χR(x) = χ(x/R), and Φi ∈ Hphys, one should
have

lim
R→∞

R−1(Φ1, jb(χR)Φ2) = (Φ1, j
in,0
b (χ)Φ2), (4)

2The well-known analysis by Buchholz [3] derives (2), here postulated, from an assumption
on the limit of the mean value, and boundedness of fluctuations, in one chosen state.
3For instance, in the sense described by Vladimirov [21].
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where jin,0
b (x) is an operator-valued distribution, homogeneous of degree −3,

with support inside the past light cone V−. This incorporates minimal expec-
tations for incoming charges moving freely. By a slight strengthening of this,
one should expect that for support of ϕ in large separation (timelike or space-
like) from V+, the current ja may be replaced by jin,0

a in (3). Therefore, both
the past and the spacelike asymptotics of F ret

ab are determined by jin,0
a . In the

spacelike case, one can thus expect

lim
R→∞

R−2(Φ1, F
ret
ab (ϕR)Φ2) = (Φ1, F

ret,0
ab (ϕ)Φ2),

F ret,0
ab = 4πDret ∗ (∂ajin,0

b − ∂bj
in,0
a ).

(5)

The spacelike asymptotic structure described above has now consequences
which form the core of our discussion. It follows from relations (2) and (5) that
in the assumed context also the radiation field F in

ab must have the spacelike
asymptotics of the form

lim
R→∞

R−2(Φ1, F
in
ab(ϕR)Φ2) = (Φ1, F

in,0
ab (ϕ)Φ2),

where F in,0
ab (x) is an operator-valued distribution in x · x < 0, homogeneous of

degree −2. In consequence,

F ret,0
ab (x) + F in,0

ab (x) = F 0
ab(x) id . (6)

This relation shows that these fields F ret,0
ab and F in,0

ab cannot be statistically
independent, as the sum in (6) is classical and fixed. Taking expectation values
of this relation in various states Φ of this representation, one finds that in the
given representation, characterized by the numerical distribution F 0

ab(x), each
configuration of incoming charges must be accompanied by a ‘cloud’ of radia-
tion so fine-tuned that the spacelike tail of the electromagnetic field remains
unchanged. Therefore, the field F in,0

ab (x) in (6) has only a ‘slave’ status with
respect to F ret,0

ab (x), with its only function of keeping F 0
ab(x) fixed.4

The picture emerging from the above scheme may suggest that the be-
havior of the electromagnetic field in spacelike infinity, if only consistent with
the Gauss law, is largely a matter of convention. Another scheme, recently put
forward, is based on explicit acceptance of this view. One considers ‘infravac-
uum’ representations, in which electromagnetic field has infinite fluctuations
in spacelike infinity, which prevents the existence of the limit (2). It is further
claimed that this behavior is not in conflict with experiments, as they can be
performed only inside future light cones.5

In this paper we continue our explorations oppositely directed, toward
full inclusion of the long-range variables into the quantum observable realm.
We believe that the long-range structure and the existence of constraints in
electrodynamics justify such expectations. The plan of the article is as follows.
In Sect. 2 we explain in heuristic terms the ideas behind our constructions.

4This conclusion converges with the results of more extensive algebraic analyses, see [2], and
[9], Sects. VI.2 and VI.3.
5The idea of restricting observable physics to a light cone has been put forward in [4]; see
also [8].
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Sections 3 and 4 summarize, for the convenience of the reader, the representa-
tion of the basic variables of the theory (a new addition is the explicit Fock
form of the representation of the free electromagnetic field, implicit in earlier
works). In Sect. 5 we construct the first-order fields. After describing in Sect. 6
the translation automorphism of fields, we investigate various asymptotic lim-
its of fields in Sects. 7–9. Sections 5, 7, 8, and 9 constitute the advance of our
program. Physical discussion of the results and conclusions are gathered in the
closing Sect. 10. Appendices contain some supplementary material.

2. Main Ideas

The purpose of this article is to give preliminary steps for the perturbative con-
struction of the Maxwell-Dirac quantum electrodynamics in a physical gauge
in a Hilbert space (no indefinite metric), in which

(i) the incoming infrared-singular electromagnetic fields have full quantum
status,

(ii) the interacting fields have well-defined incoming asymptotics.
These steps include the construction of the Dirac, and the electromag-

netic field, in the first order of perturbation. This will allow us to make some
conjectures on the structure. Further development necessitates treatment of
UV problems in our scheme, and we leave this for future investigation.

The construction has two key elements, each addressing one of the two
above points.

(i) The construction of the free electromagnetic fields, including those with
nontrivial infrared tails (“infrared-singular” fields), uses the extension of
the local algebra defined in [11], and its positive energy representations
constructed in the same article.6 This algebra contains a nonlocal ele-
ment constituted by the infrared tails, which has the consequence that
it admits no vacuum state. Instead, there do exist states which have
arbitrarily small energy content. This residual energy cannot be wholly
ascribed to photons—the particle interpretation of the electromagnetic
field is not complete. The use of this construction makes it possible to
free the incoming free field from its ‘slave’ dependence described in In-
troduction.

(ii) The long-range character of the electromagnetic interaction implies, as
is well known, difficulties in time asymptotics of scattering.7 It has been
shown in [14] that in classical electrodynamics of the Dirac field in the
external electromagnetic field (with plausible extension to the full inter-
acting theory) the Dirac field does tend asymptotically to its free versions,
if an appropriate gauge is chosen. The crucial constituting property of

6A recent summary of this construction and its further development is discussed in [13].
7The Dollard technique, which is very fruitful in nonrelativistic potential quantum mechanics
[6], when applied in QED allows to construct the scattering operator, but does not solve the
problem of the construction of interacting fields in a physical gauge. See recent constructions
developed in [7].
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this gauge is that x · A(x) vanishes sufficiently fast for x tending to past
and future infinity inside the light cone. A quantum version of such gauge,
for a free field in the algebra mentioned above in (i), has been constructed
recently [15], and given the name of ‘almost radial gauge.’
The heuristic rationale behind the gauge condition described above may

be understood as follows. Asymptotically in time the electromagnetic current
is carried by charged particles moving freely toward/away from the region of
interaction around x = 0; thus, j(x) becomes proportional to x. With the
above gauge condition the action integral of interaction

∫
j · Adx becomes

finite.
We now sketch further steps in loose terms. The solution of the Maxwell-

Dirac system consisting of the Maxwell equations (1), with the current jb(x) =
eψ̄(x)γbψ(x), and the Dirac equation

[γa(i∂a − eAb(x)) − m] ψ(x) = 0,

where e < 0 is the electron charge, is selected by rewriting them in the form
of integral equations

ψ(x) = ψin(x) − e

∫
M

Sret(x − y)γbAb(y)ψ(y) dy ,

Aa(x) = Ain
a (x) + 4πe

∫
M

Dret
ab (x, y)ψ̄(y)γbψ(y) dy , (7)

where

Sret(x) = (2π)−4

∫
(�k + m)e−ik·x

m2 − k2 − i sgn(k0) 0
dk

is the retarded fundamental solution of the Dirac equation, which satisfies
[iγ · ∂ − m]Sret(x) = −δ(x), and we shall later comment on the choice of
Dret

ab (x, y).8 We shall show that up to the first order, in contrast to the usual
formulations, one has ψ(x) → ψin(x) in far past in appropriate sense. We
conjecture that the higher orders will not change this limit. Also, we shall
argue that the spacelike and past asymptotics of the electromagnetic field is
determined by the solution for A(x) up to the first order, and is a sum of
Ain(x) and the Coulomb (‘bare’) field of asymptotic particles.

We end this section by fixing some further conventions and notation.
The future directed hyperboloid and the light cone in Minkowski space will
be denoted Hm = {p : p2 = m2, p0 > 0} and C+ = {l : l2 = 0, l0 > 0},
respectively. Intrinsic differentiation operators in these hypersurfaces are

Mab = pa
∂

∂pb
− pb

∂

∂pa
, Lab = la

∂

∂lb
− lb

∂

∂la
.

For functions on C+ with the homogeneity property f(λl) = λ−2f(l), λ > 0,
the integral on the set of null directions defined by∫

f(l) d2l =
∫

f(1, l) dΩ(l),

8The renormalization of products poses no problem in the lowest order to be considered.
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where dΩ(l) is the spherical angle measure on the unit sphere, is Lorentz-
invariant (does not depend on the reference system). Consequently,

∫
Labf(l) d2l = 0,

∫
∂ · V (l) d2l = 0, (8)

where in the second integral V (l) is a homogeneous function of degree −1, such
that l ·V (l) = 0, and extended for the sake of differentiation to a neighborhood
of the cone with preservation of these two properties. For the latter property
we refer the reader to [11,13]. Further information on homogeneous functions
on C+ may be found in Appendix C.

Let χ(x) be a Minkowski space field, and W (s, l) be a function of s ∈ R

and l ∈ C+. Then we denote

χ̂(p) =
1
2π

∫
M

eip·xχ(x) dx,

W̃ (ω, l) =
1
2π

∫
R

eiωsW (s, l) ds.

Moreover, we write Ẇ (s, l) = ∂sW (s, l).
In what follows, whenever the range of integration is suppressed, the

whole domain of the measure is meant.

3. Algebra and Representation of Incoming Free Fields

The Hilbert space of the model is the tensor product F = FD ⊗ FR, where
FD carries the standard Fock representation of the free Dirac field, while FR

is the representation space of the free incoming electromagnetic field. To fix
our notation we first write down the basic formulae of the spinor field, and
then review our construction of the electromagnetic field and the almost radial
gauge potential.

