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Anisotropic Ising Model in d + s
Dimensions

Estevão F. Borel, Aldo Procacci , Rémy Sanchis and
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Abstract. In this note, we consider the asymmetric nearest neighbor fer-
romagnetic Ising model on the (d+s)-dimensional unit cubic lattice Z

d+s,
at inverse temperature β = 1 and with coupling constants Js > 0 and
Jd > 0 for edges of Zs and Z

d, respectively. We obtain a lower bound for
the critical curve in the phase diagram of (Js, Jd). In particular, as Jd

approaches its critical value from below, our result is directly related to
the so-called dimensional crossover phenomenon.
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1. Introduction

In this paper, we consider an asymmetric nearest neighbor ferromagnetic Ising
model on the (d + s)-dimensional unit cubic lattice Z

d+s, with coupling con-
stants Jd > 0 and Js > 0 in the hyperplanes Z

d and Z
s, respectively.

Anisotropic lattice spin systems have been the subject of great interest
within the physics community since the sixties. The study of such models has
been tackled both numerically, mainly via Monte Carlo simulations (see, e.g.,
[1–4] and references therein), and theoretically, via mean-field, Bethe approx-
imation, truncated high-temperature expansion of the susceptibility, etc. (see,
e.g., [4–11]). A strong motivation to study anisotropic systems is to investi-
gate finite-size effects in realistic materials modeled by quasi-two-dimensional
(thin films) and quasi-one-dimensional spin systems. Furthermore, exploring
these systems could provide valuable insights into isotropic models, notably
the three-dimensional Ising model (see, e.g., [12] and references therein).

Rigorous results on the asymmetric Ising model on Z
d+s have been ob-

tained mainly in the case Z
1+s with strong coupling in one dimension and
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small coupling in the remaining directions. In particular, in a well-known arti-
cle (see [13]), Fisher derived an asymptotic bound on the critical temperature
of the Z

1+s anisotropic Ising model in the limit Js

J1
→ 0. It has also been shown

rigorously (see [14]) that the free energy of the Ising model on Z
1+s is analytic

for any inverse temperature β if Js is small enough (depending on J1 and the
inverse temperature). These rigorous results rely heavily on the fact that when
d = 1 the one-dimensional system is in the gas phase at all temperatures so
that the standard high-temperature expansion can be used with effectiveness.
On the other hand, to obtain the same kind of results of references [13,14] in
the case Z

d+s, d ≥ 2 is expected to be trickier since the d−dimensional system
exhibits a phase transition and the usual high-temperature expansion turns to
be much more difficult to control.

In this paper, we somehow extend the results obtained in [13] and [14]
for the case Z

1+s to the case Z
d+s with d ≥ 1. Namely, we show that for all

Jd above the critical reduced temperature Jc
d , the susceptibility of the (d+ s)-

dimensional system is finite when the coupling Js is sufficiently small (inversely
proportional to the susceptibility χ(Jd) of the d-dimensional system). A simi-
lar result was obtained by two of us in [15] for the Bernoulli anisotropic bond
percolation model on Z

d+s, in which edges in the Z
d hyperplane are open with

probability p < pc(d) and edges parallel in the Z
s hyperplane are open with

probability q. In [15], probabilistic arguments were applied and in particular,
a crucial use of the van den Berg–Kesten (BK) inequality has been made. In
the present paper, to get the analogous result for the anisotropic Ising model
in Z

d+s (for which BK inequalities are not available), we use an alternative
(w.r.t. the high temperature) expansion of the Ising partition function, namely
the so-called random current representation. This powerful technique, intro-
duced in the eighties by Aizenman [16], was widely used by several authors
in the following decades, and recently, it has employed as a crucial tool in
several remarkable papers, e.g., [17–19]. We remind that the high-temperature
phase of any d dimensional Ising model satisfies strong spatial mixing, which
is equivalent to the Dobrushin–Shlosman “Complete Analyticity-CA” condi-
tion. Therefore also in d+s dimensions under a sufficiently weak s-dimensional
perturbation, the CA-condition holds implying analyticity of the free energy
(see [20] for a recent proof of CA).

