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Ergodic Theorems for Continuous-Time
Quantum Walks on Crystal Lattices and the
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Abstract. We give several quantum dynamical analogs of the classical
Kronecker–Weyl theorem, which says that the trajectory of free motion
on the torus along almost every direction tends to equidistribute. As a
quantum analog, we study the quantum walk exp(−itΔ)ψ starting from a
localized initial state ψ. Then, the flow will be ergodic if this evolved state
becomes equidistributed as time goes on. We prove that this is indeed the
case for evolutions on the flat torus, provided we start from a point mass,
and we prove discrete analogs of this result for crystal lattices. On some
periodic graphs, the mass spreads out non-uniformly, on others it stays
localized. Finally, we give examples of quantum evolutions on the sphere
which do not equidistribute.
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1. Introduction

Classical ergodic theorems say that if T is an ergodic transformation on some
measure space (Ω, μ), then averaging an observable f over the trajectory under
T of a.e. point x is the same as averaging the observable over the whole space:

lim
n→∞

1
n

n∑

k=1

f(T kx) =
1

μ(Ω)

∫

Ω

f(y) dμ(y)

Let us consider the case where the classical transformation is the geodesic
flow. For the flat torus, the Kronecker–Weyl theorem says that for any a ∈
C0(Td) and x0 ∈ T

d, if y0 ∈ R
d has rationally independent entries, then

lim
T→∞

1
T

∫ T

0

a(x0 + ty0) dt =
∫

Td

a(x) dx. (1.1)
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This means that the trajectory {x0 + ty0}t≥0 becomes uniformly dis-
tributed after large enough time, so that averaging a function over it is the
same as the uniform average.

In contrast, consider the standard Euclidean sphere S
2 ⊂ R

3. This is
a classical example in which the geodesic flow is not ergodic. A free particle
moving with its kinetic energy simply travels along a great circle, its trajectory
is very far from being dense in S

2.

In this paper, we are interested in giving quantum dynamical analogs
of such results. Instead of starting from a point x0 on the torus or sphere
and integrating a test function over its trajectory φt(x0), we will start from
an initial state δx0 which is essentially a Dirac distribution at the point x0,
apply the evolution semigroup eitΔδx0 and check whether this state, which was
highly localized at time zero, becomes equidistributed as time goes on. Our
criterion for such an equidistribution is to compare

∫
a(x)|(eitΔδx0)(x)|2 dx

with the uniform average
∫

a(x) dx and show that they are close, for any test
function a(x). We will see that this is indeed the case for the flat torus, for
the analogous discrete problem in Z

d and more generally for a large family of
Z

d-periodic lattices (which yield a more interesting mass profile), but untrue
for the sphere.

The evolution semigroup e−itH for a Hamiltonian H is known as a
continuous-time quantum walk in the literature. The framework is usually to
work on graphs such as Z

d in this context, but one can expect similarities in
the continuum, which motivates the study of both cases in this paper. The ter-
minology “quantum walk” is due to a quantum analogy with a random walk,
which is more apparent in the case of discrete-time quantum walks, the sim-
plest example being a particle on Z walking (jumping a finite distance) under
the action of a unitary operator U at each time step t = 1, 2, . . . , and being
in general in a superposition of states. We refer to [1] for the basics and [30]
for a systematic study. In contrast, in the continuous-time case, for e−itAZδ0

we have a nonzero probability of being arbitrarily far from 0 as soon as t > 0,
i.e., we can have |(e−itAZδ0)(n)|2 �= 0 with n � 1.

This paper is not the first work to give quantum analogs of ergodic-
ity. This topic has first been explored by Shnirel’man, Colin de Verdière and
Zelditch [11,34,38] and has since inspired research in many directions. The
point of view of these quantum ergodicity theorems is to show that in cases
where the geodesic flow is ergodic, any orthonormal basis of eigenfunctions (ψj)
of the Laplace operator has a density one subsequence which becomes equidis-
tributed in the high energy limit. More precisely, |ψj(x)|2 dx approaches the
uniform measure dx. Discrete analogs of this appeared for graphs. In this case,
one considers instead a sequence of finite graphs GN converging in an appro-
priate sense (Benjamini–Schramm) to an infinite graph having a delocalized
spectrum and shows an equidistribution property for the eigenfunctions of GN ,
see, e.g., [2,3,6,28] and [25,29]. In the present work, our quantum interpreta-
tion is to follow instead how initially localized states (point masses) spread out
under the action of the dynamics. This seems like a more direct translation of



Ergodic Theorems for Continuous-Time

the classical picture. Our work in the continuum has relations with [4,5,22–
24] which we explain in Sect. 1.4. A common difficulty in all the models we
consider here is how to work with the high multiplicity of eigenvalues.

Notation. As many articles in the quantum walks literature use the Dirac bra-
ket notation, let us briefly explain the standard Hilbert space notation that we
use in the paper. If G is a graph, then (δv)v∈G stands for the standard basis
of �2(G) given by δv(u) = 1 if u = v and zero otherwise. The scalar product is
given by 〈φ, ψ〉 =

∑
v∈G φ(v)ψ(v). Given a linear operator A : �2(G) → �2(G)

we have in particular 〈φ,Aψ〉 =
∑

v∈G φ(v)(Aψ)(v). If a is a function a(v),
then 〈φ, aφ〉 =

∑
v∈G a(v)|φ(v)|2.

In the bra-ket notation, {δv}v∈G is replaced by {|v〉 : v ∈ G}. An operator
A acts on a vector |φ〉 by A|φ〉. The time evolution ψ(t) = e−itHψ is denoted
by |ψ(t)〉 = U(t)|ψ〉. Our 〈φ, ψ〉 equals 〈φ|ψ〉 and our 〈φ,Aψ〉 equals 〈φ|A|ψ〉.
If H is a Hamiltonian, expanding e−itHψ0 over an orthonormal eigenbasis (φj)
of H reads ψ(t) = e−itHψ0 =

∑
j〈φj , ψ0〉e−itλj φj in our notation, |ψ(t)〉 =∑

j |φj〉e−itλj 〈φj |ψ0〉 in the bra-ket notation.
We now discuss our results, first for the adjacency matrix on Z

d, then
more generally for periodic graphs in Sect. 1.1. We next move to the flat torus
in Sect. 1.2, and then, we conclude with the case of the sphere in Sect. 1.3.

1.1. Case of Graphs

For transparency, we begin with Z
d. Consider a sequence of cubes ΛN = [[0, N−

1]]d, and let AN be the adjacency matrix on ΛN with periodic conditions. We
denote the torus by T

d
∗ = [0, 1)d.

Theorem 1.1. For any v ∈ ΛN , we have

lim
N→∞

∣∣∣ lim
T→∞

1
T

∫ T

0

〈e−itAN δv, aNe−itAN δv〉dt − 〈aN 〉
∣∣∣ = 0, (1.2)

where 〈a〉 = 1
Nd

∑
u∈ΛN

a(u), for the following class of observables aN :

• aN (n) = f(n/N) for some f ∈ Hs(Td
∗) with s > d/2,

• aN the restriction to ΛN of some a ∈ �1(Zd).

Note that 〈e−itAN δv, ae−itAN δv〉 =
∑

u∈ΛN
a(u)|(e−itAN δv)(u)|2. So (1.2)

shows that the probability density μN
v,T (u) := 1

T

∫ T

0
|(e−itAN δv)(u)|2 dt on ΛN

approaches the uniform density 1
Nd , provided T and N are large enough,

that is, the time average
∑

u∈ΛN
a(u)μN

v,T (u) approaches the space average
1

Nd

∑
u∈ΛN

a(u) in analogy to (1.1). See Fig. 1.
A positive aspect of this result is that it holds for any v, whereas in

the eigenfunction interpretation, equidistribution only holds for a density one
subsequence in general. The evolution moreover “forgets the initial state v”, a
known signature of ergodicity.

The first class of observables allows taking bump functions f supported
on balls BR(x0) ⊂ T

d
∗. Then, the result implies that

∑
u∈ΛN

f(u/N)μN
v,T (u) ≈

1
Nd

∑
u∈ΛN

f(n/N) ≈ ∫
Td∗

f(x) dx, which is independent of x0. This implies
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Figure 1. Left: Point mass δv at time zero. Right: The den-
sity μN

v,T for T,N � 0. The point mass spreads out uniformly,
a very strong form of delocalization

that for any macroscopic ball B ⊂ ΛN of size |B| = αNd, we have μ
(N)
v,T (B) ≈ α

for N,T � 0 (e.g., take α = 1
2 or α = 1

4 and vary B).
Note that the two cases (aN = f(·/N) and a ∈ �1(Zd)) are distinct, in

the sense that limN→∞
∑

n∈ΛN
|f(n/N)| = ∞ in general.

We may extend Theorem 1.1 as follows:

Theorem 1.2. Under the same assumptions on aN , we also have for v �= w,

lim
N→∞

lim
T→∞

1
T

∫ T

0

〈e−itAN δv, aNe−itAN δw〉dt = 0. (1.3)

More generally, for any φ, ψ of compact support, we have

lim
N→∞

∣∣∣ lim
T→∞

1
T

∫ T

0

〈e−itAN φ, aNe−itAN ψ〉dt − 〈aN 〉〈φ, ψ〉
∣∣∣ = 0. (1.4)

There are many natural questions that arise when looking at these results.
First, why not work on Z

d directly? One issue is that the dynamics are
dispersive [35] on Z

d, more precisely |e−itA
Zd δv(w)|2 =

∏d
j=1 |Jvj−wj

(2t)|2,
where Jk is the Bessel function of order k, and |Jk(t)| � t−1/3 uniformly in k,
see [21]. So as time grows large, the probability measure |e−itA

Zd δv(w)|2 on Z
d

simply converges to zero. One could instead consider the limit of the process
rescaled per unit time. We did this previously in [8] and computed the limiting
measure explicitly.

Still, this does not tell whether we can possibly invert the order of limits
in the theorem. The answer is in fact negative.1

Proposition 1.3. There exists a sequence of observables aN on ΛN of the form
f(n/N) such that

lim inf
N→∞

(〈e−itAN δv, aNe−itAN δv〉 − 〈aN 〉) ≥ 1
2

for all time. The same statement holds for the averaged dynamics 1
T

∫ T

0
.

This indicates that the limit over time should be considered first. But
can one get rid of the time average and consider the limit directly in t? The
answer is negative.

1Still, we can take the two limits simultaneously to infinity in a certain regime. See Re-
mark 2.1.
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Proposition 1.4. There exists a sequence of observables aN on ΛN of the form
f(n/N) such that 〈e−itAN δv, aNe−itAN δv〉 has no limit as t → ∞.

The limit of the corresponding average
∫ T

T−1
〈e−itAN δv, aNe−itAN δv〉dt

also doesn’t exist.

The last point illustrates that a “full” average 1
T

∫ T

0
is needed.

Proposition 1.3 shows that we should consider the large time limit first.
But is it actually necessary to take N to infinity? The answer is yes.

Proposition 1.5. For each N there exists aN such that

lim
T→∞

1
T

∫ T

0

〈e−itAN δv, aNe−itAN δv〉 − 〈aN 〉 = bN (v)

with bN (v) �= 0. Here, bN (v) → 0 as N → ∞ at the rate N−1.

Proposition 1.5 shows that we cannot expect a faster rate of convergence
in Theorem 1.1 than N−1. We indeed achieve this upper bound in the proof
in Sect. 2.

Theorem 1.1 can be generalized to Z
d-periodic graphs (crystals). This

requires some vocabulary which we prefer to postpone to Sect. 3, so we will
explain the theorem in words here instead and refer to Theorem 3.1 for a more
precise statement.

Theorem 1.6. Theorem 1.1 holds true more generally for periodic Schrödinger
operators on Z

d-periodic graphs, provided they satisfy a certain Floquet con-
dition. This condition is satisfied in particular for the adjacency matrix on
infinite strips, on the honeycomb lattice, and for Schrödinger operators with
periodic potentials on the triangular lattice and on Z

d, for any d. The average
〈aN 〉 may not be the uniform average of aN in general, but a certain weighted
average.

See Figs. 2 and 3 for examples of this.
In this result, we focus on the two most natural choices of initial states:

point masses (Theorem 3.1) and initial states uniformly spread over a single

Figure 2. A point mass on the ladder eventually equidis-
tributes (left). On the strip of width 3, if the initial point
mass lies in the top layer, it eventually (center) puts 3

8 of its
mass over the top and bottom layers and 1

4 on the middle. If
the point mass was in the middle layer, it eventually (right)
puts 1

4 on the top and bottom layers and 1
2 in the middle layer
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fundamental cell (Remark 3.3). Still, we give an expression (3.12) for more
general states.

As we explain in the end of Sect. 3, some Floquet condition must be
assumed at least to rule out flat bands. Figure 4 shows how an initial state
may stay localized otherwise.

1.2. Torus Dynamics

We now turn our attention to the continuum and consider the torus T
d
∗. This

model is rather unusual compared to the quantum walk literature, which typ-
ically studies evolutions on graphs, but has the advantage of being directly
comparable to the Kronecker–Weyl theorem (1.1). The technical issue how-
ever is that we can no longer consider Dirac distributions δx directly as in the
case of graphs. We will thus regularize (approximate) them in two ways: in
momentum space, then in position space.