3.1. Dirac Field

For p ∈ Hm, the mass hyperboloid, we denote the projection operators P (εp),
ε = ±, on the bispinor space:

P (εp) =
1

2m
(m + εγ · p), P (+p) + P (−p) = 1,

P (ε1p)P (ε2p) = δε1,ε2P (ε1p). (9)

If we write the Dirac in-field in the form

ψin(x) = (2π)− 3
2

∫ ∑
ε=±

e−εix·pcε(p) dμm(p), cε(p) = P (εp)c(p),
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then the anticommutation relations have two equivalent forms:

[ψin(x), ψ̄in(y)]+ = −iS(x − y)

= (2π)−3

∫
δ(k2 − m2) sgn(k0)(�k + m)e−ik·x dk ,

[c(p), c̄(k)]+ =
γ · p

m
δm(p, k) ,

where (with p on the mass shell)

dμm(p) =
m

p0
d3p, δm(p, k) =

p0

m
δ(p − k). (10)

The operators c+(p) and c∗
−(p) are the annihilation operators of the electron

and the positron, respectively, and their adjoints are the respective creation
operators. The subspace of FD consisting of all finite particle vectors with
momentum profiles of the Schwartz type on Hm will be denoted by FS

D. The
operators c(p) and c̄(p), when smeared with Schwartz functions, act intrinsi-
cally in FS

D.
The Fourier transform of jin(x) = e : ψ̄in(x)γψin(x) :, the current of the

in-field, takes the form

ĵin(k) = e

∫ ∑
ε1,ε2

: c̄ε1(p)γcε2(q) : δ(k + ε1p − ε2q) dμm(p) dμm(q), (11)

and has a well-defined restriction to the light cone, k = ωl, ω ∈ R, l ∈ C+:

ĵin(ωl) = δ(ω)
∫

ρD(p)
p

p · l
dμm(p).

where

ρD(p) = e
∑
ε=±

ε : c̄ε(p)cε(p) := em−1 : c̄(p)p · γc(p) : (12)

is the operator of the momentum density of charge.

3.2. Electromagnetic Field

The extended electromagnetic algebra is built of elements A(J), which sym-
bolize potential A(x) smeared with conserved, charge-free test currents J(x).
These elements are gauge-invariant; thus, they represent electromagnetic fields.
For the algebra of incoming fields the admitted currents may extend in past
timelike directions, with the timelike tails of the form J(x) ∼ xσ(x), with
σ(x) homogeneous of degree −4, with past timelike support.9 The standard
commutation symplectic form is then not absolutely integrable, but may be
extended in the following way:

[A(J1), A(J2)] =
i

2

∫
[J1 · A2 − J2 · A1](x) dx, (13)

where Ai(x) = 4π
∫

D(x − y)Ji(y) dy, with D(x) the Pauli-Jordan function.
This algebra describes free electromagnetic fields, including these with typical

9For the outgoing field, future timelike tails would be admitted.
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infrared tails of the Coulomb decay rate, as in the case of radiation fields
produced by scattered charges. If for each current J we define (s ∈ R, l ∈ C+)

V (s, l) =
∫

δ(s − x · l)J(x) dx, so Ṽ (ω, l) = Ĵ(ωl), (14)

then for the incoming test currents of the form mentioned above the functions
vanish for s → ∞ and have limits V (−∞, l) for s → −∞. If we now use the
representation of the Pauli-Jordan function (38) given below, then

1
2

∫
[J1 · A2 − J2 · A1](x) dx = {V1, V2},

where

{V1, V2} =
1
4π

∫
[ V̇1 · V2 − V1 · V̇2 ](s, l) ds d2l

=
1
4π

∫
V̇1(s, l) sgn(s − τ)V̇2(τ, l) ds dτ d2l

= i

∫ ˜̇V 1 · ˜̇V 2(ω, l)
ω

dωd2l,

(15)

where the second integral representation uses the fact that both Vi(s, l) vanish
in s = +∞, and the third integral is in the principal value sense. Introducing
notation A(J) = {V, V q} we represent the field A by a quantum variable
V q(s, l), and then the commutation relation (13) takes the form[{V1, V

q}, {V2, V
q}]

= i{V1, V2}. (16)

The functions ˜̇V (ω, l) have the following properties

l · ˜̇V (ω, l) = 0, ˜̇V (λ−1ω, λl) = λ−1 ˜̇V (ω, l) for all λ > 0, (17)

L ∧ ˜̇V (0, l) = 0. (18)

Moreover, for the sake of the present analysis we restrict them to be of Schwartz
type. Condition (18), which is a consequence of the asymptotic behavior of J ,
has an equivalent form: there exists a real, homogeneous function Φ(l) such
that

˜̇V (0, l) = ∂Φ(l).

Note that both ˜̇V (0, l) and ∂Φ(l) are real functions (as V̇ (s, l) are real).
Translation-covariant, positive energy representations of this algebra (in

the C∗ Weyl form) were constructed in [11]. The idea, roughly, may be de-
scribed as follows. Consider first the usual algebra of IR-regular fields, and
take all its coherent state representations, characterized by spacelike tails of
additional classical fields of the type created in scattering of charges. Choose
a Gaussian measure on the space of these tails and form the direct integral
of these coherent state representations. If the covariance operator of this mea-
sure satisfies certain regularity conditions, then on the Hilbert space of this
construction the extended electromagnetic algebra is naturally represented in
a regular, translation-covariant (with positive energy), and irreducible way.
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Representation thus constructed has no vacuum vector, nor any other
canonical choice of a state. However, there does exist a class of states ωh on
the algebra (with h going over a class of functions introduced before (22)
below), each of which defines a unitary equivalent representation of a Fock
type, based on this state.10 The state ωh is represented by the Fock ‘vacuum’
in this representation. However, we stress that this state is not translationally
invariant, and we discuss its energy-momentum content in Appendix A. This
Fock form of the representation is most useful for calculations, and we briefly
sketch the construction.

The Hilbert space of this representation is constructed as follows. First,
let F (ω, l) denote a complex vector function on ω ∈ [0,∞), l ∈ C+, orthogonal
to l, l · F (ω, l) = 0, and with the property F (λ−1ω, λl) = F (ω, l) for all λ > 0.
Then Hreg is the Hilbert space of such functions square integrable with respect
to the scalar product

(F1, F2)reg = −
∫

[0,∞)×C+

F1 · F2(ω, l)ω dω d2l. (19)

More precisely, each F (ω, l) symbolizes an equivalence class of functions dif-
fering by additions of functions proportional to l, but the use of the above-
simplified notation does not lead to inconsistencies. Next, let f(l) denote a
complex function on C+, homogeneous of degree −1, orthogonal to l, l·f(l) = 0,
and consider the Hilbert space H0 of such functions (again, more precisely
equivalence classes with respect to addition of terms proportional to l) square
integrable with respect to the product

(f1, f2)0 = −
∫

C+

f1 · f2(l) d2l.

Functions of the form f(l) = ∂φ(l), where φ(l) is a smooth and homogeneous
of degree 0 complex function, form a subspace of H0. We denote by Hir the
closure of this subspace in H0, and by Pir the orthogonal projection operator
from H0 onto Hir; the explicit form of this operator is derived in Appendix
C. For f1, f2 ∈ Hir we shall write (f1, f2)ir = (f1, f2)0. We form the direct
sum Hilbert space HR = Hir ⊕ Hreg, and the Hilbert space of the represen-
tation is now the Fock space FR based on the ‘one-excitation’ space HR. As
well known, another way of forming this space is FR = Fir ⊗ Freg, where
Fir and Freg are Fock spaces based on Hir and Hreg, respectively. The pairs
air(f), a∗

ir(f) and areg(F ), a∗
reg(F ) are creation/annihilation operators in Fir

and Freg, respectively, satisfying standard commutation relations[
air(f1), a∗

ir(f2)
]

= (f1, f2)ir,
[
areg(F1), a∗

reg(F2)
]

= (F1, F2)reg.

10In the original representation constructed in Sect. 6 in [11], this state is represented by a
particular vector (6.11) in this reference, with χ([f ]) = 1, ψ = Ω—the Fock ‘vacuum’ of the

space Ĥ[0]. The equivalence of representations is based on Theorem 6.4 and Proposition 6.5.

We warn the reader that there is a misprint in Eq. (6.16), and there should be the direct
product, instead of direct sum symbol, between the representations πμ and π̂[0]. Also, in the

exposed formula after (6.23) one should have B−1/2 instead of B1/2.
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In what follows, the subscripts ‘ir’ and ‘reg’ at scalar products will be often
omitted, if it does not lead to confusion. The operators

a#(f, F ) = a#
ir (f) ⊗ 1 + 1 ⊗ a#

reg(F ) (20)

are creation/annihilation operators in FR.11 We denote by FS
R ⊂ FR the

subspace formed of all finite-excitation vectors, with wave functions smooth
on their domains (C+)×k × ([0,∞) × C+)×n, and vanishing fast together with
all their derivatives in infinity of ω ∈ [0,∞). Creation/annihilation operators
with (f, F ) restricted to one-excitation subspace of FS

R act intrinsically on FS
R.

For practical purposes, it is convenient to reinterpret the space Hir in
a unitary equivalent way, by the transformation ∂φ(l) �→ [φ(l)], where [φ(l)]
denotes the equivalence class with respect to the addition of a constant, an
element of the Hilbert space H∂2—completion with respect to the product

([φ1], [φ2])∂2 =
∫

φ1(l)∂2φ2(l) d2l = −
∫

∂φ1(l) · ∂φ2(l) d2l.

When not leading to uncertainty, the brackets at [φ] will be omitted. Operators
acting in Hir are easier defined by their versions acting in H∂2 , the relation
being

C → C∂2 , C∂φ = ∂(C∂2φ).