As mentioned earlier, our results may be of interest in the study of realis-
tic quasi-two-dimensional magnets which can be modeled by a two-dimensional
sub-critical Ising bilayer. When the interaction between the two two-dimensional
layers is weak and the transverse interaction is sub-critical, the bilayer sys-
tem is expected to still exhibit sub-critical behavior. However, as the coupling
between the layers strengthens, the overall system may exhibit spontaneous
magnetization. Our result implies rigorously that as long as the inter-layer
interaction between layers is below the inverse two-dimensional susceptibility
(with a constant factor 1/(2 s)), the global system remains sub-critical. The
understanding of how several layers of 2D slightly sub-critical systems with
small interactions between them can start to behave as a (2 + s)-dimensional
system, is the so-called dimensional crossover phenomenon (see, e.g., Sec. VI
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in [6]). This phenomenon is characterized by a critical exponent, which is be-
lieved to depend on the original dimension of the layers, but not on the target
dimension. Moreover, numerical simulations and formal calculations (see, e.g.,
[6,7]), suggest that this critical exponent equals the exponent of the suscep-
tibility of the original dimension. Our results imply rigorously an inequality
between the two exponents.

2. The Model and Results

Let Z
d+s = Z

d×Z
s be the (d+s)-dimensional unit cubic lattice. We will denote

by E
d+s the set of nearest neighbor pairs of Z

d+s so that G
d+s is the graph

with vertex set Z
d+s and edge set E

d+s. Given two vertices x, y ∈ Z
d+s, we

denote by |x−y| the usual graph distance between x and y (i.e., the edge length
of the shortest path between x and y). We will suppose that Z

d+s is equipped
with the usual operation of sum. We represent hereafter a site x ∈ Z

d+s as
x = (u, t), where u ∈ Z

d and t ∈ Z
s.

Given an integer N , we denote by ΛN ⊂ Z
d+s the hypercube with side

length 2N + 1, centered at the origin, so that ΛN → ∞ means that N → ∞.
We denote by EN the set of edges of E

d+s with both endpoints in ΛN , so
that G

d+s|ΛN
= (ΛN , EN ) is the restriction of G

d+s to ΛN . Note that ΛN =
Λ̄N × Λ̂N where Λ̄N denotes the d-dimensional hypercube in Z

d of size 2N +1
centered at the origin and Λ̂N denotes the s-dimensional hypercube in Z

s of
size 2N + 1 centered at the origin. Given w ∈ Λ̂N , we set Λw

N = {(u, t) ∈
Z

d+s : t = w}. Namely Λw
N is the subset of ΛN formed by sites of ΛN with

w as the second set of coordinates. Similarly, Ew
N will denote the set of edges

with both endpoints in Λw
N . Observe that Λw

N is a d-dimensional box of side
length 2N + 1 centered at (0, w).

To each vertex x ∈ ΛN , we associate a random variable σx taking values
in the set {+1,−1}. A spin configuration in ΛN is a function σ : ΛN →
{+1,−1} : x �→ σx. The energy of a configuration σ is given by the (free
boundary condition) Hamiltonian

HΛN
(σ) = −

∑

{x,y}∈EN

J{x,y}σxσy,

where

J{x,y} =

{
Js if x = (u, t) and y = (u, t′) with |t − t′| = 1,

Jd if x = (u, t) and y = (u′, t) with |u − u′| = 1,

with Js > 0 and Jd > 0. In what follows, an edge {x, y} ∈ EN is called vertical
if x = (u, t), y = (u, t′) with |t − t′| = 1, and called planar if x = (u, t),
y = (u′, t) with |u−u′| = 1. So J{x,y} = Js if {x, y} is vertical and J{x,y} = Jd

if {x, y} is planar.
The partition function of the system is given by

ZΛN
(Jd, Js) =

∫
dμΛN

(σ)e−HΛN
(σ) =

∫
dμΛN

(σ)
∏

{x,y}∈EN

eJbσxσy ,
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where
∫

dμΛN
(σ) is a short notation for

∏
x∈ΛN

1
2

∑
σx=±1 (a product proba-

bility measure). Moreover, without loss of generality, we have set the inverse
temperature β = 1.

The two-point correlation function of the (d + s)-system is then defined
as

〈σxσy〉ΛN =

∫
dμΛN (σ )σxσye−HΛN

(σΛ)

ZΛN (Jd, Js)
=

∫
dμΛN (σ )σxσy

∏
{x,y}∈EN

eJbσxσy

ZΛN (Jd, Js)
.

(1)

In general, for any set U ⊂ ΛN , letting EU = {{x, y} ∈ EN : {x, y} ⊂ U}, we
set

HU (s) = −
∑

{x,y}∈EU

J{x,y}σxσy,

ZU (Jd, Js) =
∫

dμΛN
(σ)e−HU (σ),

and, for any x, y ∈ U ,

〈σxσy〉U =
∫

dμΛN
(σ)σxσye−HU (σΛ)

ZU (Jd, Js)
.