For the momentum-space approximation, we consider δE
y := 1√

NE

1(−∞,E](−Δ)δy, where NE is the number of Laplacian eigenvalues in (−∞, E].
This truncated Dirac function has previously been considered in [5]. In our
case, δE

y is a trigonometric polynomial, see Sect 4.1.

Theorem 1.7. We have for any T > 0,
(1) For any y ∈ T

d
∗, any a ∈ Hs(Td

∗), s > d/2,

lim
E→∞

1
T

∫ T

0

〈eitΔδE
y , aeitΔδE

y 〉dt =
∫

Td∗

a(x) dx.

(2) If x �= y, then for a ∈ Hs(Td
∗), s > d/2,

lim
E→∞

1
T

∫ T

0

〈eitΔδE
x , aeitΔδE

y 〉dt = 0.

(3) Result (1) remains true if a = aE depends on the semiclassical parameter
E, as long as all partial derivatives of order ≤ s are uniformly bounded by
cEr for some r < 1

4 . More precisely, limE→∞ | 1
T

∫ T

0
〈eitΔδE

y , aEeitΔδE
y 〉dt−∫

Td∗
aE(x) dx| = 0.

(4) The probability measure dμE
y,T (x) = ( 1

T

∫ T

0
|eitΔδE

y (x)|2 dt)dx on T
d
∗ con-

verges weakly to the uniform measure dx as E → ∞.

Hence, averaging a over dμE
y,T (x) = ( 1

T

∫ T

0
|eitΔδE

y (x)|2dt) dx is the same
as averaging a over the uniform measure dx, after the initial state becomes
sufficiently localized.

Remarkably, equidistribution occurs immediately if we are initially suffi-
ciently close to a Dirac distribution. We do not need to wait for large time T .
Compare with (1.1).2

The third point allows taking observables of shrinking support. This
problem was recently studied by [14,15]. More precisely, we can allow ob-
servables concentrated near any x0 ∈ T

d
∗, with support shrinking like E−β

2One interpretation is that in semiclassical analysis, one considers evolutions of −h2Δ in-
stead, with h → 0, so in this sense, we do study long times.
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for β = 1
2(d+1) . In fact, starting from any fixed smooth a supported in a ball

BR around the origin, define aE,x0(x) = a(Eβ(x − x0)). This is supported
in the ball BRE−β (x0). It satisfies ∂k

xi
aE,x0 = Eβk∂k

xi
a(Eβ(x − x0)), hence

‖∂k
xi

aE,x0‖∞ ≤ Eβk‖∂k
xi

a‖∞. We thus need βs < 1
4 for point (3). We also

need s > d/2 to respect the assumptions. Choosing s = d
2 + 1

4 , we see that
β = 1

2(d+1) suffices.
This gives a sharper verification that the mass of |eitΔδE

y (x)|2 dx equidis-
tributes on average. Namely, equidistribution remains true if we zoom in near
any point x0 ∈ T

d
∗.

Interestingly, (eitΔδE
y )(x) = 1√

NE

∑
λ�≤E e�(y)e−itλ�e�(x) with λ� = 4π2�2

is a normalized truncated theta function if d = 1, which is important in number
theory [16,20].

Theorem 1.7 extends immediately to more general energy cutoffs of δy,
i.e., there is some flexibility in the choice of δE

y . We can also consider more
general tori T = ×d

i=1[0, bi). See Sect. 4.2 for details. As before,

Lemma 1.8. Time averaging is necessary, even when limE→∞〈eitΔδE
y , aeitΔδE

y 〉
exists, it generally depends on the value of t and it may not be equal to∫

a(x) dx.

We next give a result by approximating in position space.

Theorem 1.9. Fix any y ∈ T
d
∗ and consider φε

y = 1√
ε1ε2···εd

1×d
i=1[yi,yi+εi].

Then, for any a ∈ Hs(Td
∗), s > d/2, T > 0,

lim
ε↓0

1
T

∫ T

0

〈eitΔφε
y, aeitΔφε

y〉dt =
∫

Td∗

a(x) dx,

where ε ↓ 0 means more precisely that |ε| =
√

ε2
1 + · · · + ε2

d → 0. If x �= y,
then

lim
ε↓0

1
T

∫ T

0

〈eitΔφε
x, aeitΔφε

y〉dt = 0.

Furthermore, the probability measure dμε
y,T (x) = ( 1

T

∫ T

0
|eitΔφε

y(x)|2 dt)dx

on T
d
∗ converges weakly to the uniform measure dx as ε ↓ 0.

This theorem says that once our initial state is close enough (in position
space) to a Dirac mass, its averaged dynamics will become equidistributed.

Theorem 1.9 is actually valid for a more general class of initial states
(φε), see Sect. 4.3.

Theorems 1.7 and 1.9 remain true if we first take the limit over T and
then over E/ε, i.e.,

lim
E→∞

lim
T→∞

1
T

∫ T

0

〈eitΔδE
y , aeitΔδE

y 〉dt =
∫

Td∗

a(x) dx (1.5)

holds in addition to Theorem 1.7(1), and a corresponding statement holds in
addition to Theorem 1.9. This is in fact easier to prove, see Remark 4.2. What
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is remarkable is that we don’t need to consider a large time in Theorems 1.7
and 1.9 for equidistribution to occur. Also notice that the limits over E and
T can be interchanged, in view of the theorems and (1.5).

1.3. Sphere Dynamics

As we mentioned in the introduction, classical evolution on the sphere is far
from being ergodic. We have a confirmation of this as follows.

Theorem 1.10. Fix ξ ∈ S
d−1. There exists a normalized approximate Dirac

distribution S
(n)
ξ such that limT→∞ 1

T

∫ T

0
|eitΔS

(n)
ξ (η)|2 dt is not equidistributed

on the sphere as n → ∞ and actually diverges for η = ξ.
If d = 3, there exists an observable a such that the analog of (1.5) is

violated.

This result may seem intuitively clear, however remember that the sphere
is a rather counter-intuitive example in which almost all eigenbases are quan-
tum uniquely ergodic [37] in spite of our classical intuition. The proof of The-
orem 1.10 can get quite technical depending on how we choose the initial
(approximate) point mass, and the theorem does not exclude the possibility
that some point masses do equidistribute with time.

1.4. Earlier Results and Perspectives

The time evolution of quantum walks is a central topic. Let us mention [9,17]
in relation to mixing time. We are not aware of earlier works showing equidis-
tribution, and it would be very interesting to see which discrete-time quantum
walks satisfy this phenomenon. We mention [26] in which the evolution of a
Grover walk in large boxes in Z

2 was shown to localize, and [12] where (non)-
thermalization of fullerene graphs was investigated. See also [33] for thermal-
ization in a free fermion chain.

A study of the quantum dynamics on the torus appeared previously in
the more general setting of Schrödinger operators in [4,23]. It is shown in [4]
that if (un) is a sequence in L2(Td

∗) such that ‖un‖ = 1, if H = −Δ + V is
a Schrödinger operator on T

d
∗ and if dμn(x) = (

∫ 1

0
|(e−itHun)(x)|2 dt) dx, then

any weak limit of μn is absolutely continuous.
This is much broader than our framework. As a special case, this result

implies that any weak limit of the measures μE
y,T and με

y,T in Theorems 1.7
and 1.9 is absolutely continuous. More general statements regarding Wigner
distributions can also be found in [4].

At this level of generality, this result cannot be improved to ensuring
convergence to the uniform measure. For example, if we take d = 1, V = 0 and
un(x) =

√
2 cos(2πx) for all n, then dμn(x) = (

∫ 1

0
2|e−it(4π2) cos(2πx)|2 dt) dx =

2 cos2(2πx) dx, which is not the uniform measure. Similarly, if we take un(x) =√
2 cos(2πx) for even n and un(x) =

√
2 sin(2πx) for odd n, we see that μn

does not converge, having two limit points.
As this preprint was being circulated, Maxime Ingremeau and Fabricio

Macià explained to us that it is possible to prove the first point in each of
Theorem 1.7 and 1.9 by first computing the semiclassical measures of (δE

y )
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and (φε
y), which lives in phase space T ∗

T
d
∗. There should be a unique limit for

each sequence, of the form μ0(dx,dξ) = δyf(ξ) dξ, which does not charge the
resonant frequencies, so one could apply [23, (8) and Prp. 1], which rely on
the microlocal analysis developed in [22]. It seems this can work even in the
presence of a potential if one uses [4, Th. 3]. Our proof, on the other hand,
is very simple, using explicit computations, we make no use of microlocal
analysis as our framework is more special, because we had different aims in
mind. Concerning the sphere, one could consider sequences of the form ρh

y(x) =
h−d/2ρ(x−y

h ) in local coordinates, where ρ is in L2. The semiclassical measure
should have a similar form. Using [22, Thm. 4], one should be able to deduce
that dμh

y,T (x) = ( 1
T

∫ T

0
|eitΔρh

y(x)|2 dt)dSd−1(x) will be absolutely continuous
as h → 0 (more precisely, a weighted superposition of uniform orbit measures
modulated by |ρ̂(ξ)|2). In the same spirit, after some work, one can use [24, Prp.
2.2.(i) and Th.4.3] to deduce that dμn

ξ,T (η) = ( 1
T

∫ T

0
|eitΔS

(n)
ξ (η)|2 dt)dSd−1(η)

is absolutely continuous as n → ∞. This is not our aim in Theorem 1.10,
but is an interesting complementary information. We finally mention that the
preceding applications of [4,22–24] are quoted from private communication; it
would be interesting to work out the details.

As for negative curvature, the authors in [5] consider the case of a com-
pact Anosov manifold M and show that if δh

y is an h-truncated Dirac dis-
tribution, then as h → 0, 1

T

∫ T

0
〈eitΔ/2δh

y ,Oph(a)eitΔ/2δh
y 〉dt ≈ ∫

S∗M
adL for

most y. This is another instance where equidistribution occurs immediately
once δh

y becomes close enough to δy: there is no need to take T → ∞. The
fact that it holds for most y means more precisely that the volume of y ∈ M
where this doesn’t hold vanishes as h → 0. In this respect, the fact that our
equidistribution results for the torus (and graphs) hold for each y is worth
emphasizing.

We finally mention the paper [32] in the context of the evolution of La-
grangian states. These are localized in speed rather than in position.

As we mentioned earlier, there is a large literature on eigenfunction quan-
tum ergodicity, in particular [27,39]. It is natural to ask if this property is
related to the present quantum dynamical picture. We discuss this in Appen-
dix A. In particular, while there are several proofs of eigenfunction ergodicity
for regular graphs with few cycles [3], it is not very clear how to prove the
dynamical criterion in that context; this seems like an interesting direction for
future considerations.

2. Case of the Integer Lattice

Here, we prove Theorems 1.1 and 1.2 and Propositions 1.3–1.5. Throughout,
a := aN .

Proof of Theorem 1.1. Consider the orthonormal basis e
(N)
m (n)= 1

Nd/2 e2πim·n/N .

Given ψ=
∑

�∈ΛN
ψ

(N)
� e

(N)
� , where ψ

(N)
� =〈e(N)

� , ψ〉, since ANe
(N)
k =λ

(N)
k e

(N)
k ,

for λ
(N)
k =

∑d
i=1 2 cos( 2πki

N ), we have e−itAN ψ =
∑

�∈ΛN
ψ

(N)
� e−itλ

(N)
� e

(N)
� .
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Expand a =
∑

m∈ΛN
a
(N)
m e

(N)
m . Then using that e

(N)
m e

(N)
� = 1

Nd/2 e
(N)
�+m,

we obtain

(eitAN ae−itAN ψ)(n) =
∑

�,m∈ΛN

ψ
(N)
� eit(λ

(N)
�+m−λ

(N)
� )a(N)

m e(N)
m (n)e(N)

� (n).

In particular, as ψ
(N)
� = e

(N)
� (v) for ψ = δv, we get

〈e−itAN δv, ae−itAN δv〉 = (eitAN ae−itAN δv)(v)

=
1

Nd

∑

�,m∈ΛN

eit(λ
(N)
�+m−λ

(N)
� )a(N)

m e(N)
m (v)

=
1

Nd

∑

w∈ΛN

a(w)+
1

Nd

∑

m∈ΛN
m�=0

a(N)
m e(N)

m (v)
∑

�∈ΛN

eit(λ
(N)
�+m−λ

(N)
� ) ,

(2.1)

where we used that a
(N)
0 e

(N)
0 (v) = 1

Nd

∑
w∈ΛN

a(w) for any v.