Let now Hr
ir be the real Hilbert space of real functions in Hir, and denote

by Cr
ir ⊂ Hr

ir the subspace of smooth functions. We choose an operator B (and
the corresponding operator B∂2) with the following properties:

B : Hr
ir → Hr

ir, Ker B = {0}, B > 0, Tr B < ∞, B
1
2 Cr

ir = Cr
ir. (21)

Operator B with these properties is the covariance operator of the Gaussian
measure used for the construction of the representation formed by integration
of the coherent state representations, as briefly described above.

A unitarily equivalent Fock representation is now obtained as follows.
Choose a real Schwartz function h(s, l) on R × C+, homogeneous of degree
−1, and such that its Fourier transform h̃(ω, l) satisfies h̃(0, l) = 1. For each
Schwartz function ˜̇V (ω, l) with properties (17) and (18) denote

Ṽh(ω, l) = iω−1
[ ˜̇V (ω, l) − ˜̇V (0, l)h̃(ω, l)

]
, (22)

p(V̇ )(l) = ˜̇V (0, l) , (23)

rh(V̇ )(l) = Pir Rh(V̇ )(l) , (24)

Rh(V̇ )(l) = −i

∫
R

h̃(ω, l) ˜̇V (ω, l)
dω

ω
= −

∫
R

h̃(ω, l)Ṽh(ω, l) dω , (25)

jh(V̇ ) = 1
2B− 1

2 p(V̇ ) + iB
1
2 rh(V̇ ) , (26)

where Pir in (24) is the projection defined above, and the first integral in (25)
is in the principal value sense; note that p(V̇ ) and rh(V̇ ) are real functions.

11To simplify notation we shall also write a#
ir (f) ⊗ 1 ≡ a#

ir (f) and 1 ⊗ a#
reg(F ) ≡ a#

reg(F ).
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Then the formula12

πh({V, V q}) = a(jh(V̇ ), Ṽh) + a∗(jh(V̇ ), Ṽh) (27)

defines a representation of relations (16) acting in FS
R. The von Neumann

algebra of its exponentiation acts irreducibly in FR and is unitarily equivalent
to the representation briefly characterized above. Indeed, one easily finds that[

πh({V1, V
q
1 }), πh({V2, V

q
2 })

]
= i{V1, V2},

and if we denote by Ωh the Fock ‘ground state’ of FR then(
Ωh, [πh({V, V q})]2Ωh

)
= ‖Ṽh(ω, l)‖2

reg + 1
4‖B− 1

2 p(V̇ )‖2
ir + ‖B

1
2 rh(V̇ )‖2

ir.

The latter formula defines the quasi-free state determined by Theorem 6.4 and
Proposition 6.5 in [11]; see also Sect. 4.4 in [12]. Moreover, this equivalence also
guarantees that the representations defined as above, with different functions
h, are unitarily equivalent.13

As anticipated at the beginning of the present section, the Hilbert space
of the theory is now F = FD ⊗FR. The sum of finite-excitation subspaces with
smooth wave functions, with decay in infinity as defined for FS

D and FS
R, will

be denoted FS . This space is invariant under the action of the Dirac in-field
smeared with a Schwartz function, as well as the electromagnetic in-field (27)
with a test function as defined above.

For our purposes we shall need further restrictions on the covariance:

B
1
2 FS = FS , (28)

‖B
− 1

2
∂2 [(t · l)2∂2]−M‖∂2 < ∞ for some M ∈ N, (29)

with t as defined in footnote 1. In the first relation it is meant that the operator
acts on one of the l-arguments related to one of the spaces Hir of a function
in FS . Examples of operators satisfying all conditions (21), (28), and (29) are
given by

B∂2 = κ [(t · l)2∂2]−2n, κ > 0, n = 1, 2, . . . .

For the discussion of the operator (t · l)2∂2 we refer the reader to Appendix in
Ref. [11].

4. Almost Radial Gauge

For the construction of the quantum electromagnetic interaction one needs
a quantum potential; that is, we need to be able to smear the potential (7)
with a vector function K(x) with similar asymptotic behavior as J(x) in the
last section, but which need not be conserved. For the free incoming potential
Ain we use the almost radial gauge constructed in [15], and for the retarded
potential of the quantum current j(x) we give a tentative definition in Sect. 5.2

12When Ṽh(ω, l) is an argument of a#(Ṽh), it is understood that its restriction to ω ≥ 0 is
meant.
13More precisely, one can show that they are related by an implementable Bogoliubov trans-
formation, but we do not discuss the details here.
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below. The gauges of both parts are functionals of an auxiliary real Schwartz
function ρ on Minkowski space, such that∫

ρ(x)dx = 1,

∫
ρ(x)xα dx = 0, 1 ≤ |α| ≤ n, (30)

where α is a multi-index and n is a (large) natural number,14 which is equiv-
alent to

ρ̂(0) =
1
2π

, (∂αρ̂ )(0) = 0, 1 ≤ |α| ≤ n.

In this section we briefly summarize the construction of the free almost
radial gauge. We define

ζ(s, l) =
∫

ρ(a)
s − a · l

da, η(s, l) =
∫

aρ(a)
s − a · l

da,

and also denote for later use

κ(x, l) = xζ(x · l, l) − η(x · l, l) =
∫

(x − a)ρ(a)
(x − a) · l

da. (31)

Let K(x) be as described above and denote

W (s, l) =
∫

δ(s − x · l)K(x) dx , (32)

V̇K(s, l) = Ẇ (s, l) + η(s, l)l · Ẇ (s, l) + ζ(s, l)∂
(
l · W (s, l)

)
(33)

= Ẇ (s, l) + ∂s

[
η(s, l)l · W (s, l)

]
+ ∂

[
ζ(s, l)l · W (s, l)

]
,

where for the second equality in (33) we used properties of functions ζ and
η, see Appendix C in [15]. The profile VK(s, l) satisfies the demands of the
extended algebra, and the almost radial gauge is defined by

Ain(K) = {VK , V q}, (34)

see formulas (72) and (57) in [15]. In order to apply formula (27) we need the
Fourier transform (we use the first form in (33))

˜̇V K(ω, l) = ˜̇W (ω, l)

+ π

∫
R

sgn(u)
{

(∂ρ̂)(ul) l · ˜̇W (ω − u, l) + iρ̂(ul) ∂
[
l · W̃ (ω − u, l)

]}
du,

(35)

where

W̃ (ω, l) = K̂(ωl), (36)

and we used relations (see Appendix C in [15])

ζ̃(ω, l) = iπ sgn(ω)ρ̂(ωl), η̃(ω, l) = π sgn(ω)(∂ρ̂)(ωl).

The commutation relation of the potential in the almost radial gauge
follows from (16) and (34):[

Ain(K1), Ain(K2)
]

= i{VK1 , VK2}.

14In fact, one can assume for simplicity that n = ∞.
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We obtain in Appendix B a more explicit form of the commutator function in
terms of smearing fields:

{VK1 , VK2} = 4π

∫
Ka

1 (x)Dab(x, y)Kb
2(y) dx dy,

where

Dab(x, y) = gabD(x − y) + ∂x
aFb(x, y) − ∂y

b Fa(y, x) + ∂x
a∂y

b G(x, y), (37)

D(x) = − 1
8π2

∫
δ′(x · l) d2l =

1
2π

sgn(x0)δ(x2), (38)

Fb(x, y) =
1

8π2

∫
δ
(
(x − y) · l

)
κb(x, l) d2l,

G(x, y) =
1

16π2

∫
sgn

(
(x − y) · l

)
κ(x, l) · κ(y, l) d2l.

5. Interacting Fields

5.1. First-Order Dirac Field

For a Schwartz bi-spinor function χ(x) the smeared Dirac field is denoted

〈χ, ψ〉 =
∫

χ̄(x)ψ(x) dx = (2π)−2

∫
χ̂(p)ψ̂(p) dp = (2π)−2〈χ̂, ψ̂〉.

The first-order Dirac field has the form

〈χ, ψ(1)〉 = −e

∫
χ̄(x)Sret(x − y)dx γbψin(y)Ain

b (y) dy

=
∑

ε

∫
Kb

χ(y, εq) cε(q) dμm(q)Ain
b (y) dy,

(39)

with

Kb
χ(y, r) = − e

(2π)
3
2

∫
χ̄(x)Sret(x − y) dx γbe−ir·yP (r), r = εq, q ∈ Hm,

where P (r) = P (εq) is as defined in (9). Straightforward calculation gives

K̂χ(k, r) = − e

(2π)
3
2

χ̂(r − k)(r − 1
2 �kγ)

r · k − 1
2k2 − i sgn(r0 − k0) 0

P (r),

and its well-defined restriction to k = ωl is now set into formula (36). In this
way one obtains

W̃χ(ω, l, r) = − e

(2π)
3
2

χ̂(r − ωl)
r − 1

2ω� lγ
(ω − i0) r · l

P (r).
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Then

˜̇Wχ(ω, l, r) =
ie

(2π)
3
2

χ̂(r − ωl)
r − 1

2ω� lγ
r · l

P (r) ,

∂

∂l

(
l · W̃χ(ω, l, r)

)
=

e

(2π)
3
2

∂χ̂(r − ωl)P (r) ,

l · ˜̇Wχ(ω, l, r) =
ie

(2π)
3
2

χ̂(r − ωl)P (r) .