According to the above notations, for any t ∈ Λ̂N , we have that

〈σxσy〉Λt
N

=
∫

dμΛN
(σ)σxσye

−HΛt
N

(σΛ)

ZΛt
N

(Jd, Js)
,

The finite volume susceptibility function of the system is defined as

χΛN
(Jd, Js) := sup

x∈ΛN

{
∑

y∈ΛN

〈σxσy〉ΛN

}
,

so that

χd+s(Jd, Js) = lim
N→∞

χΛN
(Jd, Js) (2)

is the susceptibility of the anisotropic (d + s)-dimensional Ising model.
For any t ∈ Λ̂N , let

χΛt
N

(Jd) = sup
x∈Λt

N

{
∑

y∈Λt
N

〈σxσy〉Λt
N

}
, (3)

so that

χd(Jd) = lim
N→∞

χΛt
N

(Jd) (4)

is the susceptibility of the d-dimensional Ising model with ferromagnetic in-
teraction Jd.

We are now in a position to state our main result.
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Theorem 1. Take any Jd such that

χd(Jd) < +∞,

and let Js such that

tan h(Js) <
1

2sχd(Jd)
.

Then,

χd+s(Jd, Js) < +∞.

Remark 1. As mentioned in the introduction, Theorem 1 is related to the so-
called dimensional crossover phenomenon. One can define, for any Jd > 0, the
function Jc

s (Jd) : [0,∞) → [0,∞), where

Jc
s (Jd) = sup{Js : χd+s(Jd, Js) < +∞}. (5)

Denoting by Jc
d the critical inverse reduced temperature of the d-dimensional

system, we have that by definition, Jc
s (Jd) = 0 if Jd ≥ Jc

d . Theorem 1 deter-
mines a region in the (Jd, Js) plane where no phase transition occurs in the
(d + s)-system and it also gives an upper bound for the function Jc

s (Jd) as Jd

varies in the interval [0, Jc
d). There is a strong interest in understanding the

behavior of the function Jc
s (Jd) when Jd < Jc

d , and in particular, it is widely
believed that there exists a constant φd > 0 such that

Jc
s (Jd) ≈ |Jd − Jc

d |φd , as Jd ↑ Jc
d ,

where the symbol ≈ stands for log equivalence, that is, f(x) ≈ g(x) if

lim
β↑βc

log f(x)
log g(x)

= 1. The constant φd is the so-called crossover critical exponent.

On the other hand, the d-dimensional Ising susceptibility χd(Jd) is known to
behave like

χd(Jd) ≈ |Jd − Jc
d |−γd , as Jd ↑ Jc

d ,

where γd > 0 is the susceptibility d-dimensional critical exponent.

As an immediate corollary, Theorem 1 implies that φd ≤ γd for all d ≥ 2,
and a lower bound for Jc

s (Jd) still inversely proportional to χd(Jd) would imply
that φd = γd. The conjectured equality of the crossover critical exponent
φd and susceptibility critical exponent γd has been discussed in the physics
literature by several authors, see, for instance, [3,5,6,9,21]. See also [22] for a
recent example of dynamical approach to dimensional crossover.

3. The Random Current Representation

As mentioned in the introduction, in order to prove Theorem 1 we will use
the so-called random current representation for the Ising model introduced by
Aizenman in [16]. We will describe this technique here below following mainly
reference [23].
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Let F(EN ) be the set of all functions η : EN → N : b �→ ηb. Then, we can
expand the exponential inside the product and rewrite the partition function
ZΛN

(Jd, Js) as

ZΛN
(Jd, Js) =

∑

η∈F(EN )

W (η)
∫

dμΛN
(σ)

∏

x∈ΛN

(σx)
∑

b�x ηb ,

where we have denoted shortly
∑

b�x

ηb =
∑

b∈EN
x∈b

ηb

and we have set

W (η) =
∏

b∈EN

(Jb)ηb

ηb!
.

Observe that the integral I(η) =
∫

dμΛN
(σ)

∏
x∈ΛN

(σx)
∑

b�x ηb is zero, unless∑
b�x ηb is even for all x ∈ Λ, in which case I(η) = 1. Hence,

ZΛN
(Jd, Js) =

∑

η∈F(EN )
∂η=∅

W (η),

where we have set

∂η =
{

x ∈ Λ :
∑

b�x

ηb is odd
}

.