If λ
(N)
�+m �= λ

(N)
� then 1

T

∫ T

0
eit(λ

(N)
�+m−λ

(N)
� ) dt = e

iT (λ
(N)
�+m

−λ
(N)
�

)−1

T (λ
(N)
�+m−λ

(N)
� )

→ 0 as

T → ∞. Thus,

lim
T→∞

1

T

∫ T

0
〈e−itAN δv , ae−itAN δv〉−〈a〉 =

1

Nd

∑

m∈ΛN
m�=0

a
(N)
m e

(N)
m (v) · #

{
�∈ΛN : λ

(N)
�+m

= λ
(N)
�

}
. (2.2)

Let Am = {� ∈ ΛN : λ
(N)
�+m = λ

(N)
� }. We show that

#Am ≤ 2Nd−1. (2.3)

We have Am = {� ∈ [[0, N − 1]]d :
∑d

j=1 cos( 2π(�j+mj)
N ) − cos( 2π�j

N ) = 0}.
Consider the projection of this surface onto a plane. More precisely, suppose
mj �= 0 and consider Pe⊥

j
� = (�1, . . . , �j−1, 0, �j+1, . . . , �d). Suppose n, k ∈ Am

and Pe⊥
j
n = Pe⊥

j
k. Then ni = ki for all i �= j. So cos( 2π(nj+mj)

N )− cos( 2πnj

N ) =

−∑i
=j cos( 2π(ni+mi)
N ) − cos( 2πni

N ) = −∑i
=j cos( 2π(ki+mi)
N ) − cos( 2πki

N ) =

cos( 2π(kj+mj)
N )−cos( 2πkj

N ). Since cos θ−cos ϕ = −2 sin( θ+ϕ
2 ) sin( θ−ϕ

2 ), this im-
plies that sin π(2nj+mj

N ) sin πmj

N = sinπ( 2kj+mj

N ) sin πmj

N . Since mj ∈ [[1, N −
1]], this implies sinπ(2nj+mj

N ) = sin π( 2kj+mj

N ). But 2nj+mj

N ≤ 3 and 2kj+mj

N ≤
3. So we must have π

2nj+mj

N = π
2kj+mj

N or π − π
2kj+mj

N or 2π + π
2kj+mj

N .
This leads to nj = kj or nj = N

2 − kj − mj or nj = N + kj . The last case is
excluded as nj < N .

We thus showed that any (n1, . . . , nj−1, 0, nj+1, . . . , nd) has at most two
preimages within Am under the mapping Pe⊥

j
. This implies that #Am ≤

2Nd−1 for any m �= 0.
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In the special case a(w) = e2πik·w/N = Nd/2e
(N)
k (w), we have a

(N)
m = 0

for m �= k and a
(N)
k = Nd/2. So the RHS in (2.2) reduces to

e2πik·v/N · #Ak

Nd
→ 0.

More generally, suppose aN (n) = f(n/N) for some f ∈ Hs(Td
∗), with

s > d/2. Here Hs(Td
∗) is the Sobolev space of order s, with norm ‖f‖2

Hs =∑
k∈Zd |f̂k|2〈k〉2 s, where f̂k =

∫
Td∗

e−2πik·xf(x) dx and 〈k〉 =
√

1 + |k|2. Then

‖f̂‖1 :=
∑

k |f̂k| ≤ Cs‖f‖Hs , where C2
s =

∑
k〈k〉−2 s < ∞ since 2 s > d. On the

other hand, f =
∑

k f̂kek with ek(x) = e2πik·x, so a
(N)
m = 〈e(N)

m , f(·/N)〉�2(ΛN ) =
∑

k∈Zd f̂k〈e(N)
m , ek(·/N)〉�2(ΛN ) = f̂mNd/2, since ek(n/N) = Nd/2e

(N)
k (n).

We showed that a
(N)
m e

(N)
m (v) = f̂me2πim·v/N . Thus,

∣∣∣∣∣ lim
T→∞

1
T

∫ T

0

〈e−itAN δv, ae−itAN δv〉 − 〈a〉
∣∣∣∣∣

≤ 2
N

∑

m∈ΛN

|a(N)
m e(N)

m (v)| ≤ 2
N

‖f̂‖1 ≤ C

N
‖f‖Hs → 0.

The estimate is also true if aN is the restriction to ΛN of some a ∈ �1(Zd).
In that case, we have a =

∑
n∈Zd cnδn with ‖a‖1 =

∑
n∈Zd |cn| < ∞. On the

other hand, a
(N)
m =

∑
n∈Zd cn〈e(N)

m , δn〉=
∑

n∈Zd cne
(N)
m (n). So |a(N)

m e
(N)
m (v)|≤

1
Nd ‖a‖1; hence,

∑
m∈ΛN

|a(N)
m e

(N)
m (v)| ≤ ‖a‖1 and we may conclude as be-

fore. �

Proof of Theorem 1.2. Arguing as before, we find that

〈e−itAN δv, ae−itAN δw〉 =
1

Nd

∑

�,m∈ΛN

e
2πi�·(v−w)

N eit(λ
(N)
�+m−λ

(N)
� )a(N)

m e(N)
m (v)

Here, the term m = 0 is 1
Nd

∑
�∈ΛN

e
2πi�·(v−w)

N a0e0(v) = 0 since v �= w. The
remaining terms

∑
m 
=0,�∈ΛN

tend to zero as T followed by N tend to infinity

by the same argument as before (the phase e
2πi�·(v−w)

N makes no difference).
This proves the first part.

For the second part, assume φ, ψ are supported in a compact K ⊂ ΛN ,
N large enough. Then, φ =

∑
v∈K φ(v)δv and ψ =

∑
v∈K ψ(v)δv. Thus,

〈e−itAN φ, ae−itAN ψ〉 =
∑

v,w∈K

φ(w)ψ(v)〈e−itAN δv, ae−itAN δw〉.

Hence,

〈e−itAN φ, ae−itAN ψ〉 − 〈a〉〈φ, ψ〉 =
∑

v∈K

φ(v)ψ(v)
(
〈e−itAN δv, ae−itAN δv〉 − 〈a〉

)

+
∑

v,w∈K,v �=w

φ(w)ψ(v)〈e−itAN δw, ae−itAN δv〉.

We see that (1.4) follows from (1.2) and (1.3). �
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Proof of Proposition 1.3. Take aN (n) = f(n/N) for f(x) =
∏d

i=1(1 − xi) on
T

d
∗. Then f ≥ 0. Now

〈e−itAN δv, aNe−itAN δv〉 =
∑

n∈ΛN

aN (n)|e−itAN δv(n)|2

=
∑

n∈Zd

f
( n

N

)
χΛN

(n)|e−itAN δv(n)|2,

where we extend f to R
d arbitrarily in a continuous fashion and we define

e−itAN δv(n) := 0 for n /∈ ΛN .
Now e−itAN δv(w) → e−itA

Zd δv(w) for any w. This can be seen, for exam-
ple, from the explicit expression of the kernels through the Fourier transform,
which shows that if φ(x) =

∑d
i=1 2 cos 2πxi for x ∈ T

d
∗, then e−itAN (w, v) =

1
Nd

∑
n∈ΛN

e2πi(w−v)·n/Ne−itφ(n/N) for v, w ∈ ΛN and e−itA
Zd (w, v) =

∫
Td∗

e2πi(w−v)·xe−itφ(x) dx.
We thus have limN→∞ f(n/N)χΛN

(n)|e−itAN δv(n)|2 = f(0)|e−itA
Zd δv(n)|2

for any n. So by Fatou’s lemma,

lim inf
N→∞

〈e−itAN δv, aNe−itAN δv〉 ≥
∑

n∈Zd

f(0)|e−itA
Zd δv(n)|2 = 1, (2.4)

where we used f(0) = 1 and
∑

n |e−itA
Zd δv(n)|2 = ‖eitA

Zd δv‖2 = ‖δv‖2 = 1.
On the other hand, by Riemann integration, 〈aN 〉 = 1

Nd

∑
n∈ΛN

f(n/N) →∫
Td∗

f(x) dx = 1
2d . This proves the result.

The statement holds for the average dynamics since e−itAN δv(w) →
e−itA

Zd δv(w) implies 1
T

∫ T

0
|e−itAN δv(w)|2 dt → 1

T

∫ T

0
|e−itA

Zd δv(w)|2 dt, as
|e−itAN δv(w)|2 ≤ ‖e−itAN ‖2 = 1. The (averaged) lower bound (2.4) still holds
by Tonelli’s theorem. �

Proof of Proposition 1.4. Take d = 1 and aN (x) = e2πix/N , so that am =√
Nδm,1. Since λ� = 2 cos 2π�

N , (2.1) reduces to e
2πiv

N

N

∑N−1
�=0 e−4it sin π

N (2�+1) sin π
N .

Specializing to t = n ∈ N, it is shown3 in [13, Lemma C.2] that this sum has no
limit as n → ∞. In particular, 〈e−itAN δv, aNe−itAN δv〉 has no limit as t → ∞.

The same lemma shows that
∫ T

T−1
〈e−itAN δv, aNe−itAN δv〉dt has no limit

as T → ∞. Here, the expression becomes e
2πiv

N

N

∑N−1
�=0 eiTb� (1−e−ib� )

ib�
for b� =

−4 sin π
N (2� + 1) sin π

N . �

Proof of Proposition 1.5. If N is odd, consider aN (n) = 2 cos( 2πn1
N ). Then,

a
(N)
m = Nd/2 if m = ±e1, where e1 = (1, 0, . . . , 0), and a

(N)
m = 0 otherwise. So

3In [13, Lemma C.2] it is assumed the sum takes the form Γ(n) =
∑t

j=1 cje
2πinθj for some

distinct θj ∈ [0, 1). In our case, for N > 4, |4 sin π
N

| < π, so ϑj :=
−4 sin π

N
(2j+1) sin π

N
2π

∈
(− 1

2
, 1
2
). If N1 > 1 is the number of distinct ϑj , then we may rearrange our sum as

e
2πiv

N

N

∑N1
�=1 c�e

2πinϑ� and the proof is the same.
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the RHS (2.2) reduces to

e
2πiv1

N
#{� ∈ ΛN : λ

(N)
�+e1

= λ
(N)
� }

Nd
+ e

−2πiv1
N

#{� ∈ ΛN : λ
(N)
�−e1

= λ
(N)
� }

Nd
.

Since λ
(N)
k =

∑d
i=1 2 cos 2πki

N , we have λ
(N)
�+e1

= λ
(N)
� iff cos( 2π(�1+1)

N ) = cos( 2π�1
N ),

i.e., sinπ(2�1+1
N ) sin π

N = 0. This occurs iff 2�1+1
N = 0, 1, 2, i.e., �1 = −1

2 , N−1
2

or 2N−1
2 , respectively. The only choice in {0, . . . , 1} is �1 = N−1

2 . Since �j

can be arbitrary for j ≥ 2, we see that
#{�∈ΛN :λ

(N)
�+e1

=λ
(N)
� }

Nd = 1
N . Similarly,

λ
(N)
�−e1

= λ
(N)
� iff 2�1−1

N = 0, 1, 2, and the only valid choice is �1 = N+1
2 . We

thus showed that the RHS of (2.2) is bN (v) = 2 cos(
2πv1

N )

N .
If N is even, we take aN (n) = 2 cos( 4πn1

N ). Then, a
(N)
m = Nd/2 if m =

±2e1 and zero otherwise. Here, λ
(N)
�±2e1

= λ
(N)
� iff 2�1±2

N = 0, 1, 2, and we

conclude as before that bN (v) = 4 cos(
4πv1

N )

N . �
Remark 2.1. We can take T to depend on N , provided it grows fast enough. To
see this, back to (2.1), we notice that in the expansion of 1

T

∫ T

0
〈eitAN δv, ae−itAN

δv〉dt, we should now account for the additional term

1
Nd

∑

m∈ΛN ,
m 
=0

a(N)
m e(N)

m (v)
∑

�∈ΛN

λ
(N)
�+m 
=λ

(N)
�

1
T

· eiT (λ
(N)
�+m−λ

(N)
� ) − 1

i(λ(N)
�+m − λ

(N)
� )

. (2.5)

This can be bounded crudely by
∑

m 
=0 |a(N)
m e

(N)
m (v)|· 2

T ·sup
λ
(N)
j 
=λ

(N)
k

|λ(N)
j

− λ
(N)
k |−1. We showed in the proof that

∑
m |a(N)

m e
(N)
m (v)| stays bounded for

all N for our choice of observables a. Thus, if T = T (N) grows faster than the
smallest spectral gap between distinct eigenvalues of AN , the term (2.5) will
vanish as required as N → ∞. For d = 1, it suffices that T grows faster than
N2.

3. Periodic Graphs

We here extend ergodicity to Z
d-periodic graphs Γ. We assume there exist

linearly independent vectors a1, . . . , ad in a Euclidean space R
D such that, if

na =
∑d

i=1 niai and Z
d
a = {na : n ∈ Z

d}, then

V (Γ) = Vf + Z
d
a, (3.1)

where Vf is the fundamental cell containing a finite number ν of vertices, which
is then repeated periodically under translations by na ∈ Z

d
a.

For example, Γ = Z
d has Vf = {0} and aj = ej the standard basis. An

infinite strip of width k has Vf = Pk, the k-path, d = 1 and a1 = e1. See
[28,31] for more examples.

We endow Vf with a potential (Q1, . . . , Qν) and copy these values across
the blocks Vf + na. This turns Q into a periodic potential on Γ. We consider
the Schrödinger operator H = AΓ + Q.
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From (3.1), any u ∈ Γ takes the form u = ua + {u}a for some ua ∈ Z
d
a

and {u}a ∈ Vf .
Fix a large N and let ΓN = ∪n∈L

d
N

(Vf +na), where Ld
N = {0, . . . , N −1}d.