Putting these expressions into the formula (35) one obtains

˜̇Vχ(ω, l, r) =
ie

(2π)
3
2

{
χ̂(r − ωl)

r − 1
2ω� lγ

r · l

+π

∫
R

sgn(u)∂
[
ρ̂(ul) χ̂(r − ωl + ul)

]
du

}
P (r); (40)

here and in what follows we use a shorthand notation

∂
[
A(p)B(k)

]
= (∂A)(p)B(k) + A(p)(∂B)(k)

For ω = 0 one finds

˜̇Vχ(0, l, r) =
ie

(2π)
3
2

{
χ̂(r)

r

r · l
+ π

∫
R

sgn(u)∂
[
ρ̂(ul)χ̂(r + ul)

]
du

}
P (r)

= ∂Φχ(l, r) ≡ ∂

∂l

{ −ie

2(2π)
1
2

∫
sgn(u) log |ur · l| ∂u

[
ρ̂(ul)χ̂(r + ul)

]
duP (r)

}
.

(41)

Theorem 1. Let the covariance operator B satisfy conditions (21) and (28).
Then the first-order Dirac field 〈χ, ψ(1)〉 is an operator mapping FS to FS.

Proof. The function (40) is smooth in all arguments. Next, we note that if a
function f(x, y), x, y ∈ R

n, is of fast decrease in variables x and y, then it is
also of fast decrease in x and x + y. With this observation, a close inspection
of the formulas (40) and (41) shows that for each k,m, n ∈ {0, 1, . . .} there
exists a fixed finite constant σ ≥ 1 such that for each N ≥ 1 we have15

|∂k
ωLmMn˜̇Vχ(ω, l, r)| ≤ const

(1 + |ω|)σ|r|σ
(1 + |r − ωl|)N

(42)

|LmMnΦχ(l, r)| ≤ const
|r|N (43)

(note that |r| ≥ m); the precise value of σ does not matter for us, and the
multiplicative constants on the rhs depend on all parameters. The first bound

15Powers of operators L and M are symbolic, and each factor has its own indices. Also, here,
and in similar contexts, the arbitrarily large negative exponents −N are treated symbolically:
at logically related estimates they do not need to denote the same number.
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above also implies

∣∣∂k
ωLmMn Ṽχ,h(ω, l, r)

∣∣ ≤ const
(1 + |ω|)σ|r|σ

(1 + |r − ωl|)N
, (44)

|LmMnRh(l, r)| =
∣∣∣LmMn

∫
h̃(ω, l)˜̇Vχ(ω, l, r)

dω

ω

∣∣∣ ≤ const
|r|N , (45)

with Ṽχ,h(ω, l) as defined in (22). Estimate (44) follows easily from (42). For
(45) we use the second equality in (25) and the observation made at the be-
ginning of the proof. The quantities on the lhs of (43) and (45) are thus suffi-
ciently bounded, and we only need to comment on (44). For εω < 0 (the cases
‘creation-creation’ and ‘annihilation-annihilation’) the rhs of (44) is bounded
by const[(1 + |ω|)|r|]−N for each N ≥ 0. For εω > 0 (the cases ‘creation-
annihilation’ and ‘annihilation-creation’) the bound is integrated with a fast
decreasing function of either r or ω, which produces on the rhs const(1+|ω)−N

or const|r|−N , respectively. Next, we recall definition (24) and note that the
operator Pir conserves smoothness and fast decay of the function Rh(l, r) (see
the explicit form of this operator given in Lemma 6 in Appendix C). Finally,
we also recall definitions (23) and (26), and note that B± 1

2 leave FS invariant
(by the assumption (28)). �

5.2. First-Order Electromagnetic Field

Here we briefly comment on a possible choice of distribution Dret
ab (x, y) in equa-

tion (7), which should replace the naive gabD
ret(x−y), so as to ensure extension

of a kind of almost radial property to the retarded field. One possibility worth
considering would be to split Dret into the sum of 1

2D = 1
2 (Dret − Dadv) and

Ds = 1
2 (Dret + Dadv), and replace

gab
1
2D(x − y) → 1

2Dab(x, y),

gabD
s(x − y) → gabD

s(x − y) − ∂x
a

{∫
ρ(a) 1

2 log |(x − a)2|da xbD
s(x − y)

}
,

where Dab(x, y) is the commutator function (37), and ρ(x) is the function intro-
duced in Sect. 4. However, as we are not going to consider higher-order terms,
we content ourselves with the first-order electromagnetic field. We conjecture
that for J conserved and of Schwartz behavior one has

A(1)(J) = 4π
∫

J(x)Dret(x − y)jin(y)dy dx. (46)

Moreover, as the current jin(y) does not radiate, we can replace Dret by Ds

in this formula.

Theorem 2. For a Schwartz function χ and a Schwartz conserved current J
the operators jin(χ) and A(1)(J) map FS to FS.

The proof of these statements, which we do not give here in details, may
be easily inferred as a by-product of the proof of Theorem 4 in Sect. 8 below.
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For the (infinite) differentiability of the wave function (65) in p it is sufficient
to note that

∂

∂p
1

(p − q)2
= −q0

p0

∂

∂q
1

(p − q)2
,

and integrate ∂/∂q by parts.

6. Translations

The algebra of free fields ψin(χ) and Ain(J), where ∂ ·J = 0, is invariant under
the usual action of the Poincaré group. As mentioned above, the translation
group is unitarily implementable that is

αz(ψin(χ)) := ψin(Tzχ) = U(z)ψin(χ)U(−z),

αz(Ain(J)) := Ain(TzJ) = U(z)Ain(J)U(−z),

where (Tzf)(x) = f(x − z). Also, composite fields, if they are translation in-
variantly constructed with the use of these fields (which means, in particular,
that Ain is always smeared with a conserved current), will satisfy these rela-
tions. However, the incoming almost radial gauge Ain(K), for nonconserved
K, depends on an auxiliary function ρ. If this dependence is made explicit by
writing Ain(K; ρ), then the above action gives αz(A(K; ρ)) = A(TzK;Tzρ),
which has been discussed in [15]. For the shifted function Tzρ the condition
(30) is satisfied with respect to the origin shifted to z.

However, this is a change of gauge, which should not have impact on ob-
servables. Therefore, we can combine the transformation αz with the restora-
tion of the initial function ρ and define α̂z(Ain(K; ρ)) = Ain(TzK; ρ); for ob-
servables, which do not depend on ρ, one has α̂z = αz.

As the total quantum current j(x) should turn out to be such observable,
also the total potential (7) should transform as αz(A(K; ρ)) = A(TzK;Tzρ),
and then keeping ρ constant as explained above we can translate potential by
α̂z(A(K; ρ)) = A(TzK; ρ).

We expect that all fields of the theory will be transformed covariantly by
αz, if ρ is added to the family of test functions. This is easily confirmed for
the first-order Dirac field (39). Then for all quantities nontrivially dependent
on ρ we replace αz by α̂z. In particular, α̂z(〈χ, ψ(1)〉) = 〈Tzχ, ψ(1)〉.

7. IN-asymptotics of the Dirac Field

For the investigation of asymptotics of the fields we use translation α̂z, as
discussed in the previous section.

For the derivation of ‘in’-asymptotics of the massive field ψ(x) we proceed
as follows. In the first step the field is smeared with a Schwartz spinor test
function χ̄(x), with the support of the Fourier transform contained in p2 ≥ ε2

for some ε > 0 (both future and past parts are allowed). The resulting field is
translated with the use of α̂z by z = −λv, λ > 0, v ∈ H1, and then integrated
over v with dμ(v) = (v0)−1d3v. The limit λ → ∞ gives the past asymptotic
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behavior of the field. It is easy to see that the smearing thus described amounts
to∫

α̂−λv(〈χ, ψ〉) dμ(v) =
∫

χ̄(x + λv)ψ(x) dx dμ(v) =
∫

F (λp) χ̂(p)ψ̂(p) dp,

where for w2 > 0

F (w) = (2π)−2

∫
eiw·vdμ(v) = i4πD

(−)
1 (w)

=
1

2
√

w2

(
Y1(

√
w2) − i sgn(w0)J1(

√
w2)

)

= (2π)− 1
2 (

√
w2)− 3

2 ei sgn(w0)(
√

w2+ 3
4π)

(
1 + O

( 1√
w2

))
;

here we have used the known explicit form of the function D
(−)
1 , in the notation

of [19] (formula (2.3.37), with a spacetime x changed to w, and the ‘mass’
parameter equal to 1), and properties of Bessel functions. We now want to
compensate the geometric decay factor, and also dump asymptotic oscillations,
in F (λp). For this purpose we choose a smooth function d(λ) of compact
support in (0,+∞), such that

∫
d(λ)dλ = 1, and define for Λ > 0 and m̄ ∈ R:

〈χ, ψ〉[m̄, d,Λ] =
∫

G[m̄, d,Λ](p)χ̂(p)ψ̂(p) dp, (47)

where

G[m̄, d,Λ](p) =
∫ √

2π(λ|m̄|) 3
2 e−i sgn(p0)(λm̄+ 3

4π)F (λp)d
( λ

Λ

)dλ

Λ

=
∫ ( |m̄|√

p2

) 3
2
eisΛ sgn(p0)(

√
p2−m̄)

(
1 + O

( 1

sΛ
√

p2

))
d(s) ds

= 2π
( |m̄|√

p2

) 3
2
{

d̃
(
Λ sgn(p0)(

√
p2 − m̄)

)
+ O

( 1

Λ
√

p2

)}
.

For each choice of parameters in square brackets, and p restricted to the sup-
port of χ̂(p), the function G[m̄, d,Λ](p) is smooth and bounded, and all its
partial derivatives of order n are bounded by const|p|n (for fixed parameters
in square brackets). Therefore, G[m̄, d,Λ](p)χ̂(p) is a Schwartz function, and
the operators (47), for ψ = ψin or ψ = ψ(1), map FS to FS (by Theorem 1
for ψ(1)).