In general, given any η ∈ F(EN ), the vertices in ∂η are called sources of η, and
if ∂η = ∅, then η is called sourceless. Proceeding similarly, we have that the
random current expansion for the two-point function is

〈σxσy〉ΛN
=

∑

η∈F(EN )
∂η={x,y}

W (η)
ZΛN

(Jd, Js)
.

We now rewrite the function 〈σxσy〉ΛN
as a sum of edge-self-avoiding

walks from x to y. Given an edge {x, y} ∈ EN , the ordered pair (x, y) will be
called a step from x to y. For any x ∈ ΛN , we establish an arbitrary order
(denoted by �) for the set of steps emerging from x (i.e., for those (x, y)
such that |x − y| = 1). For each site x, and each step (x, z), we consider the
set Γ(x,z) formed by the edges b = {x, y} such that (x, y) � (x, z). This set
will be referred to as the set of edges canceled by (x, z). In particular, since
(x, y) � (x, y), a step {x, y} cancels itself.

We recall that a path in ΛN is a sequence p = {x0, x1, ..., xn} of vertices
of ΛN such that {xi−1, xi} ∈ EN for all i = 1, · · · , n. We say that a path p =
{x0, x1, ..., xn} is consistent if, for each k = 1, ..., n, we have that {xk−1, xk} /∈
∪k−1

i=1 Γ(xi−1,xi). That is, each step used in this path is not associated with
an edge that was canceled by the previous steps. If p = {x0, x1, ..., xn} is a
consistent path, we denote by p∗ the set of all edges canceled by p, that is,



Anisotropic Ising Model

p∗ = ∪n
i=1Γ(xi−1,xi). Clearly, by construction, a consistent path is always edge-

self-avoiding. We denote by Cxy(ΛN ) the set of all consistent paths in ΛN from
x to y.

We now define a function Ω, which associates with each current configura-
tion η with ∂η = {x, y}, a consistent path ω = Ω(η) from x to y, which belongs
to Cxy(ΛN ). As in [23], such a consistent path will be called the backbone of
η.

Given η with ∂η = {x, y}, let Γη be the set of edges b ∈ E such ηb is
odd. Then, Γη forms a subgraph of (ΛN , EN ) (in general not connected) such
that every vertex has degree either even or zero, except on x and y, whose
degrees are odd. The graph Γη necessarily contain a connected component,
say γx,y

η , which contains x and y. Therefore, we can look at this connected
component γx,y

η (seen as a set of edges in EN ), uniquely determined by η, and
associate with it a consistent path ω = Ω(η). This is the path ω = {z0 =
x, z1}, {z1, z2}, . . . , {zk−1, zk = y} for some k ≥ |x − y| such that for any
i = 1, 2, . . . , k, (zi−1, zi) is the minimal step according to the order established
among the steps emerging from zi−1 associated with edges of γx,y

η − {z0, z1} ∪
{z1, z2} ∪ · · · ∪ {z1−2, zi−1}.

Once the function Ω is defined, we now can rewrite 〈σxσy〉ΛN
as

〈σxσy〉ΛN
=

∑

ω∈Cxy(ΛN )

∑

η∈F(EN )
∂η={x,y},Ω(η)=ω

W (η)
ZΛN

(Jd, Js)
.

Note that if Ω(η) = ω, then η is odd on the edges of the set ω and is even on
the edges of ω∗ \ ω. Also, η restricted to EN \ ω, as well as to EN \ ω∗, is such
that ∂η = ∅. Therefore, setting shortly ZN = ZΛN

(Jd, Js), we have that

∑

η∈F(EN )
∂η={x,y},Ω(η)=ω

W (η)
ZN

=
∏

b∈ω

sinh(Jb)
∏

b∈ω∗\ω

cosh(Jb)
∑

η∈F(EN\ω∗)
∂η=∅

W (η)
ZN

=
∏

b∈ω

tan h(Jb)
∏

b∈ω∗
cosh(Jb)

∑

η∈F(EN\ω∗)
∂η=∅

W (η)
ZN

=
∏

b∈ω

tan h(Jb)
∑

η∈F(EN ): ∂η=∅
η even on ω∗

W (η)
ZN

,

where the last summation is over all sourceless current configurations η on EN

with the additional restriction that ηb is even on all edges b canceled by ω.
Hence, we can rewrite 〈σxσy〉ΛN

as

〈σxσy〉ΛN
=

∑

ω∈Cxy(ΛN )