We consider the restriction HN on ΓN with periodic boundary conditions.
Then, it holds that [28], if U : �2(ΓN ) → ⊕j∈L

d
N

�2(Vf ) is the Floquet transform
defined by

(Uψ)j(vi) =
1

Nd/2

∑

k∈ΛN

e
−2πij·k

N ψ(vi + ka),

then U is unitary and

UHNU−1 = ⊕
j∈L

d
N

H
( jb

N

)
, (3.2)

where b1, . . . , bν is the dual basis of (ai) satisfying ai · bj = 2πδi,j , nb =∑d
i=1 nibi and

H(θb)f(vi) =
∑

u∼vi

eiθb·�uaf({u}a) + Qif(vi). (3.3)

Much like AZd is unitarily equivalent to multiplication by a function that is a
sum of cosines via the Fourier transform, (3.2) is a finite version of the fact
that H is unitarily equivalent to multiplication by a ν × ν matrix function
H(θb) via the Floquet transform.

Denote by Es(θb), s = 1, . . . , ν the eigenvalues of H(θb), and by PEs
(θb)

the orthogonal projection onto the eigenspace corresponding to Es(θb).
As initial state, we consider ψ = δvp

⊗ δna , more precisely ψ(vi + ka) :=
δvp

(vi)δn(k) for vi ∈ Vf and k ∈ Z
d. In other words, we start from a point

mass.

Theorem 3.1. Assume that

sup
m 
=0

#{(r, s, w) ∈ L
d
N × {1, . . . , ν}2 : Es( rb+mb

N ) − Ew( rb

N ) = 0}
Nd

→ 0

(3.4)

as N → ∞. Suppose the observable aN satisfies one of the following conditions:
(i) aN (ka + vq) = f (q)(k/N) for some ν functions f (q) ∈ Hs(Td

∗), with s >
d/2,

(ii) or, aN is the restriction to ΓN of an integrable function a ∈ �1(Γ).
Then

lim
N→∞

∣∣∣ lim
T→∞

1
T

∫ T

0

〈e−itHN δvp
⊗ δna , ae−itHN δvp

⊗ δna〉 − 〈a〉p

∣∣∣ = 0,

where, denoting 〈a(· + vq)〉 := 1
Nd

∑
n∈L

d
N

a(na + vq),

〈a〉p =
1

Nd

∑

r∈L
d
N

ν∑

q=1

〈a(· + vq)〉
ν′∑

s=1

∣∣∣
[
PEs

(rb
N

)
δvq

]
(vp)
∣∣∣
2

. (3.5)
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The Floquet condition (3.4) was used as a requirement for quantum er-
godicity in [28]. It is a bit stronger than asking that H has purely absolutely
continuous spectrum. We refer to [28] for numerous examples which satisfy
(3.4).

In the special case, 〈a(· + vq)〉 = 〈a(· + v1)〉 ∀q = 1, . . . , ν, (3.5) reduces
to 〈a(· + v1)〉. In fact, we get

1
Nd

〈a(·+v1)〉
∑

r∈L
d
N

ν′∑

s=1

∥∥∥PEs

(rb
N

)
δvp

∥∥∥
2

=
1

Nd
〈a(·+v1)〉

∑

r∈L
d
N

‖δvp
‖2=〈a(·+v1)〉.

This scenario occurs in particular if a is locally constant, i.e., takes a fixed
value on each periodic block Vf + na, which depends on n but not on vq ∈ Vf .

In general, (3.5) gives not the uniform average of a, but a weighted aver-
age, with weights depending on the initial point vp and the spectral decomposi-
tion of the Floquet matrix. Note however that 1

ν

∑ν
p=1〈a〉p = 1

ν

∑ν
q=1〈a(·+vq)〉

is the uniform average. So the mean density μ
(N)
n,T (u) = 1

T

∫ T

0
1
ν

∑ν
p=1 |(e−itHN δvp

⊗ δna)(u)|2 dt on ΓN approaches the uniform measure 1
νNd for T,N � 0.

Example 3.2. Let Q ≡ 0, so H(θb) = A(θb). The average 〈a〉p is the uniform
average if:

(i) ν = 1, for example Γ = Z
d or the triangular lattice. See [28, Sect. 4.1]

for more examples. Indeed, in this case (3.5) reduces to 〈a(· + v1)〉 =
1

Nd

∑
n∈ΓN

a(u).
(ii) Γ is the hexagonal lattice or Γ is an infinite ladder (strip of width 2). The

argument is given in [28, Sect. 4.2,4.3]. Both of these graphs have ν = 2.

Let us now discuss two examples in which 〈a〉p is not the uniform average. Both
of them are Cartesian products Z� GF , where GF is a finite graph (in the
following GF will be a 3-path and a 4-cycle, respectively). The Floquet matrix
takes a very simple form in this case [28, Lemma 3.1]. We will here compute the
matrix by hand from definition (3.3) to help the reader understand it better.

If Γ is the infinite strip of width 3 as in Fig. 2, we clearly can choose
as fundamental domain Vf a vertical segment Vf = {v1, v2, v3}, where v1 is
the top vertex, v2 is the middle one and v3 is the bottom one. Here d = 1
and a1 = e1. The vertex v1 has three neighbors: v1 ± e1 and v2. We have
�vi ± e1�a = ±e1 and {vi ± e1}a = vi, while �vj�a = 0 and {vj}a = vj . Finally,
θb = 2πθe1. Thus, (3.3) tells us that

H(θb)f(v1) = A(θb)f(v1) = e2πiθf(v1) + e−2πiθf(v1) + f(v2). (3.6)

Arguing similarly for v2 and v3, we see that A(θb) =

⎛

⎝
cθ 1 0
1 cθ 1
0 1 cθ

⎞

⎠ for cθ =

2 cos 2πθ. The eigenvectors are independent of θ and given by w1 = 1
2 (1,

√
2, 1),

w2 = 1√
2
(−1, 0, 1) and w3 = 1

2 (1,−√
2, 1) for E1 = cθ +

√
2, E2 = cθ, E3 =

cθ − √
2. It follows that (Piδvq

)(vp) = wi(vp)wi(vq).
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Figure 3. A point mass (left) spreads 3
8 of its mass over both

its line and the line diagonally opposite to it, and only 1
8 of

its mass on each of the other two lines (right). If the cylinder
has size 4N , then each dark blue vertex carries a mass 3

8N

and each light blue vertex carries a mass 1
8N

Suppose we take vp = v1. Then,

3∑

i=1

|(Piδvq
)(v1)|2 =

|w1(vq)|2
4

+
|w2(vq)|2

2
+

|w3(vq)|2
4

.

For q = 1, 2, 3, this gives 3
8 , 1

4 and 3
8 , respectively. So 〈a〉1 =

3〈a(·+v1)〉+2〈a(·+v2)〉+3〈a(·+v3)〉
8 , which is not the uniform average: there is more

weight to both sides of the strip.
For comparison, suppose we take vp = v2, the central vertex. Then,

3∑

i=1

|(Piδvq
)(v2)|2 =

|w1(vq)|2
2

+
|w3(vq)|2

2
.

For q = 1, 2, 3, this gives 1
4 , 1

2 and 1
4 , respectively. So 〈a〉2 =

〈a(·+v1)〉+2〈a(·+v2)〉+〈a(·+v3)〉
4 , which is not the uniform average either. There

is more weight to the center of the strip.
More surprisingly perhaps, the spreading is not uniform in cylinders ei-

ther, which are regular, very homogeneous graphs.
For example, for the 4-cylinder in Fig. 3, computing as in (3.6), we find

that A(θb) = cθId4 + AC4 , where C4 is the 4-cycle, so A(θb) shares the eigen-
vectors of AC4 given by

2, 0, 0, −2, 1
2 (1, 1, 1, 1), 1√

2
(0,−1, 0, 1), 1√

2
(−1, 0, 1, 0), 1

2 (−1, 1,−1, 1),

respectively. If wi are the eigenvectors in this order, then the three eigenprojec-
tions are again independent of θ (this holds in general for Cartesian products
such as Z

d �GF , with GF finite) and given by (PE1δvq
)(vp) = w1(vp)w1(vq),

(PE3δvq
)(vp) = w4(vp)w4(vq) and (PE2δvq

)(vp) = w2(vp)w2(vq)+w3(vp)w3(vq).
Hence, |(PE1δvq

)(vp)|2 = |(PE3δvq
)(vp)|2 = 1

16 . We may assume vp = v1 by ho-

mogeneity. Then
∑3

i=1 |(PEi
δvq

)(v1)|2 = 1
8 + |w3(vq)|2

2 . For q = 1, 2, 3, 4, this
gives 3

8 , 1
8 , 3

8 and 1
8 , respectively. This is illustrated in Fig. 3.

It was observed in [28] that some eigenbases of the cylinder are uniformly
distributed while others are not. We see that having one equidistributed eigen-
basis is not enough to obtain the dynamic equidistribution that we discuss in
this paper. This is in contrast to the folklore physics heuristics of Sect. A.1.
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Proof of Theorem 3.1. It is shown in [28, Lemma 2.2] that

1
T

∫ T

0

eitHN ae−itHN dtψ(ka + vi) =
∑

r∈L
d
N

ν∑

�=1

(Uψ)r(v�)FT (k, r; vi, v�)e(N)
r (k),

where

FT (k, r; vi, v�) :=
∑

m∈L
d
N

ν∑

q,s,w=1

1
T

∫ T

0

eit[Es(
rb+mb

N )−Ew(
rb
N )] dt

×Ps

(rb + mb

N

)
(vi, vq)a(N)

m (vq)Pw

(rb
N

)
(vq, v�)e(N)

m (k),

(3.7)

and a
(N)
m (vq) = 〈e(N)

m , a(·a + vq)〉 =
∑

n∈L
d
N

e
(N)
m (n)a(na + vq).

If ψ = δvp
⊗ δna , then (Uψ)r(v�) = 1

Nd/2 δvp
(v�)e

−2πir·n
N . Hence,

1
T

∫ T

0

eitHN ae−itHN dtδvp
⊗ δna(ka + vi)

=
1

Nd/2

∑

r∈L
d
N

e
−2πir·n

N FT (k, r; vi, vp)e(N)
r (k). (3.8)

Since 〈Aδvp
⊗ δna , Bδvp

⊗ δna〉 = (A∗Bδvp
⊗ δna)(vp + na), we consider

1
T

∫ T

0

eitHN ae−itHN dtδvp
⊗ δna(na + vp) =

1
Nd

∑

r∈L
d
N

FT (n, r; vp, vp).

Taking the limit T → ∞, this reduces to [28],
1

Nd

∑

r∈L
d
N

b(n, r; vp, vp) (3.9)

where, denoting Sr = {(m, s,w) : Es( rb+mb

N ) − Ew( rb

N ) = 0}, we have

b(n, r, vi, v�) =
∑

m∈L
d
N

ν∑

q,s,w=1

1Sr
(m, s,w)Ps

(rb + mb

N

)
(vi, vq)

×a(N)
m (vq)Pw

(rb
N

)
(vq, v�)e(N)

m (n), (3.10)

If in (3.9) we consider only the term m = 0 from (3.10), with vi = v� = vp, we
get

1
Nd

∑

r∈L
d
N

ν∑

q,s,w=1
Es=Ew

Ps

(rb
N

)
(vp, vq)a

(N)
0 (vq)Pw

(rb
N

)
(vq, vp)e

(N)
0 (n)

=
1

Nd

∑

r∈L
d
N

ν∑

q=1

〈a(· + vq)〉
ν′∑

s=1

PEs

(rb
N

)
(vp, vq)PEs

(rb
N

)
(vq, vp) = 〈a〉p

(3.11)
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where ν′ is the number of distinct eigenvalues. To prove the theorem, we should
show that

1
Nd

∑

r∈L
d
N

∑

m 
=0

ν∑

q,s,w=1

1Sr
(m, s,w)Ps

(rb + mb

N

)
(vp, vq)a(N)

m (vq)Pw

(rb
N

)
(vq, vp)

e(N)
m (n) → 0

Let Am = {(r, s, w) : Es( rb+mb

N ) − Ew( rb

N ) = 0}. Then (m, s,w) ∈ Sr ⇐⇒
(r, s, w) ∈ Am so the above is

1
Nd

∑

m 
=0

ν∑

q=1

a(N)
m (vq)e(N)

m (n)
∑

r∈L
d
N

ν∑

s,w=1

1Am
(r, s, w)Ps

(rb + mb

N

)
(vp, vq)

Pw

(rb
N

)
(vq, vp).

Assume
∑

m

∑ν
q=1 |a(N)

m (vq)e
(N)
m (n)| ≤ Ca (observable condition). By (3.4),

supm 
=0
|Am|
Nd → 0. Hence, the above tends to 0 as required, since |Ps(θb)(v, w)| ≤

1.
The observable condition is satisfied for the two classes we have. If aN (ka+

vq) = f (q)(k/N) with f (q) ∈ Hs(Td
∗), s > d/2, then a

(N)
m (vq) = 〈e(N)

m , f (q)

(·/N)〉�2(Ld
N ) = f̂

(q)
m Nd/2. As before, this implies that

∑
m

∑
q |a(N)

m (vq)e
(N)
m (n)| ≤

∑
q ‖f̂ (q)‖1, which is finite.