Theorem 3. For each Φ ∈ FS one has

s-lim
Λ→∞

〈χ, ψin〉[m, d,Λ]Φ = 〈χ, ψin〉Φ , (48)

s-lim
Λ→∞

〈χ, ψin〉[m̄, d,Λ]Φ = 0 , m̄ �= m. (49)

If the covariance operator B satisfies (21), (28), and (29), then

s-lim
Λ→∞

〈χ, ψ(1)〉[m̄, d,Λ]Φ = 0, m̄ ∈ R. (50)
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Proof. For (48) and (49) we note that in these cases one has
√

p2 = m in the
function G[m̄, d,Λ](p), and the thesis follows immediately.

For the sake of the proof of (50), we simplify notation of G by suppressing
arguments m̄ and d, and we write G[m̄, d,Λ](p) = GΛ(p). We first note that the

function ˜̇VΛ(ω, l, r) corresponding to 〈χ, ψ(1)〉[m̄, d,Λ] is obtained from (40) by
the substitution χ̂(p) → χ̂(p)GΛ(p). In particular, under the integral in (40)
we have to replace

∂
[
ρ̂(ul)χ̂(r − ωl + ul)

] → ∂
[
ρ̂(ul)χ̂(r − ωl + ul)

]
GΛ(r − ωl + ul)

+ρ̂(ul)χ̂(r − ωl + ul) ∂GΛ(r − ωl + ul). (51)

Using the relation
dGΛ(r − ωl + ul)

du
= l · ∂GΛ(r − ωl + ul) and the fact that

inside each part of the light cone GΛ(p) depends only on p2, one finds that

∂GΛ(r − ωl + ul) =
r − ωl + ul

r · l

d

du
GΛ(r − ωl + ul).

We use this representation in the second term of the rhs of (51) and integrate
this term in the integral in the modified (40) by parts with respect to u. In

this way one finds that ˜̇VΛ(ω, l, r) = ˜̇V 1
Λ (ω, l, r) + ˜̇V 2

Λ (ω, l, r), where

˜̇V 1
Λ (ω, l, r) =

ie

2
√

2π

∫
GΛ(r − ωl + ul) sgn(u)

{
∂
[
ρ̂(ul)χ̂(r − ωl + ul)

]

− ∂u

[r − ωl + ul

r · l
ρ̂(ul)χ̂(r − ωl + ul)

]}
duP (r) , (52)

˜̇V 2
Λ (ω, l, r) =

ie

(2π)
3
2
ω GΛ(r − ωl)χ̂(r − ωl)

l − 1
2� lγ

r · l
P (r) . (53)

The rest of the proof is based on the fact that on the support of χ̂(p) the
function GΛ(p) is bounded, and for Λ → ∞ tends pointwise to zero almost

everywhere in p. For ˜̇V 2
Λ (ω, l, r) we have

∣∣Ṽ 2
Λ,h(ω, l, r)

∣∣ =
∣∣ω−1 ˜̇V 2

Λ (ω, l, r)
∣∣ ≤ |GΛ(r − ωl)| const |r|2

(1 + |r − ωl|)N
. (54)

Arguments similar to those used for (44), together with vanishing of GΛ, give
now the thesis for this part. Next, using the observation made at the beginning
of the proof of Theorem 1, we estimate

∣∣ ˜̇V 1
Λ (ω, l, r)

∣∣ ≤ const
∫ |GΛ(r − ωl + ul)| du

(1 + |u|)N

|r|2
(1 + |r − ωl|)N

, (55)
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which guarantees the thesis for Ṽ 1
Λ,h(ω, l, r) in the region |ω| ≥ 1. In the region

|ω| ≤ 1 one needs

∂ω
˜̇V 1
Λ (ω, l, r) =

ie

(2π)
3
2
GΛ(r − ωl)

{
(∂χ̂)(r − ωl) + ∂ω

[r − ωl

r · l
χ̂(r − ωl)

]}
P (r)

+
ie

2
√

2π

∫
GΛ(r − ωl + ul) sgn(u)

{
∂
[
(∂uρ̂)(ul)χ̂(r − ωl + ul)

]

− ∂u

[r − ωl + ul

r · l
(∂uρ̂)(ul)χ̂(r − ωl + ul)

]}
duP (r),

where ∂ω, in action on functions depending on r − ωl + tl in (52), has been

changed to −∂t and integrated by parts. It is now clear that |∂ω
˜̇V 1
Λ (ω, l, r)| is

estimated by a sum of terms of the types appearing on the rhs of (54) and
(55). This completes the estimation of ṼΛ,h(ω, l) needed for the thesis.

Next, we consider

˜̇VΛ(0, l, r) = ˜̇V 1
Λ (0, l, r) =

ie

2
√

2π

∫
GΛ(r + ul) sgn(u)

{
∂
[
ρ̂(ul)χ̂(r + ul)

]

− ∂u

[ r + ul

(r + ul) · l
ρ̂(ul)χ̂(r + ul)

]}
duP (r) = ∂ΦΛ(l, r),

where the denominator in the second line is written as (r + ul) · l in order

to extend ˜̇VΛ(0, l, r) to a neighborhood of the cone with the preservation of
its orthogonality to l and homogeneity of degree −1. The existence of ΦΛ(l)

is guaranteed by (41). As B
− 1

2
∂2 satisfies assumption (29), it is sufficient to

consider

‖[(t · l)2∂2]MΦΛ(., .)‖ = ‖[(t · l)2∂2]M−1(t · l)2∂ · ˜̇VΛ(0, ., .)‖.

The action of ∂ and of ∂2 above yields well-defined results on the cone, as

described in Appendix C. Again, all l-derivatives acting on GΛ in ˜̇VΛ(0, l, r)
may be integrated by parts as before, and vanishing of this norm follows on
similar lines as above.

Finally, we consider Rh(V̇Λ). First, we note that for (53) we have

Rh(V̇ 2
Λ )(l, r) =

e

(2π)
3
2

∫
GΛ(r − ωl)χ̂(r − ωl)

l − 1
2� lγ

r · l
h̃(ω, l)dω P (r) ,

|Rh(V̇ 2
Λ )(l, r)| ≤ const

∫ |GΛ(r − ωl)| dω

(1 + |ω|)N

1
|r|N ,

so ‖Rh(V̇ 2
Λ )‖ → 0 for Λ → ∞. For Rh(V̇ 1

Λ ) one obtains similar conclusion with
the use of the second equality in (25) and the estimate of ṼΛ,h(ω, l) derived
above. As the operator B

1
2 Pir is bounded, the thesis follows. �
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8. Spacelike and Past Timelike Asymptotics of the
Electromagnetic Current and Field

We start by noting that the matrix element (Φ1, j
in(x)Φ2), Φi ∈ FS , is a

smooth function obtained with the use of (11). The stationary phase expansion,
Corollary 8 in Appendix D, gives its asymptotic behavior, and we find

(Φ1, j
in(x)Φ2) = θ(x2 − 1)

( m

|λ|
)3

{
u (Φ1, ρD(mu)Φ2)

+i sgn(λ)e
∑

ε

εe−i2mελ(Φ1, : c̄−ε(mu)γcε(mu) : Φ2) + O(|x|−4)
}

+O((1 + |x|)−N ), (56)

where for x2 ≥ 1 we have denoted x = λu, λ ∈ R, u ∈ H1, and where
ρD(p) is the operator of momentum density of charge (12). The matrix element
vanishes fast in spacelike directions. The ‘creation-creation’ and ‘annihilation-
annihilation’ contributions to the leading term in timelike directions oscillate
rapidly, and after appropriate averaging also vanish rapidly. The above expan-
sion could also serve for the analysis of the retarded field, but we shall use
another method, which will produce limits in strong topology.

We want to investigate the asymptotic limit of the electromagnetic cur-
rent and field in the spirit of Eqs. (4) and (2), but with the representation of
the field in the form A(J), where J is a conserved test current. Also, the test
current J for A(J) and the test field χ for j(χ) are not assumed to be of com-
pact support, but rather are Schwartz functions supported outside the future
light cone V+. We have seen that the first-order Dirac field ψ(1) decays faster
than ψin in past timelike infinity. We conjecture that this will remain true for
higher orders, and that in consequence the first- and higher-order corrections
to the current vanish faster than the current of free Dirac particles. If this is
confirmed, then the asymptotics of the electromagnetic field up to the first
order should not be modified by higher orders.

We want to know whether the limit in the sense described above will
depend on the choice of the central point. Thus we choose a current J(x) and
a field χ(x) with the support outside V+, any vector z in spacetime, and for
all R > 0 denote

JzR(x) = R−3J
(x − z

R

)
, AzR(J) = A(JzR),

χzR(x) = R−1χ
(x − z

R

)
, jzR(χ) = j(χzR).

The Fourier transforms of the scaled test fields are

ĴzR(p) = eiz·pRĴ(Rp), χ̂zR(p) = eiz·pR3χ̂(Rp). (57)

We recall the definition (14) of the function V (s, l) determined by J(x), and
then we find that the function VzR(s, l) determined by JzR(x) satisfies

VzR(s, l) = V
(s − z · l

R

)
, ṼzR(ω, l) = eiωz·lRṼ (Rω, l). (58)
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Theorem 4. Let Ψ be any vector in FS. With the above notation one has:
(i) For Ain, with Vir(l) = −PirV (0, l):

w-lim
R→∞

Ain
zR(J)Ψ = [air(iB

1
2 Vir) + a∗

ir(iB
1
2 Vir)]Ψ , (59)

lim
R→∞

‖Ain
zR(J)Ψ‖2 =

(
Ψ, ‖Ṽ ‖2

reg + [air(iB
1
2 Vir) + a∗

ir(iB
1
2 Vir)]2 Ψ

)
. (60)

If J is supported in V−, then Vir = 0, and if its support is spacelike, then
Vir(l) = ∂Φ(l), where

Φ(l) = −1
2

∫
sgn(x · l)

x · J(x)
x2

dx. (61)

(ii) For A(1):

s-lim
R→∞

A(1)(JzR)Ψ =
∫

C(p) · p ρD(p) dμm(p)Ψ, (62)

where

C(p) =
∫

J(x)√
(p · x)2 − p2x2

dx (63)

(iii) For jin:

s-lim
R→∞

jin(χzR)Ψ =
∫ { ∫

R

χ(sp)ds

}
p ρD(p) dμ(p)Ψ, (64)

which agrees with the first term of the expansion (56).
The algebra of limit operators (i)–(iii) is commutative.