ρEN
(ω), (6)
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where

ρEN
(ω) =

∏

b∈ω

tan h(Jb)
∑

η∈F(EN ): ∂η=∅
η even on ω∗

W (η)
ZN

. (7)

Observing that
∑

η∈F(EN ): ∂η=∅
η even on ω∗

W (η)
ZN

≤
∑

η∈F(EN ): ∂η=∅ W (η)

ZN
= 1,

we obtain straightforwardly the following upper bound

ρE(ω) ≤
∏

b∈ω

tanh(Jb). (8)

4. Proof of Theorem 1

To prove Theorem 1, we shall use two properties of the weights ρEN
(ω) defined

in (7). The interested reader can check their proofs in Section 4.2 of [23].
a) Let U ⊂ EN be a set of edges of ΛN , and let and ω ⊂ U be a consistent

path. Then,

ρEN
(ω) ≤ ρU (ω). (9)

b) If ω1 ◦ ω2 is a consistent path, where ◦ denotes the usual concatenation
of paths, then

ρEN
(ω1 ◦ ω2) = ρEN

(ω1)ρEN\ω∗
1
(ω2).

As shown in Sect. 3, the backbone expansion (6) for the two-point function
on ΛN is given by

〈σxσy〉ΛN
=

∑

ω∈Cxy(ΛN )

ρEN
(ω),

where x = (u0, t0), y = (u, t) and Cxy(ΛN ) is the set of all consistent paths ω
with extremes ∂ω = {x, y} using edges of EN .

Let ω be a consistent path connecting x to y. It is possible to break this
path into n + 1 “planar” pieces ωi, and n “vertical” steps si (i.e., such that
|si| = 1) connecting two d-dimensional hyperplanes. (Note that there are 2s
possibilities for the choice of si.) Namely, we can write

ω = ω1 ◦ s1 ◦ ω2 ◦ s2 ◦ ... ◦ sn ◦ ωn+1. (10)

We are denoting by ω1 the initial piece of the path ω all contained in
Λt0

N . This initial piece ω1 of the path ω is a “planar” path connecting the site
(u0, t0) to the site (u1, t0), which is the last site of Λt0

N visited by ω before
leaving Λt0

N ; this path only uses edges of Et0
N . Then, s1 is the first vertical step,

that is, the edge connecting (u1, t0) to (u1, t1) (where t1 = t0 + s1), which is
the first site visited by the path ω after reaching a new hyperplane. Similarly,
for each k = 1, ..., n, we denote by ωk the consistent piece of ω that connects
(uk−1, tk−1) to (uk, tk−1), using only edges of E(Λtk−1

N ). Here, (uk−1, tk−1) is
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Figure 1. A sketch of a possible consistent path ω

Figure 2. A sketch of a transition between hyperplanes

the first site of Λtk−1
N visited after the last vertical step sk−1 and (uk, tk−1) is

the last site of this hyperplane visited by ω before it makes another jump, that
is, before it reaches another hyperplane. Also, we denote by sk the vertical
jump, that is, the single bond connecting (uk, tk−1) to (uk, tk), the first site
visited by the path ω in a hyperplane different from Λtk−1

N . Finally, the last
piece ωn+1 of the path ω connects (un, tn) to (un+1, tn) = (u, t) = y, using
only edges of Etn

N . Note that tk = t0 +
∑k

j=1 sj , for any k = 1, . . . , n. See Fig. 1
for a sketch of this construction.

We stress that since ω is consistent, each one of its pieces ωi is also
consistent. Let us set F1 = ∅ and, for k = 2, . . . , n + 1, we set Fk = ω1 ◦ s1 ◦
· · · ◦ ωk−1 ◦ sk−1 so that F ∗

k is the set of edges of ΛN canceled by the steps
preceding ωk and sk.