The second scenario is that aN is the restriction to ΓN of some a ∈ �1(Γ).
Here, a =

∑
n∈Zd

∑ν
q=1 cn,qδna+vq

with
∑

n,q |cn,q| < ∞. Then a
(N)
m (vq) =

∑
n∈Zd cn,qe

(N)
m (n). This implies |a(N)

m (vq)e
(N)
m (n)| ≤ 1

Nd ‖a‖1 for all q implying
the hypothesis. �

Remark 3.3 (Another natural initial state). We may ask what happens if in-
stead of starting from a point mass δvp

⊗ δna , our initial state is equally dis-
tributed on the fundamental set, that is ψ0 = 1√

ν
1Vf

⊗ δna for some fixed
n ∈ L

d
N . In case of the ladder for instance, this corresponds to a vector local-

ized on the two vertices of Vf , each carrying mass 1√
2
. We will see that the

limiting distribution is still not the uniform average in general.
Revisiting the proof, we now have (Uψ0)r(v�) = 1√

νNd/2 e
−2πir·n

N , so the

RHS of (3.8) becomes 1√
νNd/2

∑
r e

−2πir·n
N

∑ν
�=1 FT (k, r, vi, v�)e

(N)
r (k). Here,

we have〈 1√
ν
1Vf

⊗ δna , φ〉 = 1√
ν

∑ν
i=1 φ(n+ vi), so (3.9) is replaced by 1

νNd

∑
r∑ν

�,i=1 b(n, r, vi, v�). Consequently, instead of (3.11) we get 1
νNd

∑
r

∑ν
�,i=1∑ν

q=1〈a(· + vq)〉
∑ν′

s=1 PEs

(
rb

N

)
(vi, vq)PEs

(
rb

N

)
(vq, v�). This simplifies to

E(a) =
1

νNd

∑

r∈L
d
N

ν∑

q=1

〈a(· + vq)〉
ν′∑

s=1

∣∣∣
[
PEs

(rb
N

)
1Vf

]
(vq)
∣∣∣
2

.

The rest of the proof is the same, so our theorem now says that averaging a
over the evolution of ψ0 is close to E(a). Comparing with Example 3.2, in case
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Figure 4. An initial state with the given weights (and zero
on the remaining vertices) stays frozen and does not spread
under the action of e−itAN . This graph has a flat band λ = 0

of the ladder and the honeycomb lattice, this is again the uniform average. In
case of the strip of width 3, we here have (Pi1Vf

)(vq) = 〈wi,1Vf
〉wi(vq), so

3∑

i=1

|(Pi1Vf
)(vq)|2 =

(2 +
√

2)2|w1(vq)|2
4

+
(2 − √

2)2|w3(vq)|2
4

.

For q = 1, 2, 3, this gives (2+
√

2)2+(2−√
2)2

16 = 3
4 , (2+

√
2)2+(2−√

2)2

8 = 3
2 and 3

4 , re-
spectively. Thus, E(a) = 1

3 · 3〈a(·+v1)〉+6〈a(·+v2)〉+3〈a(·+v3)〉
4 =

〈a(·+v1)〉+2〈a(·+v2)〉+〈a(·+v3)〉
4 . So we still don’t get the uniform average; there is

more weight given to the middle line. Curiously, this is the same as starting
from a point mass in the middle.

In case of the cylinder, PE11Vf
= 〈w1,1Vf

〉w1 = 2w1, while PE21Vf
=

PE31Vf
= 0, since w2, w3, w4 are all orthogonal to 1Vf

. It follows that
∑4

i=1

|PEs
1Vf

(vq)|2 = 4|w1(vq)|2 = 1. Thus, E(a) = 1
4

∑4
q=1〈a(· + vq)〉 is now the

uniform average, in contrast to the case of an initial state consisting of a point
mass which was discussed in Example 3.2.

In general, if the initial state ψ0 has a compact support, the limiting
average becomes

Eψ0(a) =
∑

r∈L
d
N

ν∑

q=1

〈a(· + vq)〉
ν′∑

s=1

∣∣∣
[
PEs

(rb
N

)
(Uψ0)r

]
(vq)
∣∣∣
2

. (3.12)

Regarding the Floquet assumption (3.4), it is likely to be necessary in
view of [28, Prp. 1.6]. It is clear that it cannot be completely dropped, as this
would allow the presence of “flat bands”, that is infinitely degenerate eigenval-
ues for H with eigenvectors of compact support. If we take such an eigenvector
as an initial state, it will not spread, since we simply get e−itHN ψ0 = e−itλψ0,
so |e−itHN ψ0| = |ψ0| for all times. An example is given in Fig. 4. See [28,31]
for more background on this phenomenon. Hence, at least pure AC spectrum
for H should be assumed, but (3.4) is stronger than this.
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4. Continuous Case

4.1. Regularizing in Momentum Space

The Dirac distribution δy on R
d satisfies 〈δy, f〉 = f(y). As in [5], we consider

here a normalized truncated Dirac distribution defined by δI
y := 1√

NI
1I(−Δ)δy,

where I is an interval and NI is the number of eigenvalues of −Δ in I. Let us
fix I = (−∞, E] and denote NE = NI , δE

y = δI
y and 1≤E = 1I .

In our framework, δE
y is a trigonometric polynomial, as we can see by

defining δE
y through its Fourier expansion, δE

y :=
∑

j〈ej , δ
E
y 〉ej = 1√

NE

∑
λj≤E

ej(y)ej , for ej(x) = e2πij·x. This function satisfies δE
y (y) =

√
NE → ∞ as

E → ∞ and δE
y (x) → 0 as E → ∞ for x �= y ∈ T

d
∗ (see the proof of

(2) below). Also, ‖δE
y ‖2 = 1

NE

∑
λj ,λk≤E ek−j(y)〈ej , ek〉 = 1 and 〈δE

y , f〉 =
1√
NE

∑
λj≤E ej(y)〈ej , f〉 = 1√

NE
[1≤E(−Δ)f ](y).

Proof of Theorem 1.7. We first note that if a =
∑

m amem, then
∑

m∈Zd

|am| < ∞ (4.1)

since we assumed that ‖a‖2
Hs

=
∑

m |am|2〈m〉2 s < ∞ for 〈m〉 =
√

1 + m2 and
s > d/2.

We have eitΔδE
y = 1√

NE

∑
λ�≤E e�(y)e−itλ�e� and a =

∑
m amem. As

eme� = em+�, we get e−itΔaeitΔδE
y = 1√

NE

∑
m am

∑
λ�≤E e�(y)eit(λ�+m−λ�)em+�.

Thus, 〈δE
y , e−itΔaeitΔδE

y 〉 = 1
NE

∑
m,�∈Z

d,
λ�,λm+�≤E

ameit(λ�+m−λ�)em(y). The

term m = 0 corresponds to 1
NE

∑
λ�≤E a0e0(y) =

∫
Td∗

a(x) dx. Since 1
T

∫ T

0

eit(λ�+m−λ�)dt = 1
T · eiT (λ�+m−λ�)−1

i(λ�+m−λ�)
for λ�+m �= λ�, we get

1
T

∫ T

0

〈eitΔδE
y , aeitΔδE

y 〉dt =
∫

Td∗

a(x) dx +
1

NE

∑

m 
=0,�∈Z
d

λ�,λ�+m≤E,
λ�=λ�+m

amem(y)

+
1

TNE

∑

m 
=0

amem(y)
∑

�∈Z
d,

λ�,λ�+m≤E
λ�+m 
=λ�

eiT (λ�+m−λ�) − 1
i(λ�+m − λ�)

=
∫

Td∗

a(x) dx +
∑

m 
=0

amem(y) · #{� : λ� ≤ E, λ�+m ≤ E, λ�+m = λ�}
NE

+
1

TNE

∑

m 
=0

amem(y)
∑

�∈Z
d,

λ�,λ�+m≤E
λ�+m 
=λ�

eiT (λ�+m−λ�) − 1
i(λ�+m − λ�)

. (4.2)

The second term. Now λk = 4π2k2, for k2 := k2
1 + · · · + k2

d. We have NE =
#{� : �2 ≤ E

4π2 } ∼ cdE
d/2 by known Weyl asymptotics, which say that NE
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is asymptotic to the volume of the d-dimensional ball of radius
√

E
2π . On the

other hand, the constraint λ�+m = λ� means that � ·m = −m2/2. This defines
an affine hyperplane in R

d. Hence, for any m �= 0, {� : λ� ≤ E, λ�+m = λ�} is
itself the number of points on a (d − 1)-dimensional ball of radius ≤

√
E

2π , and
as such, is bounded by cd−1E

(d−1)/2, uniformly in m �= 0 (by varying m we
may get fewer, but not more than cd−1E

(d−1)/2 points). We thus see that

sup
m 
=0

#{� : λ� ≤ E, λ�+m ≤ E, λ�+m = λ�}
NE

→ 0

as E → ∞. By (4.1), it follows that the second error term in (4.2) decays like
E−1/2.

The third term. Let us show that limE→∞ 1
NE

∑
� : λ�≤E

λ�+m 
=λ�

1
|λ�+m−λ�| = 0 uni-

formly in m. Roughly speaking, this is a Cesàro argument (if cn → 0 then
1
n

∑n
k=1 ck → 0).
Let ε > 0 and fix m �= 0, say mi �= 0 and write � = (�̂i, �i) with �̂i ∈ Z

d−1.
We have λ�+m − λ� = 2� · m + m2. So 1

NE

∑
�:λ�≤E

|2�·m+m2|≥ 2
ε

1
|λ�+m−λ�| ≤ ε

2 .

On the other hand, if BE = {λ� ≤ E}, then

{� ∈ BE : � · m = 0} =

{
� : �2 ≤ E

4π
and �i =

−�̂i · m̂i

mi

}

=

⎧
⎨

⎩�̂i : �̂2i +

(
−�̂i · m̂i

mi

)2

≤ E

4π2

⎫
⎬

⎭ ⊆
{

�̂i : �̂2i ≤ E

4π2

}
,

so |{� ∈ BE : � · m = 0}| � E(d−1)/2, with the implicit constant depending on
the dimension, but not m. Similarly, note that |2� · m + m2| < 2

ε implies

−2
ε

− m2 − 2�̂i · m̂i < 2�imi <
2
ε

− m2 − 2�̂i · m̂i.

There are at most 2
|mi|ε +1 values of �i in this interval. We see by applying the

previous argument to each such value that |{� ∈ BE : |2� · m + m2| < 2
ε}| �

ε−1E(d−1)/2, since |mi| ≥ 1. Summarizing, we have

1
NE

∑

�: λ�≤E
λ�+m 
=λ�

1
|λ�+m − λ�| � ε−1

√
E

+
ε

2
� 1

E1/4

by choosing ε � E−1/4. Using (4.1), this implies the third term vanishes like
E−1/4.

This completes the proof of (1), and (3), as ‖aE‖1 ≤ Cs‖aE‖Hs ≤ CsE
r

and Er− 1
4 → 0.

Proof of (2). 〈δE
x , e−itΔaeitΔδE

y 〉 = 1
NE

∑
m,�∈Z

d,
λ�,λm+�≤E

e2πi�·(x−y)ameit(λ�+m−λ�)

em(y) by the same calculations. Let x �= y. Note that xj −yj ∈ (−1, 1) for all j
since x, y ∈ T

d
∗, and xi −yi �= 0 for at least one i. The term m = 0 corresponds
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to 〈a〉
NE

∑
λ�≤E e2πi�·(x−y), where 〈a〉 =

∫
Td∗

a(w)dw. Here λ� ≤ E ⇐⇒ �2 ≤
E

4π2 . Consider first the simplest case d = 1, so the sum runs over [−
√

E
2π ,

√
E

2π ]
and equals e2πiα(β+1)−e−2πiαβ

e2πiα−1
for α = x− y and β =

√
E

2π . Since α �= 0, this may

be bounded by some cα independent of E, so 〈a〉
NE

∑
λ�≤E e2πi�·(x−y) → 0.

When d > 1, if α = x − y, αi �= 0 and we denote � = (�i, �̂i) with
�̂i ∈ R

d−1, then the finite sum over the ball BE = {�2 ≤ E
4π2 } can be rear-

ranged into sections �i ∈ BE(�̂i), for each �̂i such that (�i, �̂i) ∈ BE . And each∑
�i∈BE(�̂i)

e2πi�iαi can again be bounded by some Cαi
independently of E.

By the Weyl asymptotics, we see that |∑�∈BE
e2πi�·α| ≤ Cαi,dE

(d−1)/2. Since
NE ∼ Ed/2, this implies 〈a〉

NE

∑
λ�≤E e2πi�·(x−y) → 0.

We have shown that the term m = 0 vanishes as E → ∞. On the
other hand, the sum over nonzero m is controlled as in (1); the presence of
the phase e2πi�·(x−y) makes no difference. We conclude that if x �= y, then
1
T

∫ T

0
〈eitΔδE

x , aeitΔδE
y 〉dt → 0 as E → ∞.

Weak convergence. 1
T

∫ T

0
〈eitΔδE

y , aeitΔδE
y 〉dt = 1

T

∫ T

0

∫
Td∗

a(x)|(eitΔδE
y )

(x)|2 dxdt. The continuous function a is bounded on the compact T
d
∗, so∫ T

0

∫
Td∗

|a(x)||(eitΔδE
y )(x)|2 dxdt ≤ T‖a‖∞‖eitΔδE

y ‖2 = T‖a‖∞ is finite. By the

Fubini theorem, we get 1
T

∫ T

0
〈eitΔδE

y , aeitΔδE
y 〉 =

∫
Td∗

a(x)( 1
T

∫ T

0
|(eitΔδE

y )(x)|2
dt) dx =

∫
Td∗

a(x) dμE
y,T (x).