Proof. (i) We write Ain(JzR) = Ain
reg(JzR) + Ain

ir (JzR), with the reg/ir part
defined by a#

reg/a#
ir in (27), with (20), respectively. As J is of fast decrease, so is

also V (s, l). Therefore, ˜̇V (0, l) = 0 and Ṽh(ω, l) = Ṽ (ω, l), and the same is true
for ṼzR. A simple change of integration variable shows that ‖ṼzR‖reg = ‖Ṽ ‖reg,
the norm of the product (19). Similarly, for Ṽ1(ω, l) smooth on [0,∞) × C+

and of Schwartz behavior in infinity, one finds (Ṽ1, ṼzR) → 0 for R → ∞, and
in consequence ‖areg(ṼzR)Ψ‖ → 0. Together, these facts imply:

w-lim
R→∞

Ain
reg(JzR)Ψ = 0, and lim

R→∞
‖Ain

reg(JzR)Ψ‖2 = ‖Ṽ ‖2
reg.

The proof of formulas (59) and (60) will be now completed if we show that

‖B
1
2 Pir[Rh(V̇zR) + V (0, .)]‖ir → 0 (R → ∞), .

As B
1
2 Pir is a bounded operator, it is sufficient to estimate the norm of the

vector in square brackets above. For this we note that

Rh(V̇zR)(l) + V (0, l) =
∫ [

1 − h̃(R−1ω, l)eiR−1ωl·z
]
Ṽ (ω, l) dω,

which is bounded and tends to zero pointwise, which ends the proof of this
part.
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To prove statements on Vir we note that V (0, l) =
∫

δ(x · l)J(x) dx, so
Vir = 0 for J with support in V−. Next, for J with spacelike support, we use
the second formula in (69), which may be written as

Φ(l) = lim
q→l

Φ(q), Φ(q) =
1
4π

∫
q · [−V (0, l′)]

q · l′
d2l′,

where the limit goes over vectors q in V+. One easily calculates∫
δ(x · l′)

q · l′
d2l′ =

2πθ(−x2)√
(q · x)2 − q2x2

.

Taking into account that the support of J is spacelike, one finds

Φ(q) = −1
2

∫
q · J(x)√

(q · x)2 − q2x2
dx = −1

2

∫
q · x√

(q · x)2 − q2x2

x · J(x)
x2

dx,

where to obtain the second equality, for x2 < 0 we denote x̂ = x/
√−x2, note

the identity
q√

(q · x)2 − q2x2
= ∂x log

(
q · x̂ +

√
(q · x̂)2 + q2

)
+

q · xx

x2
√

(q · x)2 − q2x2
,

and integrate ∂x by Gauss’ theorem. One can now perform the limit q → l,
which gives the desired formula.

(ii) We denote by jε1ε2 this part of the Dirac current j, which is formed
with c̄ε1 and cε2 , and then for A

(1)
ε1ε2(x) = 4π

∫
Ds(x − y)jε1ε2(y) dy (see (46)

and remark following this formula), using (11) one finds

A(1)
ε1ε2

(JzR)

= − e

π

∫
eiz·(ε1p−ε2q) RĴa(R(ε1p − ε2q))

(ε1p − ε2q)2
: c̄ε1(p)γacε2(q) : dμm(p) dμm(q).

For ε1 = −ε2 = ε, one has
∫ ∣∣∣RĴ(εR(p + q))

(p + q)2

∣∣∣2 dμm(p) dμm(q) ≤ R2

∫
d3p d3q

RN+2(p0 + q0)N+2
≤ const

RN

for each N , so ‖As
ε,−ε(JzR)Ψ‖ → 0 for R → ∞.

For ε1 = ε2 = ε the wave function of the vector A
(1)
εε (JzR)Ψ is composed

of finite collection of n-excitation functions of the form

ψR(p, S) = − e

π

∫
eiεz·(p−q) RĴa(εR(p − q))

(p − q)2
P (p)fa(q, S) dμm(q), (65)

where P (p) is as defined in (9), fa(q, S) = γa[c+(q)Ψn](S), S stands for all
remaining arguments, and f is of Schwartz behavior. This implies that for each
N one has |f(q, S)| ≤ constNF (S)/(1 + |q|)N , where F (S) is of fast decrease.
We change integration variable q to r = R(p − q), and then ψR(p, S) =∫

φR(p, S, r) d3r, where

φ(p, S, r) = −em

π
eiz·(p−q) Ĵ

a(R(p0 − q0, r))
R2(p − q)2q0

P (p)fa(q, S),
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where q is expressed in terms of p and r. Simple algebra leads to the bound
R2|(p − q)2| ≥ 4m2|r|2/(p0 + q0)2, which results in

|φR(p, S, r)| ≤ const(p0)2F (S)
|r|2(1 + |r|)N (1 + ||p| − R−1|r||)N

≤ const(p0)2F (S)
|r|2(1 + |r|)N

.

The rhs bound implies that for the point-like limit of ψR(p, S) (R → ∞) one
can go under the integral sign. On the other hand, the first bound above shows
that

|ψR(p, S)| ≤
∫ ∞

0

const (p0)2F (S)
(1 + r)N (1 + ||p| − R−1r|)N

dr ≤ const F (S)
(1 + |p|)N

—to show this consider the integration regions t ≷ R|p|/2 separately. There-
fore, to find the strong Hilbert space limit of ψR(p, S) it is sufficient to find
point-like limit of φR(p, S, r). This is easily calculated, and one obtains

lim
R→∞

ψR(p, S) =
em

π

∫ [
r2 −

(p · r
p0

)2]−1

Ĵa
(p · r

p0
, r

) d3r
p0

P (p)fa(p, S).

(66)

It is easy to see that the integral in the above expression may be written as a
four-dimensional integral∫

Ĵa(r)δ(r · p)
dr

−r2
=

1
2π

∫
R

{ ∫
Ĵa(r)eisr·p dr

−r2

}
ds

= (2π)2
∫

Ja(x)
{ ∫

R

Ds(sp − x) ds

}
dx = π

∫
Ja(x) dx√

(p · x)2 − p2x2
,

where we have used the Fourier representation and the explicit form of Ds(x).
We have shown that

lim
R→∞

ψR(p, S) = em

∫
Ja(x) dx√

(p · x)2 − p2x2
P (p)fa(p, S).

Noting that P (εp)γP (εp) = εP (εp)p/m, one obtains the thesis.
(iii) For jin we have

jinε1ε2(χzR)

=
e

(2π)3

∫
eiz·(ε1p−ε2q)R3χ̂(R(ε1p − ε2q)) : c̄ε1(p)γcε2(q) : dμm(p) dμm(q),

and the proof is very similar to that for A(1)(JzR). Effectively, the difference
is that the rhs of (66) is replaced by

em

(2π)2

∫
χ̂
(p · r

p0
, r

) d3r
p0

P (p)fa(p, S) = em

∫
R

χ(sp) dsP (p)fa(p, S),

which ends the proof of (iii). The commutativity of (59), (62), and (64) is a
consequence of the commutativity of a#

ir (iB
1
2 Vir) and ρD(p) (for the commu-

tativity of the operators air(iB
1
2 Vir) + a∗

ir(iB
1
2 Vir) note that their arguments

are purely imaginary). �
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9. Past Null Asymptotics of Electromagnetic Field

Here we consider past null asymptotics for A(J), where J is conserved and
of Schwartz type. We follow the method introduced by Buchholz [1]. We shift
A(J) into the past null directions by −rk, r > 0, k ∈ C+, k0 = 1, multiply by
−2r, integrate over r with d(r/R)/R, with d as in (47), average over angles of
k, and finally take the time derivative of the resulting smearing current. This
procedure has a clear interpretation of the past null limit and produces A(Jd

R)
with

Jd
R(x) = −2

∫
r∂0J(x + rk)d

( r

R

)dr

R

dΩk

4π
,

which gives the Fourier transform

Ĵd
R(p) = Ĵ(p)

p0

|p|FR(p), FR(p) = 2π
[
d̃(−R(p0 − |p|)) − d̃(−R(p0 + |p|))].

If we denote by V d
R(s, l) the V function obtained from Jd

R, then

Ṽ d
R(ω, l) = Ĵd

R(ωl) =
(
1 − 2πd̃(−2Rωl0)

)
Ṽ (ω, l). (67)

Theorem 5. Let J(x) and Jd
R(x) be as defined above. Then for each Ψ ∈ FS

one has

s-lim
R→∞

Ain(Jd
R)Ψ = Ain(J)Ψ ,

s-lim
R→∞

A(1)(Jd
R)Ψ = 0 .

Proof. With Ṽ d
R given by (67), the case of Ain is trivial. In the case of A(1) we

have

A(1)
ε1ε2

(Jd
R) = − e

π

∫
Ĵd

R(ε1p − ε2q)
(ε1p − ε2q)2

: c̄ε1(p)γcε2(q) : dμm(p) dμm(q).