By definition, the piece ωk of the path ω is in the d-dimensional hypercube
Λtk−1

N . This hypercube may have already been visited by some piece ωi of the
path ω with i < k − 1 (e.g., in Fig. 1, ω4 is in the same hyperplane as ω2).
Since the path ω is consistent, ωk must avoid edges of the set Fk. Therefore,
ωk is a consistent path which is a subset of E

tk−1
N \Fk, and we denote by Ck

the set of all such paths with these properties (Fig. 2).
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Now, for n = 0, 1, 2, . . . , set Un = (u1, ..., un+1) and Sn = (s1, ..., sn),
with the convention that S0 = ∅. Then, we can write

〈σxσy〉ΛN
=

∑

n≥0

∑

Un,Sn
un+1=u

tn=t

∑

ω1∈C1

...
∑

ωn+1∈Cn+1

ρEN
(ω),

with ω given by (10). Summing over y ∈ ΛN , we get
∑

y∈ΛN

〈σxσy〉ΛN
=

∑

n≥0

∑

Un,Sn

∑

ω1∈C1

...
∑

ωn+1∈Cn+1

ρEN
(ω). (11)

By Property b) given at the beginning of this section, we get

ρEN
(ω) = ρEN−Fn+1(ωn+1)

n∏

k=1

ρEN−Fk
(ωk)ρEN−F ∗

k
(sk),

where we recall F1 := ∅.
Now, using the bound (8), and recalling that sk is a single vertical edge

(and thus with Jsk
= Js), it holds that

ρEN−F ∗
k
(sk) ≤ tan h(Js),

for any k = 1, · · · , n. Therefore,

ρEN
(ω) ≤ [tan h(Js)]n

n+1∏

k=1

[ρEN−Fk
(ωk)] .

Observe that E
tk−1
N − Fk ⊂ EN − Fk. Moreover, since ω is consistent, ωk only

uses edges of E
tk−1
N − Fk. Hence, we can apply Property a) and inequality (9)

to obtain

ρEN−Fk
(ωk) ≤ ρ

E
tk−1
N −Fk

(ωk),

for any k = 1 · · · , n + 1, yielding

ρEN
(ω) ≤ [tan h(Js)]n

n+1∏

k=1

ρ
E

tk−1
N −Fk

(ωk). (12)

Plugging (12) in (11), we write

∑

y∈ΛN

〈σxσy〉ΛN
≤

∑

n≥0

[tan h(Js)]n
∑

Un,Sn

S1 · ... · Sn+1,

where, for k = 1, ..., n + 1, we have set

Sk = Sk(uk−1, uk, tk−1) =
∑

ωk∈Ck

ρ
Λ

tk−1
N −Fk

(ωk).

Then, we can write
∑

Un,Sn

S1 · ... · Sn+1 =
∑

u1

S1

∑

s1

∑

u2

S2 · · ·
∑

un−1

Sn−1

∑

sn−1

∑

un

Sn

∑

sn

∑

un+1

Sn+1.

Observe now that, for any k = 1, · · · , n,
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Sk =
∑

ωk∈Ck

ρ
Λ

tk−1
N −Fk

(ωk)

= 〈σ(uk−1,tk−1)σ(uk,tk−1)〉Λtk−1
N −Fk

≤ 〈σ(uk−1,tk−1)σ(uk,tk−1)〉Λtk−1
N

.

where the last line follows by the GKS inequalities. Therefore, for any fixed
u1, . . . , un, and any fixed s1, . . . , sn−1, we get

∑

sn

∑

un+1

Sn+1 ≤
∑

sn

∑

un+1

〈σ(un,tn)σ(un+1,tn)〉Λtn
N

≤
∑

sn

sup
u∈Λtn

N

∑

un+1

〈σ(u,tn)σ(un+1,tn)〉Λtn
N

=
∑

sn

χΛtn
N

(Jd)

= 2sχΛtn
N

(Jd)

= 2sχΛ0
N

(Jd).

where in the penultimate line we remind that that there are 2s possibilities
for the choice of the vertical steps si. Proceeding iteratively for the sums∑

sk−1

∑
uk

Sk (with k = n, n− 1, . . . , 1), and with the convention that
∑

s0
=

1, we obtain
∑

Un,Sn

S1 · ... · Sn+1 ≤ (2s)n[χΛ0
N

(Jd)]n+1,

whence, for any x ∈ ΛN ,

∑

y∈ΛN

〈σxσy〉ΛN
≤

∑

n≥0

(2s tan h(Js))n[χΛ0
N

(Jd)]n+1.

Finally, taking the limit N → ∞ and recalling the definitions of χd+s(Jd, Js)
and χd(Jd) given in (2) and (4), respectively, we get

χd+s(Jd, Js) ≤
∑

n≥0

(2s tan h(Js))n[χd(Jd)]n+1.

The r.h.s. of the inequality above is finite provided that

tan h(Js) <
1

2sχd(Jd)
,

and thus, the proof of Theorem 1 is concluded.
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