It follows from (1) that
∫
Td∗

a(x) dμE
y,T (x) → ∫

Td∗
a(x) dx for any Sobolev

function a, in particular for any smooth function on T
d
∗. Combining [18, Cor

15.3, Thm 13.34], we deduce that dμE
y,T (x) w−→ dx as E → ∞. �

Proof of Lemma 1.8. Consider d = 1 and a(x) = e1(x) = e2πix. The calcula-
tion in the previous proof shows that

〈eitΔδE
y , aeitΔδE

y 〉 =
1

NE

∑

�:λ�,λ�+1≤E

e4π2it(2�+1)e1(y), (4.3)

where we used am = δm,1 and λk = 4π2k2.
If t = n

4π , this gives eiπne1(y)
NE

∑
λ�,λ�+1≤E e2�nπi = cE(−1)ne1(y) for cE =

√
E−π√

E
.

On the other hand, if t = 2n+1
8π , then (4.3) becomes e1(y)ei

(2n+1)π
2

NE

∑
λ�,λ�+1≤E ei(2n+1)π� = e1(y)ei

(2n+1)π
2

NE

∑
λ�,λ�+1≤E(−1)� ∈ {0,± e1(y)ei

(2n+1)π
2

NE
}.

The limits over E are different: in the first case it gives (−1)ne1(y), in
the second case it gives 0. The latter case corresponds to 〈a〉 = 〈e1〉 = 0, but
not the former. �
4.2. Generalizations

It is not very clear what would be the analog of (1.4). The limit limT→∞ 1
T

∫ T

0

〈eitΔφ, aeitΔψ〉dt is not necessarily equal to 〈φ, ψ〉〈a〉 even if φ, ψ are smooth.
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For example, take φ = ej and ψ = ek. Then 〈eitΔej , aeitΔek〉 = eit(λk−λj)〈ej ,
aek〉. We see that if k �= j but λk = λj (e.g., k = (0, 1), j = (1, 0)), then
1
T

∫ T

0
〈eitΔej , aeitΔek〉 = 〈ej , aek〉. Taking a = ej−k, this has value 1. In con-

trast, 〈ej , ek〉〈a〉 = 0.
Instead of δE

y , we can consider variants such as χE
y := 1√∑

j χE(λj)2
χE(−Δ)

δy. In other words, χE
y = 1√∑

j χE(λj)2

∑
j χE(λj)ej(y)ej . Here, instead of

χE = 1≤E , we only ask χE(λ) = 0 if λ > E and 0 < c0 ≤ χE(λ) ≤ c1

on [0, E − 1]. This allows, for example, to consider smooth cutoffs. Then, the
proof carries over. In fact, (4.2) becomes

∫

Td
∗

a(x) dx +
∑

m�=0

amem(y) ·

∑
λ�≤E

λ�=λ�+m

χE(λ�)
2

∑
λ�≤E χE(λ�)2

+
1

T
∑

λ�≤E χE(λ�)2

∑

m�=0

amem(y)
∑

�∈Z
d,

λ�,λ�+m≤E
λ�+m �=λ�

eiT (λ�+m−λ�) − 1

i(λ�+m − λ�)
χE(λ�)χE(λ�+m).

For the second term, we bound the fraction by c21
c20

·#{�:λ�≤E, λ�+m≤E, λ�+m=λ�}
NE−1

,
which converges to zero uniformly in m by the same argument. Similarly, the
third term is controlled as before since |χE(λ�)χE(λ�+m)| ≤ c2

1 and
∑

λ�≤E χE

(λ�)2 ≥ c0NE−1.
Finally, the proof can be generalized to tori of the form T = ×d

i=1[0, bi).

Here we use the basis e�(x) = e
2πx1�1

b1 ···e
2πxd�d

bd√
b1···bd

, with eigenvalues λ� = 4π2
∑d

i=1

�2i
b2i

. The set BE = {λ� ≤ E} now consists of points in an ellipsoid of axes bi

√
E

2π .

We still have NE ∼ Cb,dE
d/2 and the proof carries over mutatis mutandis. If

we assume some irrationality condition, the second term decays faster with E
as the multiplicity reduces; however, it seems that the third error term does
not improve.

4.3. Regularizing in Position Space

Our aim here is to prove Theorem 1.9. We fix an arbitrary sequence (φε) for
ε = (ε1, . . . , εd) which satisfies the following:

• φε = ⊗d
i=1 φεi

, that is, φε(x) = φε1(x1) · · · φεd
(xd) for some functions φεi

on R.
• ‖φεi

‖ = 1 for each i.
• supr∈Z

|〈φεi
, er〉| → 0 as εi → 0, where er(s) = e2πirs for s ∈ T∗.

The most important example is φε = 1√
ε1ε2···εd

1×d
i=1[yi,yi+εi]. Here, 〈φεi

,

er〉 =
√

εi if r = 0 and 〈φεi
, er〉 = 1√

εi
· e2πir(yi+εi)−e2πiryi

2πr if r �= 0. Since |eix −
1| ≤ |x|, we see that |〈φεi

, er〉| ≤ √
εi. This can be regarded as a normalized

point mass in the sense that if φ̃ε = 1
ε1···εd

1×d
i=1[yi,yi+εi], then for any integrable

g, we have 〈φ̃ε, g〉 → g(y) for a.e. y by the Lebesgue differentiation theorem.
Also, φ̃ε(y) = 1

ε1···εd
→ ∞ and φ̃ε(x) → 0 for x �= y.
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Theorem 4.1. For any (φε) and (ψε) as above, any a ∈ Hs(Td
∗), s > d/2, any

T > 0,

lim
ε↓0

1
T

∫ T

0

〈eitΔφε, aeitΔψε〉dt =
(∫

Td∗

a(x) dx
)(

lim
ε↓0

〈φε, ψε〉
)
,

where ε ↓ 0 means more precisely that |ε| =
√

ε2
1 + · · · + ε2

d → 0.

If φε = ψε, the scalar product on the right is ‖φε‖2 = 1. This im-
plies Theorem 1.9. In fact, if we take ψε = 1√

ε1ε2···εd
1×d

i=1[yi,yi+εi] and φε =
1√

ε1ε2···εd
1×d

i=1[xi,xi+εi] for x �= y, then limε↓0〈φε, ψε〉 = 0.

Proof. We have eitΔψ =
∑

� e−itλ�ψ�e� and a =
∑

m amem, so using eme� =
em+�, we get e−itΔaeitΔψ =

∑
m,� amψ�eit(λ�+m−λ�)em+�. This implies that

〈eitΔφ, aeitΔψ〉 =
∑

m

am

∑

�

eit(λ�+m−λ�)ψ�〈φ, e�+m〉.

Thus,

1

T

∫ T

0

〈eitΔφ, aeitΔψ〉 dt = a0

∑

�

〈e�, ψ〉〈φ, e�〉 +
∑

m�=0

am

∑

�:λ�=λ�+m

〈e�, ψ〉〈φ, e�+m〉

+
∑

m�=0

am

∑

�:λ� �=λ�+m

eiT (λ�+m−λ�) − 1

iT (λ�+m − λ�)
〈e�, ψ〉〈φ, e�+m〉.

For φ = φε and ψ = ψε, the first term has the form

a0〈φε, ψε〉 = 〈φε, ψε〉
∫

Td∗

a(x) dx.

Second term: We prove that limε→0

∑
m 
=0 am

∑
� : 2�·m=−m2〈e�, ψε〉〈φε,

e�+m〉 = 0.
First assume d = 1. Then, m �= 0 and 2�m = −m2 implies � = −m/2.

So we get
∑

m 
=0 am〈e−m/2, ψε〉〈φε, em/2〉. By hypothesis, the general term
vanishes as ε → 0. Moreover, it is bounded by |am|·‖ψε‖‖φε‖‖e−m/2‖‖em/2‖ =
|am|, which is summable. By dominated convergence, the result follows.

Now let d > 1. Using |∑m 
=0 F (m)| ≤∑d
i=1

∑
mi 
=0 |F (m)|, it suffices to

show that limε↓0

∑d
i=1

∑
mi 
=0 |am||∑�:2�·m=−m2〈e�, ψε〉〈φε, e�+m〉| = 0.

By hypothesis, φε = ⊗d
i=1 φεi

. It follows that 〈ek, φε〉 =
∏d

j=1〈ekj
, φεj

〉.
Suppose that mi �= 0. Then, �i = −m2−2�̂i·m̂i

2mi
, where for x ∈ R

d, we denoted
x = (x̂i, xi) with x̂i ∈ R

d−1. We thus consider

d∑

i=1

∑

mi 
=0

|am|
∑

�̂i∈Zd−1

|〈e�i
, ψεi

〉〈φεi
, e�i+mi

〉|
∏

j≤d,j 
=i

|〈e�j
, ψεj

〉〈φεj
, e�j+mj

〉|.
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We first show the general term Fε(m) → 0 as ε → 0. For this, we bound
∑

�̂i∈Zd−1

|〈e�i
, ψεi

〉〈φεi
, e�i+mi

〉|
∏

j≤d,j �=i

|〈e�j
, ψεj

〉〈φεj
, e�j+mj

〉|

≤ sup
r∈Z

|〈er, ψεi
〉| sup

k∈Z

|〈φεi
, ek〉|

∑

�̂i∈Zd−1

∏

j≤d,j �=i

|〈e�j
, ψεj

〉〈φεj
, e�j+mj

〉|

= sup
r∈Z

|〈er, ψεi
〉| sup

k∈Z

|〈φεi
, ek〉|

∏

j≤d,j �=i

∑

�j∈Z

|〈e�j
, ψεj

〉〈φεj
, e�j+mj

〉|

≤ sup
r∈Z

|〈er, ψεi
〉| sup

k∈Z

|〈φεi
, ek〉|

∏

j≤d,j �=i

⎛

⎝
∑

�j∈Z

|〈e�j
, ψεj

〉|2
⎞

⎠
1/2⎛

⎝
∑

�j∈Z

|〈φεj
, e�j+mj

〉|2
⎞

⎠
1/2

= sup
r∈Z

|〈er, ψεi
〉| sup

k∈Z

|〈φεi
, ek〉|

∏

j≤d,j �=i

‖ψεj
‖‖φεj

‖ → 0

by hypothesis. On the other hand, the general term can be bounded by

|am|
∑

�:2�·m=−m2

|〈e�, ψε〉〈e�+m, φε〉|

≤ |am|
⎛

⎝
∑

�∈Zd

|〈e�, ψε〉|2
⎞

⎠
1/2⎛

⎝
∑

�∈Zd

|〈e�+m, φε〉|2
⎞

⎠
1/2

≤ |am|

which is summable. By dominated convergence, the result follows.
Third term. We need to show the following term vanishes as ε ↓ 0:

∑

m 
=0

am

∑

�:λ�+m 
=λ�

eiT (λ�+m−λ�) − 1
iT (λ�+m − λ�)

〈e�, ψε〉〈φε, e�+m〉. (4.4)

Let m �= 0, say mi �= 0. We have
∑

�: 2�·m 
=−m2

|〈e�, ψε〉〈φε, e�+m〉|
|2� · m + m2| =

∑

r 
= −m2
2

∑

�: �·m=r

|〈e�, ψε〉〈φε, e�+m〉|
|2r + m2| .

Now � · m = r ⇐⇒ �i = r−�̂i·m̂i

mi
. Recalling φε = ⊗φεi

, this can be
written as

∑

�̂i∈Zd−1

|〈e�̂i
, ψε̂i

〉〈φε̂i
, e�̂i+m̂i

〉|
∑

r �= −m2

2

|〈e r−�̂i·m̂i
mi

, ψεi
〉〈φεi

, e m2
i +r−�̂i·m̂i

mi

〉|

|2r + m2|

≤ sup
k∈Z

|〈ek, ψεi
〉|
∑

�̂i

|〈e�̂i
, ψε̂i

〉〈φε̂i
, e�̂i+m̂i

〉|

⎛

⎜⎝
∑

r �= −m2

2

1

(2r + m2)2

⎞

⎟⎠

1/2 (
∑

k∈Z

|〈φεi
, ek〉|2

)1/2

where we used that r−�̂i·m̂i

mi
and m2

i +r−�̂i·m̂i

mi
are both integers and the Cauchy-

Schwarz inequality.
If m2 ∈ 2Z, then 1

4

∑
r 
= −m2

2

1

(r+ m2
2 )2

= 1
4

∑
k 
=0

1
k2 = π2

12 .