The proof is now a rather obvious modification of the proof of Theorem 4
(ii). Consider Ĵd

R(ε1p − ε2q). For ε1 = −ε2, one has to note that |p + q|−2 is
square integrable in the origin, and for ε1 = ε2, that |p0 − q0|/|p−q| ≤ 1. The
pointwise vanishing of FR(ε1p − ε2q) almost everywhere gives now the thesis.

�

10. Conclusions and Discussion

The purpose of the article was to give preliminary steps for a construction of
QED in a physical gauge. This is assumed to mean that the representation
space is a Hilbert space (no indefinite metric), and the interacting fields are
properly represented. This has been achieved in the first perturbation order.
Treatment of UV problem is a subject for further investigation.

The construction is based on the extension of the usual free electromag-
netic field algebra to the infrared-singular fields, with its representation ob-
tained earlier. Another key element is the use of the almost radial gauge of
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the electromagnetic potential, constructed recently. The formalism thus con-
structed contains in a nontrivial way long-range, nonlocal degrees of freedom.
Translations are implemented in the representation by a unitary group, with
energy-momentum spectrum in the forward light cone, but there is no vacuum.
However, there do exist certain states on which the representation is built in
a Fock way. The energy-momentum content of such states may be arbitrarily
low (which is illustrated in Appendix A).

We summarize the results of the investigation.
The first-order Dirac field has been constructed as an operator in the

representation space (which has not been achieved in standard local formu-
lations). Moreover, the appropriately defined past timelike limit of the Dirac
field recovers the free incoming field, while the first correction addition vanishes
(decays faster). The use of the almost radial gauge seems decisive for this fact.
Thus, there is no ‘dressing’ of the incoming electrons, which is necessary in the
local formulations. We conjecture that this decay will be confirmed in higher
orders of perturbation. Consequently, we also expect that the electromagnetic
current of the incoming particles is asymptotically equal to that formed by
the free incoming Dirac field. If this is confirmed, then the following further
results, here based on the first order, will find full justification.

The electromagnetic field has been investigated in asymptotic limits. The
spacelike asymptotic behavior, as defined in (2), is of the Coulomb rate, but,
in contrast to the local theory, produces a limit operator (and not only a
superselection label). This limit field is a sum of two contributions: the free
incoming field limit and the Coulomb field due to incoming particles. The
scaling used for this limit, Eqs. (57) and (58), clearly shows that this may
be also interpreted as a low-energy limit. In this article we work on incoming
fields, but an analogous picture may be obtained with the use of outgoing
fields, and the spacelike limit expressed in terms of them must agree with that
obtained here. Moreover, we have shown that this limit does not depend on the
choice of the central point for scaling. Thus, for each smearing current J(x)
of Schwartz type, with support in x2 < 0, it represents a conserved quantity,
given here in precise mathematical terms, which we write down here once more
in terms of the incoming quantities:

A0(J) =
[
air(iB

1
2 ∂Φ) + a∗

ir(iB
1
2 ∂Φ)

]
+

∫
C(p) · p ρD(p) dμm(p),

where Φ(l) and C(p) are linear functionals of J(x), as defined in (61) and (63).
Equality of this operator to the analogous one formed in terms of outgoing
quantities may be regarded as a mathematically precise formulation, in our
quantum formalism, of the classical ‘matching property’ [10] (see also [13]).
We note that the operators A0(J) form an Abelian subalgebra of the algebra
of the theory, but are not in the center, which is trivial (the representation is
irreducible). In particular, they do not commute with Ain(J ′), smeared with J ′

with a nontrivial past timelike tail of the form xρ(x) (admitted in the theory,
as explained in Sect. 3.2). These more general fields have not been considered
in our investigation of asymptotic limits, but they certainly appear in the
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formalism, see the construction of the first-order Dirac field ψ(1), where the
smearing function (40) has a nontrivial characteristic (41).16 Another point we
would like to stress is that the limit field A0(J) is achieved with fluctuations
remaining under control, as shown by Theorem 4. Thus our representation is
not of ‘infravacuum’-type representations, in which fluctuations are so large
in infinity as to mask any addition to the field. At the same time, this limit
field is a true quantum variable subject to the usual quantum uncertainties, in
contrast to the asymptotic field in the strictly local theory, with ‘dressed’ par-
ticles, where it is a c-number (as discussed in Introduction). We leave further
more extensive discussion of these questions to future publications.

The ‘in’ limit for the electromagnetic field consists of two regions: the
timelike and the null infinity. In the null limit (with Schwartz test currents)
one recovers the incoming free field, which is what one should expect. On
the other hand, the past timelike limit produces the Coulomb field of the
incoming charged particles. We note that this field has been postulated on
heuristic grounds as part of a model of asymptotic electrodynamics proposed
by the author long ago [11].

Finally, we would like to indicate that the usual procedure of cutting
off interaction at large distances, and subsequent ‘adiabatic limit,’ could not
recover the long-range characteristic, which has been discarded earlier.
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Appendix

A. Energy Content of the State ωh

Here we briefly discuss the energy content of the state ωh = (Ωh, .Ωh), on
which the representation used in this article is based, see the remarks in
Sect. 3.2. For this we refer the reader to the original formulation of the rep-
resentation in terms of a direct integral Hilbert space, Theorem 6.3 in [11].

16See also the discussion of the radiation by external current in [12]. The use of the ex-
tended algebra avoids the usual ‘infrared catastrophe’ in this setting and allows the explicit
construction of the scattering operator in terms of an infrared-singular field, see Eq. (55) in
this reference.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In this language, for the unitary operators U(x) representing translations, one
has

ωh(U(x)) =
∫

exp
[

i
2{Vf , TxVf} − 1

2 (T̃xVf − Ṽf , T̃xVf − Ṽf )reg
]
dμB(f),

where V̇f (ω, l) = f(l)h(ω, l), f ∈ Hr
ir, and dμB(f) is the Gaussian measure

on the space of functions f ∈ Hr
ir, with the covariance operator B. The above

expression is a special case of the formula given in the proof of the theorem
mentioned above. The term with the symplectic form in the argument of the
exponent may be written as

i
2{Vf , TxVf − Vf} = 1

2 (Ṽf , T̃xVf − Ṽf )reg − 1
2 (T̃xVf − Ṽf , Ṽf )reg,

where, strictly speaking, Ṽf is not in Hreg, but the product extends to this
case because of sufficient regularity of the other function in the product. In
this way one finds that the argument of the exponent is equal to∫ ∫ ∞

0

|h̃(ω, l)|2(eiωl·x − 1
)dω

ω

( − f(l)2
)
d2l.

Taking into account that U(x) = exp[ix · P ], with P the energy-momentum
operator, and expanding the exponent in the integral in x, one finds

ωh(Pa) =
∫ { ∫

m0(l) la
( − f(l)2

)
d2l

}
dμB(f),

ωh(PaPb) =
∫ {

m1(l) lalb
( − f(l)2

)
d2l

+
∫

m0(l)la(−f(l)2) d2l

∫
m0(l′)lb(−f(l′)2) d2l′

}
dμB(f),

where

m0(l) =
∫ ∞

0

|h̃(ω, l)|2dω, m1(l) =
∫ ∞

0

|h̃(ω, l)|2ω dω.

Suppose that h̃ has the form h̃(ω, l) = h̃(ωl0), in which case one has

m0(l) =
m0

l0
, m1(l) =

m1

(l0)2
, m0 =

∫ ∞

0

|h̃(u)|2du, m1 =
∫ ∞

0

|h̃(u)|2udu.

Then the properties of Gaussian measures give (see, e.g., [5])

ωh(P 0) = m0

∫
‖f‖2dμB(f) = m0 Tr B,

ωh((P 0)2) =
∫

(m1‖f‖2 + m2
0‖f‖4) dμB(f)

= m1 Tr B + m2
0[(Tr B)2 + 2Tr B2],

ωh

(
[P 0 − ωh(P 0)]2

)
= m1 Tr B + 2m2

0 Tr B2.

The constants m0 and m1 are strictly positive, but may be made arbitrarily
small by an appropriate choice of the function h̃. Thus both the energy content,
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and its fluctuations, of the state ωh may be arbitrarily small, but never vanish.
There is no vacuum in the representation.

B. Commutator Function in Almost Radial Gauge

For κ(x, l) defined in (31) we note the identity

∂x
aκb(x, l) = ∂l

b

[
laζ(x · l, l)

]
,

which follows by the use of the relations in Appendix C in [15]. It then easily
follows for W (s, l) defined in (32) that

∂
[
ζ(s, l)l · W (s, l)

]
= −

∫
δ′(s − x · l)xζ(x · l, l)l · K(x) dx

+
∫

δ(s − x · l)K(x) · ∂xκ(x, l) dx.

The second formula in (33) may be now written as

V̇K(s, l) = U̇K(s, l) + YK(s, l) ,

UK(s, l) =
∫

δ(s − x · l)
[
K(x) − κ(x, l)l · K(x)

]
dx ,

YK(s, l) =
∫

δ(s − x · l)K(x) · ∂xκ(x, l) dx .

We admit timelike tails in K(x) of the form Kas(x) = xσ(x), where σ(x)
is smooth outside the origin, homogeneous of degree −4, and with support
inside the light cone. We assume, for simplicity, that the difference K(x) −
Kas(x) decays rapidly in timelike infinity. Then with the use of properties of
functions ζ and η one shows that also K(x)−κ(x, l)l ·K(x) and K(x) ·∂xκ(x, l)
decay rapidly, which results in fast decay of UK(s, l) and YK(s, l). Therefore,
when V̇Ki

(s, l), i = 1, 2, are set into the second form of (15), one can transfer
derivatives of UKi

to sgn(s − τ), which leads to the formula (37).

C. Projection Operator Pir

Let f(l) be a smooth complex vector function on C+, homogeneous of degree
−1, and such that l ·f(l) = 0. As shown in Appendix of [11], there exist smooth
functions φ and ψ, homogeneous of degree 0, unique up to the addition of
constants, such that17

lafb(l) − lbfa(l) = Labφ(l) − ∗Labψ(l), (68)

and then for two such functions one has

−
∫

f1(l) · f2(l) d2l = −
∫

∂φ1(l) · ∂φ2(l) d2l −
∫

∂ψ1(l) · ∂ψ2(l) d2l.

Thus, the transformation f �→ ∂φ, extended by continuity to the whole Hilbert
space H0, is the orthogonal projection Pir : H0 �→ Hir. We find its explicit form.

17In the reference f is real, but the same is true for complex functions.
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Lemma 6. Let f ∈ C∞ ⊂ H0, and for the sake of differentiation extend f(l) to
a neighborhood of the cone, respecting the defining properties: l · f(l) = 0 and
homogeneity of degree −1. Then Pirf = ∂φ (equality in the sense of Hir—up
to addition of a term proportional to l), where

[φ(l)] =
[

− 1
4π

∫
log

( l · l′

t · l′
)

∂ · f(l′) d2l′
]

=
[ 1
4π

∫
l · f(l′)

l · l′
d2l′

]
,

(69)

and where the square bracket denotes an equivalence class with respect to the
addition of a constant. Moreover, one has

[
Lnφ(l)

]
=

[
− 1

4π

∫
log

( l · l′

t · l′
)

L′n∂ · f(l′) d2l′
]
. (70)

Proof. We apply Lc
b to the lhs of identity (68). With the extension of f as

assumed in the Lemma, we find

Lc
b
(
lafb(l) − lbfa(l)

)
= lalc∂ · f(l) + lafc(l) − lcfa(l), (71)

which shows that the restriction of ∂ · f(l) back to the cone does not depend
on the extension in the assumed class. Similarly, we extend φ(l) and ψ(l) to a
neighborhood of the cone, respecting homogeneity of degree 0, and apply Lc

b

to the rhs. The use of identities (A1) and (A2) in Appendix of [11] gives

Lc
b
(
Labφ(l) − ∗Labψ(l)

)
= lalc∂

2φ(l) + Lacφ(l) − ∗Lacψ(l), (72)

which again shows that the restriction of ∂2φ(l) back to the cone does not
depend on the extension used. Equating (71) and (72), and using (68), one
finds that

∂2φ(l) = ∂ · f(l).

One can now choose a timelike, future-pointing unit vector t, and use formula
(A8) in [11] to obtain the inverse formula

φ(l) = − 1
4π

∫
log

( l · l′

t · l′
)

∂′ · f(l′) d2l′ + φt,

where φt is an arbitrary constant. Integrating ∂ by parts by (8), one obtains
the second formula in (69). Finally, to prove (70) one notes that

(Lab + L′
ab) log

l · l′

t · l′
=

tal′b − tbl
′
a

t · l′
.

Integrating L′
ab by parts one obtains the identity for n = 1. Further steps are

similar. �

D. Asymptotics of a Klein–Gordon Wave Packet

Standard statements of the stationary phase method, which is the usual means
for the asymptotic expansion of the wave packets, assume compact support of
the integrand (see [16,22]). Going beyond this assumption needs taking into
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account specific form of the phase function. We do this here for the Klein–
Gordon wave packets.18

Theorem 7. Let f(p), p ∈ Hm, be a Schwartz function on the mass hyperboloid,
with the invariant measure as defined in (10), and for x2 > 0 denote x = λu,
u ∈ H1, λ ∈ R \ {0}. Then for each N ≥ 0 we have

(2π)− 3
2

∫
f(p)e−ix·pdμm(p)

= θ(x2 − 1)e−i(mλ+sgn(λ) 3π
4 )

( m

|λ|
) 3

2
N∑

k=0

( −i

mλ

)k

Lk(u)f(mu)

+ O
(
(1 + |x|)−N− 5

2
)
,

(73)

where L0 = 1, and Lk(u) for each k ≥ 1 is a differential operator in u of
order 2k, with real polynomial coefficient functions of u of degree ≤ 2k. In par-
ticular, the series contribution is absent outside the support of f(mu).

Proof. To simplify notation we write the proof in the units, in which m = 1,
and then p = v, v ∈ H1. First we note that

e−ix·v = −i2v0 x0v + v0x
|x|2 − x2|v|2 · ∂

∂v
e−ix·v. (74)

Let a(s) be a smooth function on R, such that a(s) = 1 for s ≤ 1
4 , and

a(s) = 0 for s ≥ 1
2 . We denote f1(v, x) = f(v)a(|v|2x2/|x|2) and note that on

the support of this function the denominator in (74) is bounded from below by
|x|2/2. Therefore, in the integral with f replaced by f1, one can integrate by
parts arbitrarily many times, which shows that this part satisfies the bound
of the rest in (73).

Consider now the function f(v) − f1(v, x), whose support is contained in
x2|v|2 ≥ |x|2/4, which implies that x is timelike in this region, and we specify
to x0 ≥ 1: the case x0 ≤ −1 is easily then derived with the use of conjugation,
and the case |x0| < 1 is trivial. We write x = λu, u ∈ H1, λ > 0, and denote
f2(v, u) = f(v)b(|v|2/|u|2), b(s) = 1−a(s). On the support of f2(v, u) we have
|v| ≥ 1

2 |u|.
Let Λ be the Lorentz boost such that u = Λt, which means that in the

given reference system the matrix of this transformation is
(

u0 uᵀ

u u01

)
. Consider

the integral

I =
∫

e−iλ(u·v−1)f2(v, u) dμ(v) =
∫

e−iλ(w0−1)f2(Λw, u) dμ(w),

where v = Λw, w ∈ H1, and the Lorentz invariance of the measure dμ(v) was
used. Changing variables w to r =

√
w0 − 1 ∈ [0,∞) and the spherical angles

18D. Ruelle in his pioneering paper [18] makes use of the specific form of the packet, but
keeps the compactness assumption.
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of w, we can write this integral as

I =

∞∫

0

F (r)2(2 + r2)
1
2 r2∂2N+5

r e2N+5(λ, r) dr, F (r) =
∫

f2(Λw, u) dΩ(w),

where ek(λ, r) is a primitive of order k for e−iλr2
(λ > 0) given by19

ek(λ, r) =
(−1)k

(k − 1)!
e−ik π

4

∞∫

0

sk−1e−iλr(s)2ds, r(s) = r + e−i π
4 s

(use ∂rr(s) = ei π
4 ∂sr(s) and integrate by parts). It is easy to show that

|ek(λ, r)| ≤ ckλ−k/2, e2k+1(λ, 0) = −
√

π

22k+1k!
e−i(2k+1) π

4 λ−k− 1
2 .

Integrating ∂r in I by parts 2N + 5 times, and taking into account that
F (2k+1)(0) = 0, one obtains the asymptotic series of the thesis ending with
k = N + 1, and the rest in the form (with restored integration variables w)

−
∫

∂2N+5
r

(
f2(Λw, u)(2 + r2)

1
2 r2

)
e2N+5(λ, r)

dμ(w)√
w0 + 1(w0 − 1)

. (75)

Going back to variables v, taking into account that |v| ≥ 1
2 |u| on the support

of f2, and also noting that w0 − 1 = u · v − 1 ≥ 2|v − u|2/(v0 + u0)2, one can
estimate this rest by

const
λN+ 5

2

∫

|v|≥ 1
2 |u|

d3v

|v − u|2(v0)N+ 5
2+3

≤ const
(λu0)N+ 5

2
=

const
|x0|N+ 5

2
.

The last term of the series with k = N + 1 can be adjoined to the rest
without changing the form of bound. Finally, for 0 < x2 < 1 (0 < λ < 1)
and x0 ≥ 1, the terms of the series are bounded by constλ−k− 3

2 (u0)−N− 5
2 ≤

const(x0)−N− 5
2 , which closes the proof.

�

Corollary 8. Let f(p, q), p, q ∈ Hm, be a Schwartz function on Hm ×Hm, and
for x2 > 0 denote x = λu, u ∈ H1, λ ∈ R\{0}. Then for each N > 0 we have

(2π)−3

∫
f(p, q)e−ix·(p+q)dμm(p) dμm(q)

= θ(x2 − 1)
{

i sgn(λ)e−i2mλ
( m

|λ|
)3

f(mu,mu) + O(|x|−4)
}

+O
(
(1 + |x|)−N

)
,

(2π)−3

∫
f(p, q)e−ix·(p−q)dμm(p) dμm(q)

= θ(x2 − 1)
{( m

|λ|
)3

f(mu,mu) + O(|x|−4)
}

+ O
(
(1 + |x|)−N

)
,

19At this point we follow [22].



Undressing the Electron

For the proof it is sufficient to apply the operations used in the proof of
Theorem 7 to p and q separately.

References

[1] Buchholz, D.: Collision theory for massless bosons. Commun. Math. Phys. 52,
147–173 (1977)

[2] Buchholz, D.: The physical state space of quantum electrodynamics. Commun.
Math. Phys. 85, 49–71 (1982)

[3] Buchholz, D.: Gauss’ law and the infraparticle problem. Phys. Lett. B 174, 331–
334 (1986)

[4] Buchholz, D., Roberts, J.E.: New light on infrared problems: sectors, statistics,
symmetries and spectrum. Commun. Math. Phys. 330, 935–972 (2014)

[5] Dalecky, Yu.L., Fomin, S.V.: Measures and Differential Equations in Infinite-
Dimensional Space. Springer, Berlin (1991)
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