If m2 /∈ 2Z, then k0 := �−m2

2 � = −m2

2 − 1
2 . So 1

4

∑
r

1

(r+ m2
2 )2

= 1
4 ( 1

(1/2)2 +
1

(1/2)2 +
∑

r/∈{k0,k0+1}
1

(r−k0− 1
2 )2

) ≤ 1
4 (8 +

∑
k 
=0

1
k2 ) = 2 + π2

12 .
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Either way, the sum is bounded by 3. We thus showed that
∑

�: 2�·m 
=−m2

|〈e�, ψε〉〈φε, e�+m〉|
|2� · m + m2| ≤

√
3‖φεi

‖ sup
k∈Z

|〈ek, ψεi
〉|

∑

�̂i∈Zd−1

|〈e�̂i
, ψε̂i

〉〈φε̂i
, e�̂i+m̂i

〉|

≤
√

3‖φεi
‖‖ψε̂i

‖‖φε̂i
‖ sup

k∈Z

|〈ek, ψεi
〉|

which tends to zero uniformly in m by our hypotheses.
Finally turning back to (4.4), we have proved that as a sum over m, the

general term vanishes as ε ↓ 0. Moreover, the general term is bounded by
|am| 1

T

∑
� |〈e�, ψε〉〈φε, e�+m〉| ≤ |am|

T by Cauchy-Schwarz and ‖ψε‖ = ‖φε‖ =
1. Since

∑
m |am| < ∞, we conclude by dominated convergence that (4.4)

vanishes as ε ↓ 0. �

Remark 4.2. It is clear that the proofs of Theorems 1.7 and 1.9 continue to hold
if we take the limit T → ∞ before considering E → ∞. The proofs become in
fact simpler as such a limit over T kills the third term in (4.2) and (4.4), thereby
avoiding the finer analysis we performed. See also [19] for this regime. If we do
take the limit over T → ∞ first, then we can also replace

∫ T

0
by
∑T−1

t=0 . For ex-

ample, (4.4) becomes
∑

m 
=0 am

∑
�:λ�+m 
=λ�

eiT (λ�+m−λ�)−1

iT (ei(λ�+m−λ�)−1)
〈e�, ψε〉〈φε, e�+m〉,

which vanishes as T → ∞ (here 0 �= λ�+m − λ� = 4π2(2� · m + m2) /∈ 2πZ).
We cannot however consider

∑T−1
t=0 in Theorems 1.7 and 1.9, as the finer anal-

ysis of the third term that we performed used the fact that 1
|λ�+m−λ�| → 0 as

� → ∞, which is not true of 1

|ei(λ�+m−λ�)−1| .

5. Case of the Sphere

Consider the sphere S
d−1 ⊂ R

d, d ≥ 3. We have L2(Sd−1) = ⊕∞
k=0 Y

d
k, where

Y
d
k is the spherical harmonic space of order k in dimension d. Any nonzero

function in Y
d
k is an eigenfunction of the Laplacian on the sphere −ΔSd−1 with

eigenvalue k(k+d−2) and multiplicity Nk,d = dimY
d
k = (2k+d−2)(k+d−3)!

k!(d−2)! . See

[7, Th. 2.38, Prp. 3.5]. If we define the zonal harmonic of degree k, Z
(k)
ξ (η) :=

Nk,d

|Sd−1|Pk,d(ξ · η), where |Sd−1| = 2πd/2

Γ(d/2) is the volume of the sphere and Pk,d(t)

satisfies the Poisson identity
∑∞

k=0 rkNk,dPk,d(t) = 1−r2

(1+r2−2rt)d/2 for |r| < 1

and t ∈ [−1, 1], then Z
(k)
ξ satisfies the reproducing property [7, (2.33)],

ψ(ξ) = 〈Z(k)
ξ , ψ〉L2(Sd−1) ∀ψ ∈ Y

d
k, ξ ∈ S

d−1. (5.1)

We have Z
(k)
ξ =

∑Nk,d

j=1 Yk,j(ξ)Yk,j for any orthonormal basis of Yd
k, see

[7, Th. 2.9]. In particular Z
(k)
ξ ∈ Y

d
k and as such Z

(k)
ξ is an eigenfunction of

−ΔSd−1 for the eigenvalue k(k + d − 2). Moreover, ‖Z
(k)
ξ ‖2

L2(Sd−1) = Nk,d

|Sd−1| by
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[7, (2.40)] and Z
(k)
ξ (ξ) = Nk,d

|Sd−1| by [7, (2.35)], which is the maximum of Z
(k)
ξ .

Finally, if Cn,ν is the Gegenbauer ultraspherical polynomial, then Cn, d−2
2

(t) =
(
n+d−3

n

)
Pn,d(t) for d ≥ 3, [7, (2.145)].

In view of the Dirac-like Eq. (5.1), one can consider the evolution of

〈eitΔZ̃
(k)
ξ , aeitΔZ̃

(k)
ξ 〉, (5.2)

where Z̃
(k)
ξ =

√
|Sd−1|
Nk,d

Z
(k)
ξ has norm one.

However, since Z
(k)
ξ is an eigenfunction of −ΔSd−1 , this reduces to 〈Z̃(k)

ξ ,

aZ̃
(k)
ξ 〉.

Lemma 5.1. The density |Z̃(k)
ξ (η)|2 is not uniformly distributed as k → ∞. It

has peaks at ±ξ and stays bounded for η �= ±ξ.

More precisely, |Z̃(k)
ξ (±ξ)|2 → ∞ as k → ∞.

Proof. In fact, |Z̃(k)
ξ (±ξ)|2 = |Sd−1|

Nk,d
· N2

k,d

|Sd−1|2 → ∞ as k → ∞. On the other
hand, if η �= ±ξ, then t := ξ · η satisfies |t| < 1. By [7, (2.117)], |Pn,d(t)| <
Γ( d−1

2 )√
π

[ 4
n(1−t2) ]

d−2
2 , hence |Z̃(k)

ξ (η)|2 <
Nk,d

|Sd−1| · cd,η

kd−2 . Since Γ(x + α) ∼ Γ(x)xα,

then Nk,d = (2k+d−2)
(d−2)!

Γ(k+d−2)
Γ(k+1) ∼ 2

(d−2)!k
d−2, hence |Z̃(k)

ξ (η)|2 stays bounded
as k → ∞. The upper bound we used is sharp in n, i.e., Pn,d(t) � 1

n
d−2
2

, by

[36, Th. 8.21.8]. �

A closer analogue to δE
y = 1√

NE

∑
λj≤E ej(y)ej , our Dirac truncation for

the torus, would be S
(n)
ξ = 1√

Mn,d

∑n
k=0 μn,k,dZ

(k)
ξ , where Mn,d =

∑n
k=0 μ2

n,k,d

Nk,d

|Sd−1| and μn,k,d = n!(n+d−2)!
(n−k)!(n+k+d−2)! . In fact, if R

(n)
ξ =

∑n
k=0 μn,k,dZ

(k)
ξ , then

(see [7, §2.8.1]):

• 〈R(n)
ξ , f〉L2(Sd−1) → f(ξ) uniformly in ξ, for any continuous f ,

• R
(n)
ξ (ξ) =

∑n
k=0 μn,k,d

Nk,d

|Sd−1| = En,d = (n+d−2)!

(4π)
d−1
2 Γ(n+ d−1

2 )
→ ∞,

• ‖R
(n)
ξ ‖2

L2(Sd−1) = ‖∑n
k=0 μn,k,dZ

(k)
ξ ‖2

2 =
∑n

k=0 μ2
n,k,d‖Z

(k)
ξ ‖2 = Mn,d.

Here we used that Z
(k)
ξ ⊥ Z

(r)
ξ for k �= r, as they belong to Y

d
k and

Y
d
r , respectively, which are in direct sum (they are in distinct eigenspaces).

This says that R
(n)
ξ is a δξ-sequence and that S

(n)
ξ is its normalization.

Lemma 5.2. The density p
(n)
ξ (η) = limT→∞ 1

T

∫ T

0
|eitΔS

(n)
ξ (η)|2 dt is not uni-

formly distributed as n → ∞. It has peaks at ±ξ and stays bounded for η �= ±ξ.

Again, this means more precisely that p
(n)
ξ (±ξ) → ∞ as n → ∞.

Proof. As eitΔS
(n)
ξ = 1√

Mn,d

∑n
k=0 e−itλkμn,k,dZ

(k)
ξ , λk = k(k + d − 2), then

|eitΔS
(n)
ξ (η)|2 = 1

Mn,d

∑n
k=0 μ2

n,k,d|Z(k)
ξ (η)|2 + 1

Mn,d

∑
k 
=k′ eit(λk′−λk)μn,k,d
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μn,k′,dZ
(k)
ξ (η)Z(k′)

ξ (η). But λk �= λk′ for k �= k′, because the eigenspaces Y
d
k

are in direct sum (alternatively, λk = λj for k �= j would imply (k2 −j2)+(d−
2)(k − j) = 0, so k + j +d−2 = 0, a contradiction since d ≥ 3 and k, j ≥ 0). It
follows that 1

T

∫ T

0
|eitΔS

(n)
ξ (η)|2 dt → 1

Mn,d

∑n
k=0 μ2

n,k,d|Z(k)
ξ (η)|2 =: p

(n)
ξ (η).

Now p
(n)
ξ (±ξ) = 1

Mn,d

∑n
k=0 μ2

n,k,d

N2
k,d

|Sd−1|2 diverges as n → ∞. In fact,

(
∑n

k=0 ak)2 ≤ (n + 1)
∑n

k=0 a2
k. Applying this to ak = μn,k,d

Nk,d

|Sd−1| , we get

E2
n,d ≤ (n+1)

∑n
k=0 a2

k, so 1
Mn,d

∑n
k=0 a2

k ≥ E2
n,d

(n+1)Mn,d
→ ∞ for d > 3, because

E2
n,d

(n+1)Mn,d
≥ En,d

n+1 � n
d−1
2

n → ∞. Here, we used that μn,k,d ≤ 1. For d = 3, this
lower bound is not useful. So we argue as follows.

We have
∑n

k=0 μn,k,d
Nk,d

|Sd−1| = En,d. By Cauchy-Schwarz, we have on the

one hand (
∑n

k=0 μn,k,d
Nk,d

|Sd−1| )
2 ≤ (n + 1)

∑n
k=0 μ2

n,k,d

N2
k,d

|Sd−1|2 , so that
∑n

k=0

μ2
n,k,d

N2
k,d

|Sd−1|2 ≥ E2
n,d

n+1 . On the other hand, M2
n,d = (

∑n
k=0 μ2

n,k,d
Nk,d

|Sd−1| )
2 ≤

(
∑n

k=0 μ2
n,k,d)(

∑n
k=0 μ2

n,k,d

N2
k,d

|Sd−1|2 ) and so
∑n

k=0 μ2
n,k,d

N2
k,d

|Sd−1|2
Mn,d

= (
∑n

k=0 μ2
n,k,d

N2
k,d

|Sd−1|2 )1/2 · (
∑n

k=0 μ2
n,k,d

N2
k,d

|Sd−1|2 )1/2

Mn,d
≥ (

∑n
k=0 μ2

n,k,d

N2
k,d

|Sd−1|2 )1/2

(
∑n

k=0 μ2
n,k,d)1/2 . The two inequalities

imply that
∑n

k=0 μ2
n,k,d

N2
k,d

|Sd−1|2
Mn,d

≥ En,d√
n+1(

∑n
k=0 μ2

n,k,d)1/2 .

Specializing to d = 3, we have En,3 = n+1
4π . Also,

∑n
k=0 μ2

n,k,3 =
∑n

k=0

( n!(n+1)!
(n−k)!(n+k+1)! )

2 =
∑∞

k=0
(1)k(−n)k(−n)k

(n+2)k(n+2)kk! = 3F2(1,−n,−n;n+2, n+2; 1). Here

(r)k = r(r + 1) · · · (r + k − 1). If r ∈ N
∗, then (r)k = (r+k−1)!

(r−1)! for any k, while
(−r)k = −r(−r+1) · · · (−r+k−1) = (−1)kr(r−1) · · · (r−k+1) = (−1)k r!

(r−k)!

holds for k ≤ r and (−r)k = 0 for k > r.

By Dixon’s identity, 3F2(1,−n,−n;n + 2, n + 2; 1) = Γ( 3
2 )Γ( 3

2+2n)Γ(2+n)2

Γ(2)Γ(2+2n)Γ( 3
2+n)2

.

Using the asymptotic Γ(x + α) ∼ Γ(x)xα, this shows that
∑n

k=0 μ2
n,k,3 ∼

√
π

2 · (n1/2)2

(2n)1/2 = 1
2

√
πn
2 .

We thus get that
∑n

k=0 μ2
n,k,3

N2
k,3

|S2|2
Mn,3

� n+1

4π
√

n+1( 1
2

√
πn
2 )1/2

� n1/4 → ∞.

We showed that p
(n)
ξ (±ξ) → ∞. If η �= ±ξ, then as in Lemma 5.1, we

have p
(n)
ξ (η) < 1

Mn,d

∑n
k=0 μ2

n,k,d

N2
k,d

|Sd−1|2
cd,η

kd−2 with Nk,d ∼ 2
(d−2)!k

d−2, so that

Mn,d =
∑n

k=0 μ2
n,k,d

Nk,d

|Sd−1| and
∑n

k=0 μ2
n,k,d

N2
k,d

|Sd−1|2
cd,η

kd−2 grow at the same speed

with n, and p
(n)
ξ (η) stays bounded. �

To see more explicitly that ergodicity is violated, we can compare averages
of specific observables. For simplicity, let us choose a such that for the ξ we
fixed, a(η) = a(ξ · η). This allows to use the Funk–Hecke formula [7, Th. 2.22]:
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for any Yn ∈ Y
d
n,

∫

Sd−1
f(ξ · η)Yn(η) dSd−1(η) = Yn(ξ)|Sd−2|

∫ 1

−1

Pn,d(t)f(t)(1 − t2)
d−3
2 dt

For Yn = Z
(n)
ξ and f(ξ · η) = a(ξ · η)Pn,d(ξ · η) Nn,d

|Sd−1| = a(ξ · η)Z(n)
ξ (η) we get

∫

Sd−1
a(ξ · η)[Z(n)

ξ (η)]2 dSd−1(η)

=
Z

(n)
ξ (ξ)|Sd−2|Nn,d

|Sd−1|
∫ 1

−1

[Pn,d(t)]2a(t)(1 − t2)
d−3
2 dt

=
|Sd−2|N2

n,d

|Sd−1|2
∫ 1

−1

[Pn,d(t)]2a(t)(1 − t2)
d−3
2 dt .

On the other hand (case n = 0 of Funk–Hecke, cf. [7, (2.87)]),
∫

Sd−1
a(ξ · η) dSd−1(η) = |Sd−2|

∫ 1

−1

a(t)(1 − t2)
d−3
2 dt. (5.3)

Let us check the asymptotics of (5.2). We take d = 3. Then, |Sd−1| = 4π,
|Sd−2| = 2π, Nk,d = 2k + 1 and Pn,d(t) = Pn(t) is the Legendre polynomial,
which satisfies [7, (2.79)]

∫ 1

−1

Pn(t)Pm(t) dt =
2

2n + 1
δn,m.

Since (n + 1)Pn+1(t) + nPn−1(t) = (2n + 1)tPn(t), see [7, p. 52], we deduce
that

∫ 1

−1

t2Pn(t)2 dt =
2

(2n + 1)2
( n2

2n − 1
+

(n + 1)2

2n + 3

)
.

Lemma 5.3. Let d = 3. There exists an observable a such that for any T > 0,

lim
k→∞

1
T

∫ T

0

〈eitΔZ̃
(k)
ξ , aeitΔZ̃

(k)
ξ 〉dt = lim

k→∞
〈Z̃(k)

ξ , aZ̃
(k)
ξ 〉 �= 〈a〉.

Proof. Given ξ, we have for a(η) := a(ξ · η), with a(t) = t2, that

〈Z̃(k)
ξ , aZ̃

(k)
ξ 〉 =

|Sd−1|
Nk,d

∫

Sd−1
a(ξ · η)[Z(k)

ξ (η)]2 dSd−1(η)

=
|Sd−2|Nk,d

|Sd−1|
∫ 1

−1

[Pk,d(t)]2a(t)(1 − t2)
d−3
2 dt

=
(2π)(2k + 1)

4π

∫ 1

−1

t2Pk(t)2 dt =
1

2k + 1

( k2

2k − 1
+

(k + 1)2

2k + 3

)
.

This tends to 1
2 as k → ∞. On the other hand, by (5.3),

〈a〉 =
1

|Sd−1|
∫

Sd−1
a(ξ · η) dSd−1(η) =

1
2

∫ 1

−1

t2 dt =
1
3
. (5.4)

This completes the proof. �
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A similar phenomenon holds for S
(n)
ξ .

Lemma 5.4. Let d = 3. There exists an observable a such that

lim inf
n→∞ lim

T→∞
1
T

∫ T

0

〈eitΔS
(n)
ξ , aeitΔS

(n)
ξ 〉dt �= 〈a〉.

Proof. Our arguments in Lemma 5.2 show that

lim
T→∞

1

T

∫ T

0
〈eitΔS

(n)
ξ , aeitΔS

(n)
ξ 〉 dt=

1

Mn,d

n∑

k=0

μ2
n,k,d

∫

Sd−1
a(η)|Z(k)

ξ (η)|2 dSd−1(η).

Choosing again d = 3 and a(η) = a(ξ · η) for a(t) = t2, this becomes

1
Mn,3

n∑

k=0

μ2
n,k,3

(2π)(2k + 1)2

(4π)2

∫ 1

−1

t2Pk(t)2 dt

=
1

Mn,3

n∑

k=0

μ2
n,k,3

1
4π

( k2

2k − 1
+

(k + 1)2

2k + 3

)
.

But the expression in parentheses is

2k3 + 3k2 + (2k − 1)(k2 + 2k + 1)
(2k − 1)(2k + 3)

=
(2k + 1)(2k2 + 2k − 1)

4k2 + 4k − 3

and 2k2+2k−1
4k2+4k−3 ≥ 1

2 for k ≥ 1. Thus, as μn,0,3 = 1, the limit is

≥ 1
12πMn,3

+
1

2Mn,3

n∑

k=1

μ2
n,k,3

2k + 1
4π

=
1

12πMn,3
+

1
2Mn,3

n∑

k=0

μ2
n,k,3

Nk,3

|S2| − 1
8πMn,3

=
−1

24πMn,3
+

1
2

→ 1
2
,

since Mn,3 =
∑n

k=0 μ2
n,k,3

Nk,3
|S2| ≥ 1

4π

∑n
k=0 μ2

n,k,3 � √
n → ∞ as we saw in

Lemma 5.2. Summarizing, we have shown that

lim inf
n→∞ lim

T→∞
1
T

∫ T

0

〈eitΔS
(n)
ξ , aeitΔS

(n)
ξ 〉dt ≥ 1

2
.

In view of (5.4), this completes the proof. �

The results of this section suggest that unitary evolution of the Laplacian
on the sphere does not make point masses equidistributed as time goes on,
hence a lack of ergodicity. This is in accord with the classical picture.

Still, our analysis is based on the evolution of some specific normalized
δ-sequence S

(n)
ξ . It would be interesting to see if equidistribution continues to

be violated for other choices.
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Appendix A. Discussion

A.1. Eigenfunction Thermalization

One could heuristically deduce the present dynamical criterion of ergodicity
using quantum ergodicity of eigenvectors as follows. Suppose that HN is a self-
adjoint operator on a finite graph GN of order N having a quantum ergodic
basis (ψ(N)

j ). Fix a normalized initial state φ, assume for simplicity that it is
well-defined as N varies (e.g., GN ⊂ GN+1 or GN+1 is a cover of GN ). Expand-
ing φ =

∑N
k=1〈ψ(N)

k , φ〉ψ(N)
k , so that e−itHN φ =

∑N
k=1〈ψ(N)

k , φ〉e−itλ
(N)
k ψ

(N)
k ,

we obtain

〈
e−itHN φ, aNe−itHN φ

〉
=

〈
N∑

m=1

〈ψ(N)
m , φ〉e−itλ(N)

m ψ(N)
m , aN

N∑

n=1

〈ψ(N)
n , φ〉e−itλ(N)

n ψ(N)
n

〉

=

N∑

n=1

|〈ψ(N)
n , φ〉|2〈ψ(N)

n , aNψ(N)
n 〉

+
∑

m,n≤N
m�=n

eit(λ(N)
m −λ(N)

n )〈ψ(N)
m , φ〉〈ψ(N)

n , φ〉〈ψ(N)
m , aNψ(N)

n 〉

From here one could argue that 〈ψ(N)
m , aψ

(N)
n 〉 ≈ δm,n〈a〉 if the eigenfunc-

tions satisfy a strong form of quantum ergodicity. If not, one could take a time
average 1

T

∫ T

0
and assume the spectrum is simple, so that the double sum of os-

cillatory terms vanishes as T → ∞. Since
∑N

n=1 |〈ψ(N)
n , φ〉|2〈ψ(N)

n , aNψ
(N)
n 〉 ≈∑N

n=1 |〈ψ(N)
n , φ〉|2〈aN 〉 = 〈aN 〉‖φ‖2 = 〈aN 〉 by the assumed eigenfunction er-

godicity, we get that 〈e−itHN φ, aNe−itHN φ〉 ≈ 〈aN 〉 or limT→∞ 1
T

∫ T

0
〈e−itHN φ,

aNe−itHN φ〉dt ≈ 〈aN 〉, respectively. The same heuristic can be used in the
continuum, for example, on the torus.

This heuristic is folklore in the physics community and is commonly
known as eigenfunction thermalization. It can be made rigorous for some mod-
els of random matrices, see, for example, the discussion in [10]. Note that
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it only requires one special basis of eigenfunctions (ψ(N)
j ) to be ergodic in

a strong sense, e.g., quantum uniquely ergodic. For specific (deterministic)
graphs it seems to us that making this argument rigorous can be more dif-
ficult than proving the theorem from scratch. In particular, for the case of
Z

d, the eigenvalues have a high multiplicity, which complicates this scheme
even though we have a very nice ergodic basis ψ

(N)
j (n) = 1

Nd/2 e2πij·n/N at
disposal. Also note that on the torus, this conclusion is simply wrong if we
choose φ(x) =

√
2 cos(2πx) since eitΔφ = e−4π2itφ, so at least in this model

where the spectrum is highly degenerate, there must be some assumption on
φ.

A.2. Other Interpretations

It may be interesting to explore other quantum dynamical interpretations of
ergodicity.

Since in the classical picture on the torus, we calculate the mean value
1
T

∫ T

0
a(x0 + ty0) dt of an observable a over an orbit of x0, one could naively

replace a(y) by 〈δy, a〉 and thus consider the limit of 1
T

∫ T

0
〈eitΔδy, a〉dt and see

if it approaches
∫

a(x) dx. Let us check what this gives.
Let H be a self-adjoint operator on a Hilbert space H and let φ, ψ ∈ H .

Then, by the functional calculus we have

lim
T→∞

1
T

∫ T

0

〈φ, eitHψ〉dt = 〈φ, χ{0}(H)ψ〉. (A.1)

This interpretation would rely entirely on the spectral projection at 0.
It does not seem entirely convincing. For example, both the torus and sphere
Laplacian satisfy that χ{0}(−Δ) is the orthogonal projection onto the flat
function, that is, (χ{0}(−ΔTd∗)a)(y) =

∫
Td∗

a(x) dx and (χ{0}(−ΔSd−1)a)(y) =
1

|Sd−1|
∫
Sd−1 a(x) dSd−1(x), so that the RHS of (A.1) in both cases is 〈φ〉〈ψ〉,

although the dynamics are very different in each case.

A.3. Further Comments

In general, ergodic theorems apply to integrable functions f and assert that
limn→∞ 1

n

∑n
k=1 f(T kx) = g(x), where g is such that

∫
g =

∫
f . If T is ergodic,

then g must be constant, and this constant is 1
μ(Ω)

∫
Ω

f(y) dμ(y).

On the quantum side, the long-time convergence of 1
T

∫ T

0
|(eitHψ)(x)|2 is

quite trivial if H is finite dimensional (e.g., working on a finite graph). In
fact, if Pk are the spectral projections for the distinct eigenvalues of H, then

|(eitHψ)(x)|2 =
∣∣∣

m∑

k=1

eitEk(Pkψ)(x)
∣∣∣
2

=
m∑

k=1

|(Pkψ)(x)|2 +
∑

k 
=�

eit(Ek−E�)(Pkψ)(x)(P�ψ)(x)
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Since 1
T

∫ T

0
eit(Ek−E�) dt = 1

iT · eiT (Ek−E�)−1
Ek−E�

→ 0, we get that

lim
T→∞

1
T

∫ T

0

|(eitHψ)(x)|2 dt =
m∑

k=1

|(Pkψ)(x)|2. (A.2)

The function on the RHS clearly satisfies that its integral (or its sum over
the graph) is equal to ψ. So the hard part here is to prove ergodicity rather
than convergence, i.e., proving that for certain models the RHS is constant.
This is what we did for the case of cubes, asymptotically in N . We do not
use (A.2) for this purpose, as the high multiplicity of eigenvalues complicates
the calculation of Pkψ. We emphasize that for the torus, we do not need to
consider long time T , so (A.2) is useless.

In the context of quantum walks, the papers [9,17] investigate the mixing
time, namely, how fast does 1

T

∫ T

0
|(eitHψ)(x)|2 dt becomes ε-close to its limit∑m

k=1 |(Pkψ)(x)|2.
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[13] Klein, A.: Spreading of wave packets in the anderson model on the bethe lattice.
Commun. Math. Phys. 177, 755–773 (1996)

[14] Han, X.: Small scale quantum ergodicity on negatively curved manifolds. Non-
linearity 28, 3263–3288 (2015)

[15] Hezari, H., Rivière, G.: Lp norms, nodal sets, and quantum ergodicity. Adv.
Math. 290, 938–966 (2016)

[16] Hiary, G.A.: A nearly-optimal method to compute the truncated theta function,
its derivatives, and integrals. Ann. of Math. 174, 859–889 (2011)

[17] Kargin, V.: Bounds for mixing time of quantum walks on finite graphs. J. Phys.
A: Math. Theor. 43, 335302 (2010)

[18] Klenke A.: Probability Theory. A Comprehensive Course, Third Edition,
Springer (2020)

[19] Klimek, S., Kondracki, W.: Ergodic properties of the quantum geodesic flow on
tori. Math. Phys. Anal. Geom. 8, 173–186 (2005)

[20] Kuznetsov, A.: Computing the truncated theta function via Mordell integral.
Math. Comput. 84, 2911–2926 (2015)

[21] Landau, L.J.: Bessel functions: monotonicity and bounds. J. London Math. Soc.
61, 197–215 (2000)
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